Li A, Zhao Y, Li Y, Jiang L, Gu Y, Liu J. Cell-derived biomimetic nanocarriers for focused most cancers remedy: cell membranes and extracellular vesicles. Drug Deliv. 2021;28:1237–55.
Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics focusing on the tumor microenvironment. Entrance Bioeng Biotechnol. 2019;7:197.
The L. GLOBOCAN 2018: counting the toll of most cancers. Lancet. 2018;392:985.
Hu D, Sheng Z, Gao G, Siu F, Liu C, Wan Q, et al. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic remedy of most cancers. Biomaterials. 2016;93:10–9.
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for most cancers remedy: present progress and views. J Hematol Oncol. 2021;14:85.
Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Remedy of furry cell leukemia with recombinant alpha-interferon. Blood. 1986;68:493–7.
Rosenberg SA. IL-2: the primary efficient immunotherapy for human most cancers. J Immunol. 2014;192:5451–8.
Kennedy LB, Salama AKS. A evaluation of most cancers immunotherapy toxicity. CA Most cancers J Clin. 2020;70:86–104.
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. 5-year survival with mixed nivolumab and Ipilimumab in superior melanoma. N Engl J Med. 2019;381:1535–46.
Tannir NM, Signoretti S, Choueiri TK, McDermott DF, Motzer RJ, Flaifel A, et al. Efficacy and security of nivolumab plus Ipilimumab versus sunitinib in first-line remedy of sufferers with superior sarcomatoid renal cell carcinoma. Clin Most cancers Res. 2021;27:78–86.
André T, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Nivolumab plus low-dose ipilimumab in beforehand handled sufferers with microsatellite instability-high/mismatch repair-deficient metastatic colorectal most cancers: 4-year follow-up from CheckMate 142. Ann Oncol. 2022;33:1052–60.
Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus ipilimumab in superior non-small-cell lung most cancers. N Engl J Med. 2019;381:2020–31.
Sové RJ, Verma BK, Wang H, Ho WJ, Yarchoan M, Popel AS. Digital scientific trials of anti-PD-1 and anti-CTLA-4 immunotherapy in superior hepatocellular carcinoma utilizing a quantitative methods pharmacology mannequin. J Immunother Most cancers. 2022;10: e005414.
Italiano A, Bessede A, Pulido M, Bompas E, Piperno-Neumann S, Chevreau C, et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid buildings: a part 2 PEMBROSARC trial cohort. Nat Med. 2022;28:1199–206.
Hargadon KM. Tumor microenvironmental influences on dendritic cell and T cell operate: a deal with clinically related immunologic and metabolic checkpoints. Clin Transl Med. 2020;10:374–411.
Wong JL, Obermajer N, Odunsi Okay, Edwards RP, Kalinski P. Synergistic COX2 induction by IFNγ and TNFα Self-limits type-1 immunity within the human tumor microenvironment. Most cancers Immunol Res. 2016;4:303–11.
Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, et al. Intratumoral exercise of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 remedy. Immunity. 2019;50:1498-1512.e5.
Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Most cancers Cell. 2014;26:623–37.
Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Profitable anti-PD-1 most cancers immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148-1161.e7.
Andzinski L, Spanier J, Kasnitz N, Kröger A, Jin L, Brinkmann MM, et al. Rising tumors induce a neighborhood STING dependent Sort I IFN response in dendritic cells. Int J Most cancers. 2016;139:1350–7.
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 2020;17:587–99.
Jego G, Pascual V, Palucka AK, Banchereau J. Dendritic cells management B cell progress and differentiation. Curr Dir Autoimmun. 2005;8:124–39.
Münz C, Dao T, Ferlazzo G, de Cos MA, Goodman Okay, Younger JW. Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human pure killer cells. Blood. 2005;105:266–73.
Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27:74–95.
Gardner A, Ruffell B. Dendritic cells and most cancers immunity. Traits Immunol. 2016;37:855–65.
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature. 2016;534:396–401.
Riley RS, June CH, Langer R, Mitchell MJ. Supply applied sciences for most cancers immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.
Ma J, Liu F, Sheu WC, Meng Z, Xie Y, Xu H, et al. Copresentation of tumor antigens and costimulatory molecules by way of biomimetic nanoparticles for efficient most cancers immunotherapy. Nano Lett. 2020;20:4084–94.
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30: e1706759.
Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for focused most cancers remedy. Small. 2021;17: e2006484.
Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical functions. Biomaterials. 2017;128:69–83.
Cheng S, Xu C, Jin Y, Li Y, Zhong C, Ma J, et al. Synthetic mini dendritic cells enhance T cell-based immunotherapy for ovarian most cancers. Adv Sci. 2020;7:1903301.
Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: a quick evaluation from solubility enhancement to extra novel and particular functions. Acta Pharm Sin B. 2018;8:733–55.
Fang RH, Gao W, Zhang L. Focusing on medication to tumours utilizing cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.
Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug supply methods for most cancers remedy. Acta Pharm Sin B. 2018;8:4–13.
Fliervoet LAL, Mastrobattista E. Drug supply with residing cells. Adv Drug Deliv Rev. 2016;106:63–72.
Han X, Shen S, Fan Q, Chen G, Archibong E, Dotti G, et al. Pink blood cell-derived nanoerythrosome for antigen supply with enhanced most cancers immunotherapy. Sci Adv. 2019;5:6870.
Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8:61–8.
Wang H, Wu J, Williams GR, Fan Q, Niu S, Wu J, et al. Platelet-membrane-biomimetic nanoparticles for focused antitumor drug supply. J Nanobiotechnology. 2019;17:60.
Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, et al. Most cancers cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal remedy. ACS Nano. 2016;10:10049–57.
Zhang Y, Cai Okay, Li C, Guo Q, Chen Q, He X, et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018;18:1908–15.
Li YS, Wu HH, Jiang XC, Zhang TY, Zhou Y, Huang LL, et al. Lively stealth and self-positioning biomimetic autos achieved efficient antitumor remedy. J Management Launch. 2021;335:515–26.
Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, et al. Most cancers-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian most cancers. ACS Nano. 2021;15:19756–70.
Han H, Bártolo R, Li J, Shahbazi MA, Santos HA. Biomimetic platelet membrane-coated nanoparticles for focused remedy. Eur J Pharm Biopharm. 2022;172:1–15.
Verneau J, Sautés-Fridman C, Solar CM. Dendritic cells within the tumor microenvironment: prognostic and theranostic influence. Semin Immunol. 2020;48: 101410.
Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates operate. Nat Rev Immunol. 2019;19:89–103.
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells within the tumor microenvironment. Nat Immunol. 2013;14:1014–22.
Li Y, Tang Okay, Zhang X, Pan W, Li N, Tang B. A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast most cancers immunotherapy. Chem Sci. 2021;13:105–10.
Steinman RM, Cohn ZA. Identification of a novel cell kind in peripheral lymphoid organs of mice. I. morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.
Cantor H, Boyse EA. Purposeful subclasses of T lymphocytes bearing totally different Ly antigens. II. Cooperation between subclasses of Ly+ cells within the era of killer exercise. J Exp Med. 1975;141:1390–9.
Hao W, Cui Y, Fan Y, Chen M, Yang G, Wang Y, et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma remedy by way of drug and antigen supply. J Nanobiotechnology. 2021;19:378.
Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell operate in most cancers. Nat Rev Immunol. 2016;16:599–611.
Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4(+) T cell assist in most cancers immunology and immunotherapy. Nat Rev Immunol. 2018;18:635–47.
Ahrends T, Spanjaard A, Pilzecker B, Bąbała N, Bovens A, Xiao Y, et al. CD4(+) T cell assist confers a cytotoxic T cell effector program together with coinhibitory receptor downregulation and elevated tissue invasiveness. Immunity. 2017;47:848-861.e5.
Oh DY, Fong L. Cytotoxic CD4(+) T cells in most cancers: increasing the immune effector toolbox. Immunity. 2021;54:2701–11.
Gardner A, de Mingo PA, Ruffell B. Dendritic cells and their position in immunotherapy. Entrance Immunol. 2020;11:924.
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and scientific utility potential in most cancers immunotherapy. Entrance Immunol. 2018;9:3176.
Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid dendritic cells and most cancers immunotherapy. Cells. 2022;11:222.
Collin M, Bigley V. Human dendritic cell subsets: an replace. Immunology. 2018;154:3–20.
Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and built-in practical methods. Semin Cell Dev Biol. 2015;41:9–22.
Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Entrance Immunol. 2018;9:3059.
Murphy TL, Murphy KM. Dendritic cells in most cancers immunology. Cell Mol Immunol. 2022;19:3–13.
Liu Okay, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao Okay, et al. In vivo evaluation of dendritic cell growth and homeostasis. Science. 2009;324:392–7.
Macri C, Pang ES, Patton T, O’Keeffe M. Dendritic cell subsets. Semin Cell Dev Biol. 2018;84:11–21.
Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol. 2009;182:1901–11.
Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues comprise CD141hi cross-presenting dendritic cells with practical homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37:60–73.
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) characterize a novel myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.
Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, et al. DNGR-1 is a selected and common marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood. 2012;119:6052–62.
Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1261–71.
Meixlsperger S, Leung CS, Rämer PC, Pack M, Vanoaica LD, Breton G, et al. CD141+ dendritic cells produce outstanding quantities of IFN-α after dsRNA recognition and could be focused by way of DEC-205 in humanized mice. Blood. 2013;121:5034–44.
Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman Okay, et al. Human dendritic cell subsets from spleen and blood are comparable in phenotype and performance however modified by donor well being standing. J Immunol. 2011;186:6207–17.
Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000;165:6037–46.
MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood. 2002;100:4512–20.
Watchmaker PB, Lahl Okay, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and practical profiling defines conserved packages of intestinal DC differentiation in people and mice. Nat Immunol. 2014;15:98–108.
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic cells and CCR7 expression: an essential issue for autoimmune ailments, persistent irritation, and most cancers. Int J Mol Sci. 2021;22:8340.
Zelenay S, Reise SC. Adaptive immunity after cell loss of life. Traits Immunol. 2013;34:329–35.
Böttcher JP, Reise SC. The position of kind 1 standard dendritic cells in most cancers immunity. Traits Most cancers. 2018;4:784–92.
Nagarsheth N, Wicha MS, Zou W. Chemokines within the most cancers microenvironment and their relevance in most cancers immunotherapy. Nat Rev Immunol. 2017;17:559–72.
Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment selling most cancers immune management. Cell. 2018;172:1022-1037.e14.
Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A pure killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med. 2018;24:1178–91.
Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in most cancers. Nat Rev Most cancers. 2021;21:345–59.
Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment throughout tumor metastasis. J Biomed Sci. 2022;29:84.
Wang Q, Wang Z, Solar X, Jiang Q, Solar B, He Z, et al. Lymph node-targeting nanovaccines for most cancers immunotherapy. J Management Launch. 2022;351:102–22.
Cai T, Liu H, Zhang S, Hu J, Zhang L. Supply of nanovaccine in the direction of lymphoid organs: current methods in enhancing most cancers immunotherapy. J Nanobiotechnology. 2021;19:389.
Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate mind tumor drainage and immunity. Cell Res. 2020;30:229–43.
Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol. 2016;107:100–10.
Schineis P, Runge P, Halin C. Mobile visitors via afferent lymphatic vessels. Vascul Pharmacol. 2019;112:31–41.
Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, et al. Speedy and coordinated change in chemokine receptor expression throughout dendritic cell maturation. Eur J Immunol. 1998;28:2760–9.
Demaria O, Cornen S, Daëron M, Morel Y, Medzhitov R, Vivier E. Harnessing innate immunity in most cancers remedy. Nature. 2019;574:45–56.
Salmon H, Idoyaga J, Rahman A, Leboeuf M, Comment R, Jordan S, et al. Growth and activation of CD103(+) dendritic cell progenitors on the tumor web site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44:924–38.
Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM, et al. Crucial position for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Most cancers Cell. 2016;30:324–36.
Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell steering by haptotactic chemokine gradients. Science. 2013;339:328–32.
Zlotnik A. Chemokines in neoplastic development. Semin Most cancers Biol. 2004;14:181–5.
Zlotnik A. Chemokines and most cancers. Int J Most cancers. 2006;119:2026–9.
Penna G, Vulcano M, Sozzani S, Adorini L. Differential migration habits and chemokine manufacturing by myeloid and plasmacytoid dendritic cells. Hum Immunol. 2002;63:1164–71.
Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host kind I IFN alerts are required for antitumor CD8+ T cell responses via CD8{alpha}+ dendritic cells. J Exp Med. 2011;208:2005–16.
Corrales L, McWhirter SM, Dubensky TW Jr, Gajewski TF. The host STING pathway on the interface of most cancers and immunity. J Clin Make investments. 2016;126:2404–11.
Veglia F, Gabrilovich DI. Dendritic cells in most cancers: the position revisited. Curr Opin Immunol. 2017;45:43–51.
Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, et al. Sort I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208:1989–2003.
Fuertes MB, Woo SR, Burnett B, Fu YX, Gajewski TF. Sort I interferon response and innate immune sensing of most cancers. Traits Immunol. 2013;34:67–73.
Brewitz A, Eickhoff S, Dähling S, Quast T, Bedoui S, Kroczek RA, et al. CD8(+) T cells orchestrate pDC-XCR1(+) dendritic cell spatial and practical cooperativity to optimize priming. Immunity. 2017;46:205–19.
Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived components modulating dendritic cell operate. Most cancers Immunol Immunother. 2016;65:821–33.
Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, et al. cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature. 2020;584:624–9.
Hao T, Chen Q, Qi Y, Solar P, Chen D, Jiang W, et al. Biomineralized Gd(2) O(3) @HSA nanoparticles as a flexible platform for dual-modal imaging and chemo-phototherapy-synergized tumor ablation. Adv Healthc Mater. 2019;8: e1901005.
Lokhov PG, Balashova EE. Antigenic essence: improve of mobile most cancers vaccines. Cancers (Basel). 2021;13:774.
Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 alerts throughout priming are required for secondary enlargement of CD8+ reminiscence T cells. Nature. 2006;441:890–3.
Bourgeois C, Rocha B, Tanchot C. A task for CD40 expression on CD8+ T cells within the era of CD8+ T cell reminiscence. Science. 2002;297:2060–3.
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a transferring goal in immunotherapy. Blood. 2018;131:58–67.
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in most cancers immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.
Iwanowycz S, Ngoi S, Li Y, Hill M, Koivisto C, Parrish M, et al. Sort 2 dendritic cells mediate management of cytotoxic T cell resistant tumors. JCI Perception. 2021. https://doi.org/10.1172/jci.perception.145885.
Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete excessive ranges of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122:932–42.
Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al. Dissecting the tumor myeloid compartment reveals uncommon activating antigen-presenting cells crucial for T cell immunity. Most cancers Cell. 2014;26:938.
den Haan JM, Bevan MJ. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J Exp Med. 2002;196:817–27.
Platzer B, Elpek KG, Cremasco V, Baker Okay, Stout MM, Schultz C, et al. IgE/FcεRI-mediated antigen cross-presentation by dendritic cells enhances anti-tumor immune responses. Cell Rep. 2015;10:1487–95.
Sato T, Kitawaki T, Fujita H, Iwata M, Iyoda T, Inaba Okay, et al. Human CD1c⁺ myeloid dendritic cells purchase a excessive degree of retinoic acid-producing capability in response to vitamin D₃. J Immunol. 2013;191:3152–60.
Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, et al. Unleashing Sort-2 dendritic cells to drive protecting antitumor CD4(+) T cell immunity. Cell. 2019;177:556-571.e16.
Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209:653–60.
Leal Rojas IM, Mok WH, Pearson FE, Minoda Y, Kenna TJ, Barnard RT, et al. Human blood CD1c(+) dendritic cells promote Th1 and Th17 effector operate in reminiscence CD4(+) T cells. Entrance Immunol. 2017;8:971.
Reizis B. Plasmacytoid dendritic cells: growth, regulation, and performance. Immunity. 2019;50:37–50.
Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune protection towards bacterial an infection. Immunity. 2003;19:59–70.
Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AHR, Ugel S, et al. T cell most cancers remedy requires CD40-CD40L activation of tumor necrosis issue and inducible nitric-oxide-synthase-producing dendritic cells. Most cancers Cell. 2016;30:377–90.
Sharma MD, Rodriguez PC, Koehn BH, Baban B, Cui Y, Guo G, et al. Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c(+)CD103(+) monocytic antigen-presenting cells in tumors. Immunity. 2018;48:91-106.e6.
Chiang MC, Tullett KM, Lee YS, Idris A, Ding Y, McDonald KJ, et al. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur J Immunol. 2016;46:329–39.
León B, López-Bravo M, Ardavín C. Monocyte-derived dendritic cells shaped on the an infection web site management the induction of protecting T helper 1 responses towards Leishmania. Immunity. 2007;26:519–31.
Martínez-López M, Iborra S, Conde-Garrosa R, Sancho D. Batf3-dependent CD103+ dendritic cells are main producers of IL-12 that drive native Th1 immunity towards Leishmania main an infection in mice. Eur J Immunol. 2015;45:119–29.
Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, et al. Transcriptional foundation of mouse and human dendritic cell heterogeneity. Cell. 2019;179:846-863.e24.
Villadangos JA, Younger L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008;29:352–61.
McKenna Okay, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005;79:17–27.
Swiecki M, Colonna M. Accumulation of plasmacytoid DC: roles in illness pathogenesis and targets for immunotherapy. Eur J Immunol. 2010;40:2094–8.
Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15:471–85.
Saadeh D, Kurban M, Abbas O. Plasmacytoid dendritic cell position in cutaneous malignancies. J Dermatol Sci. 2016;83:3–9.
Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL, et al. Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are present in major melanoma lesions. Eur J Immunol. 2003;33:1052–62.
Lombardi VC, Khaiboullina SF, Rizvanov AA. Plasmacytoid dendritic cells, a job in neoplastic prevention and development. Eur J Clin Make investments. 2015;45(Suppl 1):1–8.
Costume RJ, Dutertre CA, Giladi A, Schlitzer A, Low I, Shadan NB, et al. Plasmacytoid dendritic cells develop from Ly6D(+) lymphoid progenitors distinct from the myeloid lineage. Nat Immunol. 2019;20:852–64.
Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat Immunol. 2018;19:711–22.
Wenzel J, Bekisch B, Uerlich M, Haller O, Bieber T, Tüting T. Sort I interferon-associated recruitment of cytotoxic lymphocytes: a standard mechanism in regressive melanocytic lesions. Am J Clin Pathol. 2005;124:37–48.
Cohn L, Chatterjee B, Esselborn F, Smed-Sörensen A, Nakamura N, Chalouni C, et al. Antigen supply to early endosomes eliminates the prevalence of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med. 2013;210:1049–63.
Anderson DA third, Dutertre CA, Ginhoux F, Murphy KM. Genetic fashions of human and mouse dendritic cell growth and performance. Nat Rev Immunol. 2021;21:101–15.
Sisirak V, Faget J, Gobert M, Goutagny N, Vey N, Treilleux I, et al. Impaired IFN-α manufacturing by plasmacytoid dendritic cells favors regulatory T-cell enlargement that will contribute to breast most cancers development. Most cancers Res. 2012;72:5188–97.
Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C. Tumor-infiltrating macrophages and dendritic cells in human colorectal most cancers: relation to native regulatory T cells, systemic T-cell response towards tumor-associated antigens and survival. J Transl Med. 2007;5:62.
Labidi-Galy SI, Treilleux I, Goddard-Leon S, Combes JD, Blay JY, Ray-Coquard I, et al. Plasmacytoid dendritic cells infiltrating ovarian most cancers are related to poor prognosis. Oncoimmunology. 2012;1:380–2.
Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, et al. Identification and practical evaluation of tumor-infiltrating plasmacytoid dendritic cells in head and neck most cancers. Most cancers Res. 2003;63:6478–87.
Demoulin S, Herfs M, Delvenne P, Hubert P. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: perception into the molecular mechanisms. J Leukoc Biol. 2013;93:343–52.
Gerlini G, Urso C, Mariotti G, Di Gennaro P, Palli D, Brandani P, et al. Plasmacytoid dendritic cells characterize a serious dendritic cell subset in sentinel lymph nodes of melanoma sufferers and accumulate in metastatic nodes. Clin Immunol. 2007;125:184–93.
Battaglia A, Buzzonetti A, Baranello C, Ferrandina G, Martinelli E, Fanfani F, et al. Metastatic tumour cells favour the era of a tolerogenic milieu in tumour draining lymph node in sufferers with early cervical most cancers. Most cancers Immunol Immunother. 2009;58:1363–73.
Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes instantly activate mature Tregs by way of indoleamine 2,3-dioxygenase. J Clin Make investments. 2007;117:2570–82.
Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Make investments. 2004;114:280–90.
Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–74.
Munn DH, Mellor AL. IDO and tolerance to tumors. Traits Mol Med. 2004;10:15–8.
Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 however not CD25+CD4+ Tr cells. Blood. 2005;105:1162–9.
Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000;192:1213–22.
Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A, et al. Quantitative and practical alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian most cancers. Most cancers Res. 2011;71:5423–34.
Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Balancing between immunity and tolerance: an interaction between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol. 2007;82:1365–74.
Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, grasp of regulation. Nat Immunol. 2008;9:239–44.
Pedroza-Gonzalez A, Zhou G, Vargas-Mendez E, Boor PP, Mancham S, Verhoef C, et al. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology. 2015;4: e1008355.
Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–15.
Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38:729–41.
Koerner J, Horvath D, Groettrup M. Harnessing dendritic cells for poly (D, L-lactide-co-glycolide) microspheres (PLGA MS)-mediated anti-tumor remedy. Entrance Immunol. 2019;10:707.
Kim HS, Ho TC, Willner MJ, Becker MW, Kim HW, Leong KW. Dendritic cell-mimicking scaffolds for ex vivo T cell enlargement. Bioact Mater. 2023;21:241–52.
Jugniot N, Dahl JJ, Paulmurugan R. Immunotheranostic microbubbles (iMBs) – a modular platform for dendritic cell vaccine supply utilized to breast most cancers immunotherapy. J Exp Clin Most cancers Res. 2022;41:299.
Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, et al. Macrophage cell membrane-cloaked nanoplatforms for biomedical functions. Small Strategies. 2022;6: e2200289.
Suzuki KG. New insights into the group of plasma membrane and its position in sign transduction. Int Rev Cell Mol Biol. 2015;317:67–96.
Ma X, Kuang L, Yin Y, Tang L, Zhang Y, Fan Q, et al. Tumor-antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating immune responses promote therapeutic efficacy towards glioma. ACS Nano. 2023;17:2341–55.
Solar Z, Deng G, Peng X, Xu X, Liu L, Peng J, et al. Clever photothermal dendritic cells restart the most cancers immunity cycle via enhanced immunogenic cell loss of life. Biomaterials. 2021;279: 121228.
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, et al. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10:3199.
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from most cancers and dendritic cells. Adv Mater. 2019;31: e1900499.
Chen F, Geng Z, Wang L, Zhou Y, Liu J. Biomimetic nanoparticles enabled by cascade cell membrane coating for direct cross-priming of T cells. Small. 2022;18: e2104402.
Chen X, Ling X, Xia J, Zhu Y, Zhang L, He Y, et al. Mature dendritic cell-derived dendrosomes swallow oxaliplatin-loaded nanoparticles to spice up immunogenic chemotherapy and tumor antigen-specific immunotherapy. Bioact Mater. 2022;15:15–28.
Zhou M, Xing Y, Li X, Du X, Xu T, Zhang X. Most cancers cell Membrane camouflaged semi-yolk@spiky-shell nanomotor for enhanced cell adhesion and synergistic remedy. Small. 2020;16: e2003834.
Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung most cancers evolution. Nature. 2019;567:479–85.
Koido S. Dendritic-tumor fusion cell-based most cancers vaccines. Int J Mol Sci. 2016;17:828.
Zhang L, Zhao W, Huang J, Li F, Sheng J, Tune H, et al. Improvement of a dendritic cell/Tumor cell fusion cell membrane nano-vaccine for the remedy of ovarian most cancers. Entrance Immunol. 2022;13: 828263.
Yang X, Yu T, Zeng Y, Lian Okay, Zhou X, Ke J, et al. pH-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromol. 2020;21:2818–28.
Ma J, Zhang S, Liu J, Liu F, Du F, Li M, et al. Focused drug supply to stroke by way of chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small. 2019;15: e1902011.
Gandhi S, Shende P. Cyclodextrins-modified metallic nanoparticles for efficient most cancers remedy. J Management Launch. 2021;339:41–50.
Xu X, Deng G, Solar Z, Luo Y, Liu J, Yu X, et al. A biomimetic aggregation-induced emission photosensitizer with antigen-presenting and hitchhiking operate for lipid droplet focused photodynamic immunotherapy. Adv Mater. 2021;33: e2102322.
Su Y, Zhang B, Solar R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug supply: current advances in analysis and utility. Drug Deliv. 2021;28:1397–418.
Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, et al. Poly(lactic-co-glycolic acid) microsphere manufacturing based mostly on high quality by design: a evaluation. Drug Deliv. 2021;28:1342–55.
Jain AK, Das M, Swarnakar NK, Jain S. Engineered PLGA nanoparticles: an rising supply software in most cancers therapeutics. Crit Rev Ther Drug Service Syst. 2011;28:1–45.
Jacob S, Nair AB, Shah J. Rising position of nanosuspensions in drug supply methods. Biomater Res. 2020;24:3.
Jin JO, Jang S, Kim H, Oh J, Shim S, Kwak M, et al. Immunostimulatory agent analysis: lymphoid tissue extraction and injection route-dependent dendritic cell activation. J Vis Exp. 2018. https://doi.org/10.3791/57640.
Howard GP, Verma G, Ke X, Thayer WM, Hamerly T, Baxter VK, et al. Crucial measurement restrict of biodegradable nanoparticles for enhanced lymph node trafficking and paracortex penetration. Nano Res. 2019;12:837–44.
Zhang YN, Lazarovits J, Poon W, Ouyang B, Nguyen LNM, Kingston BR, et al. Nanoparticle measurement influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 2019;19:7226–35.
Harvey BT, Fu X, Li L, Neupane KR, Anand N, Kolesar JM, et al. Dendritic cell membrane-derived nanovesicles for focused T cell activation. ACS Omega. 2022;7:46222–33.
Ochyl LJ, Moon JJ. Dendritic cell membrane vesicles for activation and upkeep of antigen-specific T cells. Adv Healthc Mater. 2019;8: e1801091.
Peng W, Zhang Y, Zhu R, Mechref Y. Comparative membrane proteomics analyses of breast most cancers cell traces to grasp the molecular mechanism of breast most cancers mind metastasis. Electrophoresis. 2017;38:2124–34.
Zhang D, Ye Z, Wei L, Luo H, Xiao L. Cell membrane-coated porphyrin metal-organic frameworks for most cancers cell focusing on and O(2)-evolving photodynamic remedy. ACS Appl Mater Interf. 2019;11:39594–602.
Harris JC, Scully MA, Day ES. Most cancers cell membrane-coated nanoparticles for most cancers administration. Cancers (Basel). 2019;11:1836.
Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, et al. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14:2181–8.
Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic – a brand new method to most cancers remedy. Nat Rev Clin Oncol. 2023;20:265–78.
Wang Y, Zhao Q, Zhao B, Zheng Y, Zhuang Q, Liao N, et al. Reworking tumor-associated neutrophils to reinforce dendritic cell-based HCC neoantigen nano-vaccine effectivity. Adv Sci (Weinh). 2022;9: e2105631.
Palucka Okay, Banchereau J. Most cancers immunotherapy by way of dendritic cells. Nat Rev Most cancers. 2012;12:265–77.
Baldominos P, Barbera-Mourelle A, Barreiro O, Huang Y, Wight A, Cho JW, et al. Quiescent most cancers cells resist T cell assault by forming an immunosuppressive area of interest. Cell. 2022;185(1694–1708): e19.
Yang J, Davis T, Kazerouni AS, Chen YI, Bloom MJ, Yeh HC, et al. Longitudinal FRET imaging of glucose and lactate dynamics and response to remedy in breast most cancers cells. Mol Imaging Biol. 2022;24:144–55.
Du S, Liu Y, Yuan Y, Wang Y, Chen Y, Wang S, et al. Advances within the research of HSP70 inhibitors to reinforce the sensitivity of tumor cells to radiotherapy. Entrance Cell Dev Biol. 2022;10: 942828.
Liang X, Ye X, Wang C, Xing C, Miao Q, Xie Z, et al. Photothermal most cancers immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Management Launch. 2019;296:150–61.
Azzi J, Yin Q, Uehara M, Ohori S, Tang L, Cai Okay, et al. Focused supply of immunomodulators to lymph nodes. Cell Rep. 2016;15:1202–13.
Fisusi FA, Akala EO. Drug mixtures in breast most cancers remedy. Pharm Nanotechnol. 2019;7:3–23.
Liang Y, Zhang H, Tune X, Yang Q. Metastatic heterogeneity of breast most cancers: molecular mechanism and potential therapeutic targets. Semin Most cancers Biol. 2020;60:14–27.
Kerr AJ, Dodwell D, McGale P, Holt F, Duane F, Mannu G, et al. Adjuvant and neoadjuvant breast most cancers remedies: a scientific evaluation of their results on mortality. Most cancers Deal with Rev. 2022;105: 102375.
Sevinsky CJ, Khan F, Kokabee L, Darehshouri A, Maddipati KR, Conklin DS. NDRG1 regulates impartial lipid metabolism in breast most cancers cells. Breast Most cancers Res. 2018;20:55.
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop Okay, et al. Photodynamic remedy – mechanisms, photosensitizers and mixtures. Biomed Pharmacother. 2018;106:1098–107.
Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2016. CA Most cancers J Clin. 2016;66:7–30.
Tan Z, Huang H, Solar W, Li Y, Jia Y. Present progress of ferroptosis research in ovarian most cancers. Entrance Mol Biosci. 2022;9: 966007.
Jin D, Jiang Y, Chang L, Wei J, Solar J. New therapeutic methods based mostly on biasing IL-2 mutants for cancers and autoimmune ailments. Int Immunopharmacol. 2022;110: 108935.
Moleiro ML, Gouveia AB. Further-abdominal lymph node metastases as the primary presentation in ovarian and fallopian tube carcinomas. Reprod Sci. 2023;30:1017–32.
Zhang Z, Huang J, Zhang C, Yang H, Qiu H, Li J, et al. Infiltration of dendritic cells and T lymphocytes predicts favorable end result in epithelial ovarian most cancers. Most cancers Gene Ther. 2015;22:198–206.
He XY, Xu Y, Xia QJ, Zhao XM, Li S, He XQ, et al. Mixed scutellarin and C(18)H(17)NO(6) imperils the survival of glioma: partly related to the repression of PSEN1/PI3K-AKT signaling axis. Entrance Oncol. 2021;11: 663262.
Gao H. Progress and views on focusing on nanoparticles for mind drug supply. Acta Pharm Sin B. 2016;6:268–86.
Yang Y, Yan R, Zhang L, Meng X, Solar W. Main glioblastoma transcriptome knowledge evaluation for screening survival-related genes. J Cell Biochem. 2020;121:1901–10.
Ruiz MF, Gennaro MV, Bastone LC, Godoy AR, Torruella M, Perez GR. Molecular biomarkers and built-in pathological prognosis within the reclassification of gliomas. Mol Clin Oncol. 2021;15:150.
Singh Okay, Batich KA, Wen PY, Tan AC, Bagley SJ, Lim M, et al. Designing scientific trials for mixture immunotherapy: a framework for glioblastoma. Clin Most cancers Res. 2022;28:585–93.
van Bodegraven EJ, Sluijs JA, Tan AK, Gown P, Hol EM. New GFAP splice isoform (GFAPmicro) differentially expressed in glioma interprets into 21 kDa N-terminal GFAP protein. FASEB J. 2021;35: e21389.
Muller C, Holtschmidt J, Auer M, Heitzer E, Lamszus Okay, Schulte A, et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med. 2014;6:247.
Allen GM, Frankel NW, Reddy NR, Bhargava HK, Yoshida MA, Stark SR, et al. Artificial cytokine circuits that drive T cells into immune-excluded tumors. Science. 2022;378:1624.
Dong L, Tian X, Zhao Y, Tu H, Wong A, Yang Y. The roles of MiRNAs (MicroRNAs) in melanoma immunotherapy. Int J Mol Sci. 2022;23:14775.
Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, Rossi CR, Mocellin S. Systemic remedies for metastatic cutaneous melanoma. Cochrane Database Syst Rev. 2018;2:11123.
Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P, et al. Immunotherapy within the remedy of metastatic melanoma: present data and future instructions. J Immunol Res. 2020;2020:9235638.
Pal I, Ramsey JD. The position of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev. 2011;63:909–22.
Aldahhan R, Almohazey D, Khan FA. Rising tendencies within the utility of gold nanoformulations in colon most cancers prognosis and remedy. Semin Most cancers Biol. 2022;86:1056–65.
Dey A, Mitra A, Pathak S, Prasad S, Zhang AS, Zhang H, et al. Latest developments, limitations, and future views of using personalised drugs in remedy of colon most cancers. Technol Most cancers Res Deal with. 2023;22:15330338231178404.
Chalabi M, Verschoor YL, Tan PB, Balduzzi S, Van Lent AU, Grootscholten C, et al. Neoadjuvant immunotherapy in domestically superior mismatch repair-deficient colon most cancers. N Engl J Med. 2024;390:1949–58.
Khan FA, Albalawi R, Pottoo FH. Traits in focused supply of nanomaterials in colon most cancers prognosis and remedy. Med Res Rev. 2022;42:227–58.
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the Ipilimumab approval decennial. Nat Rev Drug Discovery. 2022;21:509–28.
Zhao P, Xu Y, Ji W, Li L, Qiu L, Zhou S, et al. Hybrid Membrane Nanovaccines Mixed with Immune Checkpoint Blockade to Improve Most cancers Immunotherapy. Int J Nanomedicine. 2022;17:73–89.