6.8 C
United States of America
Sunday, November 24, 2024

Excessive-throughput synthesis and optimization of ionizable lipids by way of A3 coupling for environment friendly mRNA supply | Journal of Nanobiotechnology


  • Baden LR, El Sahly HM, Essink B, Kotloff Ok, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and Security of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–16.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng X, Liu S, Solar J, Liu L, Ma X, Li J, Fan B, Yang C, Zhao Y, Liu S, et al. A synergistic lipid nanoparticle encapsulating mRNA shingles vaccine induces potent immune responses and protects guinea pigs from viral challenges. Adv Mater. 2024;36:2310886.

    Article 

    Google Scholar
     

  • Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious ailments: rules, supply and medical translation. Nat Rev Drug Discov. 2021;20:817–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Shi Q, Huang X, Koo S, Kong N, Tao W. mRNA-based most cancers therapeutics. Nat Rev Most cancers. 2023;23:526–43.

    Article 
    PubMed 

    Google Scholar
     

  • Lorentzen CL, Haanen JB, Met Ö, Svane IM. Medical advances and ongoing trials on mRNA vaccines for most cancers therapy. Lancet Oncol. 2022;23:e450–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leppek Ok, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, Kim DS, Topkar VV, Choe C, Rothschild D, et al. Combinatorial optimization of mRNA construction, stability, and translation for RNA-based therapeutics. Nat Commun. 2022;13:1536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paunovska Ok, Loughrey D, Dahlman JE. Drug supply methods for RNA therapeutics. Nat Rev Genet. 2022;23:265–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Huang X, Xue Y, Álvarez-Benedicto E, Shi Y, Chen W, Koo S, Siegwart DJ, Dong Y, Tao W. Nanotechnology-based mRNA vaccines. Nat Rev Strategies Primers. 2023;3:63.

    Article 

    Google Scholar
     

  • Huang P, Deng H, Zhou Y, Chen X. The roles of polymers in mRNA supply. Matter. 2022;5:1670–99.

    Article 

    Google Scholar
     

  • Kaczmarek JC, Patel AK, Kauffman KJ, Fenton OS, Webber MJ, Heartlein MW, DeRosa F, Anderson DG. Polymer-lipid nanoparticles for systemic supply of mRNA to the lungs. Angew Chem Int Ed. 2016;55:13808–12.

    Article 

    Google Scholar
     

  • Huang P, Jiang L, Pan H, Ding L, Zhou B, Zhao M, Zou J, Li B, Qi M, Deng H, et al. An built-in polymeric mRNA vaccine with out irritation unintended effects for mobile immunity mediated most cancers remedy. Adv Mater. 2023;35:2207471.

    Article 

    Google Scholar
     

  • Huang X, Kong N, Zhang X, Cao Y, Langer R, Tao W. The panorama of mRNA nanomedicine. Nat Med. 2022;28:2273–87.

    Article 
    PubMed 

    Google Scholar
     

  • Maugeri M, Nawaz M, Papadimitriou A, Angerfors A, Camponeschi A, Na M, Hölttä M, Skantze P, Johansson S, Sundqvist M, et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to different cells. Nat Commun. 2019;10:4333.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien Ok, Breyne Ok, Ughetto S, Laurent LC, Breakefield XO. RNA supply by extracellular vesicles in mammalian cells and its functions. Nat Rev Mol Cell Biol. 2020;21:585–606.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, Zhao Y, Zhao X, Wang X, Ma Y, et al. Massive-scale technology of practical mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2020;4:69–83.

    Article 
    PubMed 

    Google Scholar
     

  • Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, Baby H, Berry CC, Ibarra MR, Baptista PV, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6:8316–24.

    Article 
    PubMed 

    Google Scholar
     

  • Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, et al. Nanodelivery of nucleic acids. Nat Rev Strategies Primers. 2022;2:24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udhayakumar VK, De Beuckelaer A, McCaffrey J, McCrudden CM, Kirschman JL, Vanover D, Van Hoecke L, Roose Ok, Deswarte Ok, De Geest BG, et al. Arginine-rich peptide-based mRNA nanocomplexes effectively instigate cytotoxic t cell immunity depending on the amphipathic group of the peptide. Adv Healthc Mater. 2017;6:1601412.

    Article 

    Google Scholar
     

  • Liu X, Huang P, Yang R, Deng H. mRNA most cancers vaccines: building and boosting methods. ACS Nano. 2023;17:19550–80.

    Article 
    PubMed 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA supply. Nat Rev Mater. 2021;6:1078–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383:2603–15.

    Article 
    PubMed 

    Google Scholar
     

  • Maraganore J. Reflections on alnylam. Nat Biotechnol. 2022;40:641–50.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Chang J, Jiang Y, Meng X, Solar T, Mao L, Xu Q, Wang M. Quick and environment friendly CRISPR/Cas9 genome modifying in vivo enabled by bioreducible lipid and messenger RNA Nanoparticles. Adv Mater. 2019;31: e1902575.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Jeong M, Hur S, Cho Y, Park J, Jung H, Search engine marketing Y, Woo HA, Nam KT, Lee Ok, Lee H. Engineered ionizable lipid nanoparticles for focused supply of RNA therapeutics into various kinds of cells within the liver. Sci Adv. 2021;7:eabf4398.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR-Cas gene modifying. Nat Nanotechnol. 2020;15:313–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo H, Cheng X, Xu J, Lin J, Chen N, Lu X. A fluorinated ionizable lipid improves the mRNA supply effectivity of lipid nanoparticles. J Mater Chem B. 2023;11:4171–80.

    Article 
    PubMed 

    Google Scholar
     

  • Hassett KJ, Benenato KE, Jacquinet E, Lee A, Woods A, Yuzhakov O, Himansu S, Deterling J, Geilich BM, Ketova T, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther -Nucl Acids. 2019;15:1–11.

    Article 

    Google Scholar
     

  • Akinc A, Maier MA, Manoharan M, Fitzgerald Ok, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD, et al. The Onpattro story and the medical translation of nanomedicines containing nucleic acid-based medicine. Nat Nanotechnol. 2019;14:1084–7.

    Article 
    PubMed 

    Google Scholar
     

  • Ansell S, Du X, WO2017/075531A1, 2017.

  • Han X, Zhang H, Butowska Ok, Swingle KL, Alameh M-G, Weissman D, Mitchell MJ. An ionizable lipid toolbox for RNA supply. Nat Commun. 2021;12:7233.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, et al. A combinatorial library of lipid-like supplies for supply of RNAi therapeutics. Nat Biotechnol. 2008;26:561–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramishetti S, Hazan-Halevy I, Palakuri R, Chatterjee S, Naidu Gonna S, Dammes N, Freilich I, Kolik Shmuel L, Danino D, Peer D. A combinatorial library of lipid nanoparticles for RNA supply to leukocytes. Adv Mater. 2020;32:1906128.

    Article 

    Google Scholar
     

  • Chen Z, Tian Y, Yang J, Wu F, Liu S, Cao W, Xu W, Hu T, Siegwart DJ, Xiong H. Modular design of biodegradable ionizable lipids for improved mrna supply and exact most cancers metastasis delineation in vivo. J Am Chem Soc. 2023;145:24302–14.

    Article 
    PubMed 

    Google Scholar
     

  • Li B, Raji IO, Gordon AGR, Solar L, Raimondo TM, Oladimeji FA, Jiang AY, Varley A, Langer RS, Anderson DG. Accelerating ionizable lipid discovery for mRNA supply utilizing machine studying and combinatorial chemistry. Nat Mater. 2024;23:1002–8.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR–Cas gene modifying. Nat Mater. 2021;20:701–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu M, Tang Y, Chen J, Muriph R, Ye Z, Huang C, Evans J, Henske EP, Xu Q. Lung-selective mRNA supply of artificial lipid nanoparticles for the therapy of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA. 2022;119: e2116271119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su Ok, Shi L, Sheng T, Yan X, Lin L, Meng C, Wu S, Chen Y, Zhang Y, Wang C, et al. Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nat Commun. 2024;15:5659.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, Fenton OS, Zhang Y, Olejnik KT, Yesilyurt V, et al. Degradable lipid nanoparticles with predictable in vivo siRNA supply exercise. Nat Commun. 2014;5:4277.

    Article 
    PubMed 

    Google Scholar
     

  • Hu B, Li B, Li Ok, Liu Y, Li C, Zheng L, Zhang M, Yang T, Guo S, Dong X, et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi therapy of hyperlipidemia. Sci Adv. 2022;8:eabm1418.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai W, Luo T, Chen X, Mao L, Wang M. A combinatorial library of biodegradable lipid nanoparticles preferentially ship mRNA into tumor cells to dam mutant RAS signaling. Adv Funct Mater. 2022;32:2204947.

    Article 

    Google Scholar
     

  • Li B, Manan RS, Liang S-Q, Gordon A, Jiang A, Varley A, Gao G, Langer R, Xue W, Anderson D. Combinatorial design of nanoparticles for pulmonary mRNA supply and genome modifying. Nat Biotechnol. 2023;41:1410–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Z, Le Z, Shi Y, Liu L, Liu Z, Chen Y. A multidimensional strategy to modulating ionizable lipids for high-performing and organ-selective mRNA supply. Angew Chem Int Ed. 2023;62: e202310401.

    Article 

    Google Scholar
     

  • Dong W, Li Z, Hou T, Shen Y, Guo Z, Su Y-T, Chen Z, Pan H, Jiang W, Wang Y. Multicomponent synthesis of imidazole-based ionizable lipids for extremely environment friendly and spleen-selective messenger RNA supply. J Am Chem Soc. 2024;146:15085–95.

    Article 
    PubMed 

    Google Scholar
     

  • Chen J, Xu Y, Zhou M, Xu S, Varley AJ, Golubovic A, Lu RXZ, Wang KC, Yeganeh M, Vosoughi D, Li B. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA supply with minimized off-target results. Proc Natl Acad Sci USA. 2023;120: e2309472120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, Shi Y, Sadtler Ok, Gao W, Lin J, et al. Supply of mRNA vaccines with heterocyclic lipids will increase anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol. 2019;37:1174–85.

    Article 
    PubMed 

    Google Scholar
     

  • Miao L, Lin J, Huang Y, Li L, Delcassian D, Ge Y, Shi Y, Anderson DG. Synergistic lipid compositions for albumin receptor mediated supply of mRNA to the liver. Nat Commun. 2020;11:2424.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei C, Li C-J. A extremely environment friendly three-component coupling of aldehyde, alkyne, and amines by way of C−H activation catalyzed by gold in water. J Am Chem Soc. 2003;125:9584–5.

    Article 
    PubMed 

    Google Scholar
     

  • Li X, Chen N, Xu, J. Microwave-Assisted CuCl-Catalyzed Three-Part Reactions of Alkynes, Aldehydes, and Amino Alcohols. Synthesis 2019, 51. 3336-44.

    Article 

    Google Scholar
     

  • Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D, Bogorad RL, Yin H, Chen Y, Vegas AJ, et al. Lipopeptide nanoparticles for potent and selective siRNA supply in rodents and nonhuman primates. Proc Natl Acad Sci USA. 2014;111:3955–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrasco MJ, Alishetty S, Alameh M-G, Mentioned H, Wright L, Paige M, Soliman O, Weissman D, Cleveland TE, Grishaev A, Buschmann MD. Ionization and structural properties of mRNA lipid nanoparticles affect expression in intramuscular and intravascular administration. Commun Biol. 2021;4:956.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campos KR, Cai D, Journet M, Kowal JJ, Larsen RD, Reider PJ. Managed semihydrogenation of aminoalkynes utilizing ethylenediamine as a poison of Lindlar’s catalyst. J Org Chem. 2001;66:3634–5.

    Article 
    PubMed 

    Google Scholar
     

  • Alabi CA, Love KT, Sahay G, Yin H, Luly KM, Langer R, Anderson DG. Multiparametric strategy for the analysis of lipid nanoparticles for siRNA supply. Proc Natl Acad Sci USA. 2013;110:12881–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK, et al. Maximizing the efficiency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed. 2012;51:8529–33.

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles