4.6 C
United States of America
Wednesday, January 22, 2025

Exploring the anti-inflammatory results of curcumin encapsulated inside ferritin nanocages: a complete in vivo and in vitro research in Alzheimer’s illness | Journal of Nanobiotechnology


  • Golde TE, Levey AI. Immunotherapies for Alzheimer’s illness. Science. 2023;382:1242–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigue KM, Kennedy KM, Devous MD, Rieck JR, Hebrank AC, Diaz-Arrastia R, et al. β-Amyloid burden in wholesome getting older: Regional distribution and cognitive penalties. Neurology. 2012;78:387–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampel H, Hardy J, Blennow Ok, Chen C, Perry G, Kim SH, et al. The Amyloid-β pathway in Alzheimer’s Illness. Mol Psychiatry. 2021;26:5481–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mir RH, Shah AJ, Mohi-ud-din R, Pottoo FH, Dar MA, Jachak SM, et al. Pure anti-inflammatory compounds as drug candidates in Alzheimer’s Illness. Curr Med Chem. 2021;28:4799–825.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gagliardi S, Morasso C, Stivaktakis P, Pandini C, Tinelli V, Tsatsakis A, et al. Curcumin formulations and trials: what’s New in Neurological illnesses. Molecules. 2020;25:5389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagliardi S, Truffi M, Tinelli V, Garofalo M, Pandini C, Cotta Ramusino M, et al. Bisdemethoxycurcumin (BDC)-Loaded H-Ferritin-nanocages mediate the regulation of irritation in Alzheimer’s Illness sufferers. Int J Mol Sci. 2022;23:9237.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utomo RY, Sugie A, Okada S, Miura Ok, Nakamura H. Detoxing of amyloid β fibrils by curcumin derivatives and their verification in a Drosophila Alzheimer’s mannequin. Chem Commun. 2022;58:2576–9.

    Article 
    CAS 

    Google Scholar
     

  • Gagliardi S, Franco V, Sorrentino S, Zucca S, Pandini C, Rota P, et al. Curcumin and Novel Artificial analogs in cell-based research of Alzheimer’s Illness. Entrance Pharmacol. 2018;9:1404.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seady M, Fróes FT, Gonçalves CA, Leite MC. Curcumin modulates astrocyte perform underneath basal and inflammatory circumstances. Mind Res. 2023;1818:148519.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lengthy JM, Holtzman DM. Alzheimer Illness: an replace on pathobiology and therapy methods. Cell. 2019;179:312–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H-S, Teng L, Kang D, Menon V, Ge T, Finucane HK, et al. Cell-type-specific Alzheimer’s illness polygenic threat scores are related to distinct illness processes in Alzheimer’s illness. Nat Commun. 2023;14:7659.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlepckow Ok, Morenas-Rodríguez E, Hong S, Haass C. Stimulation of TREM2 with agonistic antibodies—an rising therapeutic choice for Alzheimer’s illness. Lancet Neurol. 2023;22:1048–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory results of Curcumin within the inflammatory illnesses: Standing, limitations and countermeasures. Drug Des Devel Ther. 2021;15:4503–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kothawade SM, Buttar HS, Tuli HS, Kaur G. Therapeutic potential of flavonoids within the administration of obesity-induced Alzheimer’s illness: an outline of preclinical and medical research. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:2813–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuda T. Curcumin as a practical food-derived issue: degradation merchandise, metabolites, bioactivity, and future views. Meals Funct. 2018;9:705–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mainini F, Bonizzi A, Sevieri M, Sitia L, Truffi M, Corsi F, et al. Protein-based nanoparticles for the imaging and therapy of strong tumors: the case of Ferritin Nanocages, a Narrative Overview. Pharmaceutics. 2021;13:2000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montemiglio LC, Testi C, Ceci P, Falvo E, Pitea M, Savino C, et al. Cryo-EM construction of the human ferritin–transferrin receptor 1 complicated. Nat Commun. 2019;10:1121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Ok, Jia X, Zhou M, Wang Ok, Conde J, He J, et al. Ferritin Nanocarrier traverses the blood mind barrier and kills glioma. ACS Nano. 2018;12:4105–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiandra L, Mazzucchelli S, Truffi M, Bellini M, Sorrentino L, Corsi F. In Vitro Permeation of FITC-loaded ferritins throughout a rat blood-brain barrier: a mannequin to check the supply of Nanoformulated Molecules. J Vis Exp. 2016;54279.

  • Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, et al. H-Ferritin enriches the Curcumin Uptake and improves the therapeutic efficacy in Triple detrimental breast Most cancers cells. Biomacromolecules. 2017;18:3318–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal β-Amyloid aggregates, neurodegeneration, and Neuron Loss in Transgenic Mice with 5 familial Alzheimer’s illness mutations: potential elements in amyloid plaque formation. J Neurosci. 2006;26:10129–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, et al. Complete analysis of the 5XFAD mouse mannequin for preclinical testing functions: a MODEL-AD research. Entrance Getting older Neurosci. 2021;13:713726.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary TP, Brown RE. Visuo-spatial studying and reminiscence impairments within the 5xFAD mouse mannequin of Alzheimer’s illness: results of age, intercourse, albinism, and motor impairments. Genes Mind Behav. 2022;21:e12794.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faisal M, Assist J, Nodirov B, Lee B, Hickey MA. Preclinical trials in Alzheimer’s illness: Pattern dimension and impact dimension for behavioural and neuropathological outcomes in 5xFAD mice. Burne TH, editor. PLOS ONE. 2023;18:e0281003.

  • Percie Du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal analysis: clarification and elaboration for the ARRIVE pointers 2.0. Boutron I, editor. PLOS Biol. 2020;18:e3000411.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Ferritin nanocages: a organic platform for drug supply, imaging and theranostics in most cancers. Pharmacol Res. 2016;107:57–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Dewey CN. RSEM: correct transcript quantification from RNA-Seq knowledge with or with out a reference genome. BMC Bioinformatics. 2011;12:323.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, et al. EBSeq: an empirical Bayes hierarchical mannequin for inference in RNA-seq experiments. Bioinformatics. 2013;29:1035–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. Depend-based differential expression evaluation of RNA sequencing knowledge utilizing R and Bioconductor. Nat Protoc. 2013;8:1765–86.

    Article 
    PubMed 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 2014;15:550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyoto Encyclopedia of Genes and Genomes [Internet]. http://www.genome.advert.jp/kegg

  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a complete gene set enrichment evaluation net server 2016 replace. Nucleic Acids Res. 2016;44:W90–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and associated types of studying and reminiscence. Nat Protoc. 2006;1:848–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR, Sandoval PY, et al. Astrocytes regulate mind extracellular pH by way of a neuronal activity-dependent bicarbonate shuttle. Nat Commun. 2020;11:5073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzuto MA, Dal Magro R, Barbieri L, Pandolfi L, Sguazzini-Viscontini A, Truffi M, et al. H-Ferritin nanoparticle-mediated supply of antibodies throughout a BBB in vitro mannequin for therapy of mind malignancies. Biomater Sci. 2021;9:2032–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sevieri M, Mazzucchelli S, Barbieri L, Garbujo S, Carelli S, Bonizzi A, et al. Ferritin nanoconjugates information trastuzumab mind supply to advertise an antitumor response in murine HER2 + breast most cancers mind metastasis. Pharmacol Res. 2023;196:106934.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo C-H, Kim J, Baek H-M, Chang Ok-A, Choe B-Y. Neurodegenerative adjustments within the brains of the 5xFAD Alzheimer’s Illness Mannequin mice investigated by high-field and high-resolution magnetic resonance imaging and Multi-nuclei magnetic resonance spectroscopy. Int J Mol Sci. 2023;24:5073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Web optimization N-Y, Kim GH, Noh JE, Shin JW, Lee CH, Lee KJ. Selective Regional lack of cortical synapses missing presynaptic mitochondria within the 5xFAD Mouse Mannequin. Entrance Neuroanat. 2021;15:690168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Fujioka H, Wang W, Zhu X. Bezafibrate confers neuroprotection within the 5xFAD mouse mannequin of Alzheimer’s illness. Biochim Biophys Acta Mol Foundation Dis. 2023;1869:166841.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rejc L, Gómez-Vallejo V, Joya A, Arsequell G, Egimendia A, Castellnou P, et al. Longitudinal analysis of neuroinflammation and oxidative stress in a mouse mannequin of Alzheimer illness utilizing positron emission tomography. Alzheimers Res Ther. 2022;14:80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Gao W, Solar Y, Wu M. New perception on microglia activation in neurodegenerative illnesses and therapeutics. Entrance Neurosci. 2023;17:1308345.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A Distinctive Microglia Sort Related to Proscribing Improvement of Alzheimer’s Illness. Cell. 2017;169:1276–e129017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, et al. Protecting results of a pure product, Curcumin, in opposition to amyloid β Induced mitochondrial and synaptic toxicities in Alzheimer’s Illness. J Investig Med. 2016;64:1220–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzanti G, Di Giacomo S. Curcumin and Resveratrol within the administration of Cognitive problems: what’s the medical proof? Molecules. 2016;21:1243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuszewski JC, Wong RHX, Howe PRC. Can Curcumin counteract Cognitive decline? Scientific trial proof and rationale for combining ω-3 fatty acids with Curcumin. Adv Nutr. 2018;9:105–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The important Medicinal Chemistry of Curcumin: Miniperspective. J Med Chem. 2017;60:1620–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. Curcumin Might (not) defy Science. ACS Med Chem Lett. 2017;8:467–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fast JD, Silva C, Wong JH, Lim KL, Reynolds R, Barron AM, et al. Lysosomal acidification dysfunction in microglia: an rising pathogenic mechanism of neuroinflammation and neurodegeneration. J Neuroinflammation. 2023;20:185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luss AL, Bagrov DV, Yagolovich AV, Kukovyakina EV, Khan II, Pokrovsky VS, et al. Toxicity analysis and controlled-release of curcumin-loaded amphiphilic Poly-N-vinylpyrrolidone nanoparticles: in Vitro and in vivo fashions. Pharmaceutics. 2023;16:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shajari M, Zamani M, Ahmadi N, Rostamizadeh Ok, Shapouri R. Enhancing the antibacterial exercise of Curcumin Loaded nanoparticles in Wastewater Remedy by enhancing permeability and sustained launch. J Polym Environ. 2022;30:2658–68.

    Article 
    CAS 

    Google Scholar
     

  • Karzi V, Ozcagli E, Tzatzarakis MN, Vakonaki E, Fragkiadoulaki I, Kalliantasi A, et al. DNA harm estimation after power and mixed publicity to endocrine disruptors: an in vivo real-life threat Simulation Strategy. Int J Mol Sci. 2023;24:9989.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsatsakis A, Docea AO, Constantin C, Calina D, Zlatian O, Nikolouzakis TK, et al. Genotoxic, cytotoxic, and cytopathological results in rats uncovered for 18 months to a combination of 13 chemical compounds in doses beneath NOAEL ranges. Toxicol Lett. 2019;316:154–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–mind barrier: construction, regulation, and drug supply. Sign Transduct Goal Ther. 2023;8:217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banks WA. Drug supply to the mind in Alzheimer’s illness: consideration of the blood–mind barrier. Adv Drug Deliv Rev. 2012;64:629–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Rosa F, Zoia CP, Bazzini C, Bolognini A, Saresella M, Conti E, et al. Modulation of MAPK- and PI3/AKT-Dependent Autophagy Signaling by Stavudine (D4T) in PBMC of Alzheimer’s Illness sufferers. Cells. 2022;11:2180.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurt S, Tomatir AG, Tokgun PE, Oncel C. Altered expression of lengthy non-coding RNAs in Peripheral Blood mononuclear cells of sufferers with Alzheimer’s Illness. Mol Neurobiol. 2020;57:5352–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty A, Sami SA, Marma KKS. A complete assessment on RAGE-facilitated pathological pathways connecting Alzheimer’s illness, diabetes mellitus, and cardiovascular illnesses. Egypt J Intern Med. 2021;33:47.

    Article 

    Google Scholar
     

  • Rudajev V, Novotny J. Ldl cholesterol as a key participant in amyloid β-mediated toxicity in Alzheimer’s illness. Entrance Mol Neurosci. 2022;15:937056.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantelopulos GA, Abraham CB, Straub JE. Ldl cholesterol and lipid rafts within the Biogenesis of Amyloid-β protein and Alzheimer’s Illness. Annu Rev Biophys. 2024;53:annurev–biophys.

  • Eimer WA, Vassar R. Neuron loss within the 5XFAD mouse mannequin of Alzheimer’s illness correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol Neurodegener. 2013;8:2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang G, Wang Z, Hu H, Zhao M, Solar L. Microglia in Alzheimer’s Illness: a goal for therapeutic intervention. Entrance Cell Neurosci. 2021;15:749587.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter SF, Herholz Ok, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte biomarkers in Alzheimer’s Illness. Developments Mol Med. 2019;25:77–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancuso R, Fryatt G, Cleal M, Obst J, Pipi E, Monzón-Sandoval J, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Mind. 2019;142:3243–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, et al. Curcumin Construction-Operate, bioavailability, and efficacy in fashions of Neuroinflammation and Alzheimer’s Illness. J Pharmacol Exp Ther. 2008;326:196–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram JR, Poore CP, Sulaimee NHB, Pareek T, Cheong WF, Wenk MR, et al. Curcumin ameliorates Neuroinflammation, Neurodegeneration, and reminiscence deficits in p25 Transgenic Mouse Mannequin that bears hallmarks of Alzheimer’s Illness. J Alzheimers Dis. 2017;60:1429–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles