13.2 C
United States of America
Tuesday, March 18, 2025

Exciton dressing by excessive nonlinear magnons in a layered semiconductor


  • Cramer, J. et al. Magnon detection utilizing a ferroic collinear multilayer spin valve. Nat. Commun. 9, 1089 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 0800172 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article 

    Google Scholar
     

  • Zheng, S. et al. Tutorial: nonlinear magnonics. J. Appl. Phys. 134, 151101 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Flebus, B., Rezende, S. M., Grundler, D. & Barman, A. Current advances in magnonics. J. Appl. Phys. 133, 160401 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, Okay. & Nakamura, Y. Hybrid quantum programs based mostly on magnonics. Appl. Phys. Specific 12, 070101 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Diederich, G. M. et al. Tunable interplay between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Först, M. et al. Nonlinear phononics as an ultrafast path to lattice management. Nat. Phys. 7, 854–856 (2011).

    Article 

    Google Scholar
     

  • Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon information processing. Nat. Commun. 5, 4700 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rodrigues, D. R. et al. Nonlinear dynamics of topological ferromagnetic textures for frequency multiplication. Phys. Rev. Appl. 16, 014020 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schubert, O. et al. Sub-cycle management of terahertz high-harmonic era by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Demidov, V. E. et al. Technology of the second harmonic by spin waves propagating in microscopic stripes. Phys. Rev. B 83, 054408 (2011).

    Article 

    Google Scholar
     

  • Hermsdoerfer, S. J. et al. A spin-wave frequency doubler by area wall oscillation. Appl. Phys. Lett. 94, 223510 (2009).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet. Nat. Phys. 20, 801–806 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Telford, E. J. et al. Coupling between magnetic order and cost transport in a two-dimensional magnetic semiconductor. Nat. Mater. 21, 754–760 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Telford, E. J. et al. Layered antiferromagnetism induces giant unfavourable magnetoresistance within the van der Waals semiconductor CrSBr. Adv. Mater. 34, 2205639 (2020).

    Article 

    Google Scholar
     

  • Wilson, N. P. et al. Interlayer digital coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Solar, Y. et al. Dipolar spin wave packet transport in a van der Waals antiferromagnet. Nat. Phys. 20, 794–800 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, C. et al. Excessive terahertz magnon multiplication induced by resonant magnetic pulse pairs. Nat. Commun. 15, 3214 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kapteyn, H. C., Murnane, M. M. & Christov, I. P. Excessive nonlinear optics: coherent X rays from lasers. Phys. At present 58, 39–46 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Okay. et al. Magnetic order and symmetry within the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cham, T. M. J. et al. Anisotropic gigahertz antiferromagnetic resonances of the easy-axis van der Waals antiferromagnet CrSBr. Nano Lett. 22, 6716–6723 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and powerful magnon–magnon coupling within the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ferray, M. et al. A number of-harmonic conversion of 1064 nm radiation in uncommon gases. J. Phys. B 21, L31 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Ghimire, S. et al. Remark of high-order harmonic era in a bulk crystal. Nat. Phys 7, 138–141 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics (Educational, 2008).

  • Kamimaki, A., Iihama, S., Suzuki, Okay. Z., Yoshinaga, N. & Mizukami, S. Parametric amplification of magnons in artificial antiferromagnets. Phys. Rev. Appl. 13, 044036 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fu, H., Huang, Okay., Watanabe, Okay., Taniguchi, T. & Zhu, J. Gapless spin wave transport by way of a quantum canted antiferromagnet. Phys. Rev. X 11, 021012 (2021).

    CAS 

    Google Scholar
     

  • Koerner, C. et al. Frequency multiplication by collective nanoscale spin-wave dynamics. Science 375, 1165–1169 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pawbake, A. et al. Raman scattering signatures of robust spin–phonon coupling within the bulk magnetic van der Waals materials CrSBr. Phys. Rev. B 107, 075421 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic era as a software for finding out digital and magnetic constructions of crystals: overview. J. Decide. Soc. Am. B 22, 96–118 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Excessive-harmonic era from topological floor states. Nat. Phys. 17, 311–315 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. F., L’Huillier, A., Ferray, M., Lompré, L. A. & Mainfray, G. A number of-harmonic era in uncommon gases at excessive laser depth. Phys. Rev. A 39, 5751–5761 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Au, Y. et al. Resonant microwave-to-spin-wave transducer. Appl. Phys. Lett. 100, 182404 (2012).

    Article 

    Google Scholar
     

  • Roslyak, O. & Mukamel, S. Photon entanglement signatures in difference-frequency-generation. Decide. Specific 17, 1093–1106 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles