3.5 C
United States of America
Saturday, January 18, 2025

Engineering dendritic cell biomimetic membrane as a supply system for tumor focused remedy | Journal of Nanobiotechnology


  • Li A, Zhao Y, Li Y, Jiang L, Gu Y, Liu J. Cell-derived biomimetic nanocarriers for focused most cancers remedy: cell membranes and extracellular vesicles. Drug Deliv. 2021;28:1237–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics focusing on the tumor microenvironment. Entrance Bioeng Biotechnol. 2019;7:197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The L. GLOBOCAN 2018: counting the toll of most cancers. Lancet. 2018;392:985.

    Article 

    Google Scholar
     

  • Hu D, Sheng Z, Gao G, Siu F, Liu C, Wan Q, et al. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic remedy of most cancers. Biomaterials. 2016;93:10–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for most cancers remedy: present progress and views. J Hematol Oncol. 2021;14:85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Remedy of furry cell leukemia with recombinant alpha-interferon. Blood. 1986;68:493–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg SA. IL-2: the primary efficient immunotherapy for human most cancers. J Immunol. 2014;192:5451–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy LB, Salama AKS. A evaluation of most cancers immunotherapy toxicity. CA Most cancers J Clin. 2020;70:86–104.

    Article 
    PubMed 

    Google Scholar
     

  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. 5-year survival with mixed nivolumab and Ipilimumab in superior melanoma. N Engl J Med. 2019;381:1535–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tannir NM, Signoretti S, Choueiri TK, McDermott DF, Motzer RJ, Flaifel A, et al. Efficacy and security of nivolumab plus Ipilimumab versus sunitinib in first-line remedy of sufferers with superior sarcomatoid renal cell carcinoma. Clin Most cancers Res. 2021;27:78–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • André T, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Nivolumab plus low-dose ipilimumab in beforehand handled sufferers with microsatellite instability-high/mismatch repair-deficient metastatic colorectal most cancers: 4-year follow-up from CheckMate 142. Ann Oncol. 2022;33:1052–60.

    Article 
    PubMed 

    Google Scholar
     

  • Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus ipilimumab in superior non-small-cell lung most cancers. N Engl J Med. 2019;381:2020–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sové RJ, Verma BK, Wang H, Ho WJ, Yarchoan M, Popel AS. Digital scientific trials of anti-PD-1 and anti-CTLA-4 immunotherapy in superior hepatocellular carcinoma utilizing a quantitative methods pharmacology mannequin. J Immunother Most cancers. 2022;10: e005414.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Italiano A, Bessede A, Pulido M, Bompas E, Piperno-Neumann S, Chevreau C, et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid buildings: a part 2 PEMBROSARC trial cohort. Nat Med. 2022;28:1199–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hargadon KM. Tumor microenvironmental influences on dendritic cell and T cell operate: a deal with clinically related immunologic and metabolic checkpoints. Clin Transl Med. 2020;10:374–411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong JL, Obermajer N, Odunsi Okay, Edwards RP, Kalinski P. Synergistic COX2 induction by IFNγ and TNFα Self-limits type-1 immunity within the human tumor microenvironment. Most cancers Immunol Res. 2016;4:303–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, et al. Intratumoral exercise of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 remedy. Immunity. 2019;50:1498-1512.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Most cancers Cell. 2014;26:623–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Profitable anti-PD-1 most cancers immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148-1161.e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andzinski L, Spanier J, Kasnitz N, Kröger A, Jin L, Brinkmann MM, et al. Rising tumors induce a neighborhood STING dependent Sort I IFN response in dendritic cells. Int J Most cancers. 2016;139:1350–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 2020;17:587–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jego G, Pascual V, Palucka AK, Banchereau J. Dendritic cells management B cell progress and differentiation. Curr Dir Autoimmun. 2005;8:124–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Münz C, Dao T, Ferlazzo G, de Cos MA, Goodman Okay, Younger JW. Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human pure killer cells. Blood. 2005;105:266–73.

    Article 
    PubMed 

    Google Scholar
     

  • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27:74–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardner A, Ruffell B. Dendritic cells and most cancers immunity. Traits Immunol. 2016;37:855–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature. 2016;534:396–401.

    Article 
    PubMed 

    Google Scholar
     

  • Riley RS, June CH, Langer R, Mitchell MJ. Supply applied sciences for most cancers immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma J, Liu F, Sheu WC, Meng Z, Xie Y, Xu H, et al. Copresentation of tumor antigens and costimulatory molecules by way of biomimetic nanoparticles for efficient most cancers immunotherapy. Nano Lett. 2020;20:4084–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30: e1706759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for focused most cancers remedy. Small. 2021;17: e2006484.

    Article 
    PubMed 

    Google Scholar
     

  • Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical functions. Biomaterials. 2017;128:69–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng S, Xu C, Jin Y, Li Y, Zhong C, Ma J, et al. Synthetic mini dendritic cells enhance T cell-based immunotherapy for ovarian most cancers. Adv Sci. 2020;7:1903301.

    Article 
    CAS 

    Google Scholar
     

  • Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: a quick evaluation from solubility enhancement to extra novel and particular functions. Acta Pharm Sin B. 2018;8:733–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang RH, Gao W, Zhang L. Focusing on medication to tumours utilizing cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.

    Article 
    PubMed 

    Google Scholar
     

  • Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug supply methods for most cancers remedy. Acta Pharm Sin B. 2018;8:4–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fliervoet LAL, Mastrobattista E. Drug supply with residing cells. Adv Drug Deliv Rev. 2016;106:63–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han X, Shen S, Fan Q, Chen G, Archibong E, Dotti G, et al. Pink blood cell-derived nanoerythrosome for antigen supply with enhanced most cancers immunotherapy. Sci Adv. 2019;5:6870.

    Article 

    Google Scholar
     

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8:61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Wu J, Williams GR, Fan Q, Niu S, Wu J, et al. Platelet-membrane-biomimetic nanoparticles for focused antitumor drug supply. J Nanobiotechnology. 2019;17:60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, et al. Most cancers cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal remedy. ACS Nano. 2016;10:10049–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Cai Okay, Li C, Guo Q, Chen Q, He X, et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018;18:1908–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YS, Wu HH, Jiang XC, Zhang TY, Zhou Y, Huang LL, et al. Lively stealth and self-positioning biomimetic autos achieved efficient antitumor remedy. J Management Launch. 2021;335:515–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, et al. Most cancers-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian most cancers. ACS Nano. 2021;15:19756–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han H, Bártolo R, Li J, Shahbazi MA, Santos HA. Biomimetic platelet membrane-coated nanoparticles for focused remedy. Eur J Pharm Biopharm. 2022;172:1–15.

    Article 
    PubMed 

    Google Scholar
     

  • Verneau J, Sautés-Fridman C, Solar CM. Dendritic cells within the tumor microenvironment: prognostic and theranostic influence. Semin Immunol. 2020;48: 101410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates operate. Nat Rev Immunol. 2019;19:89–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells within the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Tang Okay, Zhang X, Pan W, Li N, Tang B. A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast most cancers immunotherapy. Chem Sci. 2021;13:105–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinman RM, Cohn ZA. Identification of a novel cell kind in peripheral lymphoid organs of mice. I. morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantor H, Boyse EA. Purposeful subclasses of T lymphocytes bearing totally different Ly antigens. II. Cooperation between subclasses of Ly+ cells within the era of killer exercise. J Exp Med. 1975;141:1390–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao W, Cui Y, Fan Y, Chen M, Yang G, Wang Y, et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma remedy by way of drug and antigen supply. J Nanobiotechnology. 2021;19:378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell operate in most cancers. Nat Rev Immunol. 2016;16:599–611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4(+) T cell assist in most cancers immunology and immunotherapy. Nat Rev Immunol. 2018;18:635–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahrends T, Spanjaard A, Pilzecker B, Bąbała N, Bovens A, Xiao Y, et al. CD4(+) T cell assist confers a cytotoxic T cell effector program together with coinhibitory receptor downregulation and elevated tissue invasiveness. Immunity. 2017;47:848-861.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh DY, Fong L. Cytotoxic CD4(+) T cells in most cancers: increasing the immune effector toolbox. Immunity. 2021;54:2701–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner A, de Mingo PA, Ruffell B. Dendritic cells and their position in immunotherapy. Entrance Immunol. 2020;11:924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and scientific utility potential in most cancers immunotherapy. Entrance Immunol. 2018;9:3176.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid dendritic cells and most cancers immunotherapy. Cells. 2022;11:222.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collin M, Bigley V. Human dendritic cell subsets: an replace. Immunology. 2018;154:3–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and built-in practical methods. Semin Cell Dev Biol. 2015;41:9–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Entrance Immunol. 2018;9:3059.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy TL, Murphy KM. Dendritic cells in most cancers immunology. Cell Mol Immunol. 2022;19:3–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Okay, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao Okay, et al. In vivo evaluation of dendritic cell growth and homeostasis. Science. 2009;324:392–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macri C, Pang ES, Patton T, O’Keeffe M. Dendritic cell subsets. Semin Cell Dev Biol. 2018;84:11–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol. 2009;182:1901–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues comprise CD141hi cross-presenting dendritic cells with practical homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37:60–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) characterize a novel myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, et al. DNGR-1 is a selected and common marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood. 2012;119:6052–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1261–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meixlsperger S, Leung CS, Rämer PC, Pack M, Vanoaica LD, Breton G, et al. CD141+ dendritic cells produce outstanding quantities of IFN-α after dsRNA recognition and could be focused by way of DEC-205 in humanized mice. Blood. 2013;121:5034–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman Okay, et al. Human dendritic cell subsets from spleen and blood are comparable in phenotype and performance however modified by donor well being standing. J Immunol. 2011;186:6207–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000;165:6037–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood. 2002;100:4512–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watchmaker PB, Lahl Okay, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and practical profiling defines conserved packages of intestinal DC differentiation in people and mice. Nat Immunol. 2014;15:98–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic cells and CCR7 expression: an essential issue for autoimmune ailments, persistent irritation, and most cancers. Int J Mol Sci. 2021;22:8340.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zelenay S, Reise SC. Adaptive immunity after cell loss of life. Traits Immunol. 2013;34:329–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Böttcher JP, Reise SC. The position of kind 1 standard dendritic cells in most cancers immunity. Traits Most cancers. 2018;4:784–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagarsheth N, Wicha MS, Zou W. Chemokines within the most cancers microenvironment and their relevance in most cancers immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment selling most cancers immune management. Cell. 2018;172:1022-1037.e14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A pure killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med. 2018;24:1178–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in most cancers. Nat Rev Most cancers. 2021;21:345–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment throughout tumor metastasis. J Biomed Sci. 2022;29:84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Wang Z, Solar X, Jiang Q, Solar B, He Z, et al. Lymph node-targeting nanovaccines for most cancers immunotherapy. J Management Launch. 2022;351:102–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai T, Liu H, Zhang S, Hu J, Zhang L. Supply of nanovaccine in the direction of lymphoid organs: current methods in enhancing most cancers immunotherapy. J Nanobiotechnology. 2021;19:389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate mind tumor drainage and immunity. Cell Res. 2020;30:229–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol. 2016;107:100–10.

    Article 
    PubMed 

    Google Scholar
     

  • Schineis P, Runge P, Halin C. Mobile visitors via afferent lymphatic vessels. Vascul Pharmacol. 2019;112:31–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, et al. Speedy and coordinated change in chemokine receptor expression throughout dendritic cell maturation. Eur J Immunol. 1998;28:2760–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demaria O, Cornen S, Daëron M, Morel Y, Medzhitov R, Vivier E. Harnessing innate immunity in most cancers remedy. Nature. 2019;574:45–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salmon H, Idoyaga J, Rahman A, Leboeuf M, Comment R, Jordan S, et al. Growth and activation of CD103(+) dendritic cell progenitors on the tumor web site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44:924–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM, et al. Crucial position for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Most cancers Cell. 2016;30:324–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al. Interstitial dendritic cell steering by haptotactic chemokine gradients. Science. 2013;339:328–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zlotnik A. Chemokines in neoplastic development. Semin Most cancers Biol. 2004;14:181–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zlotnik A. Chemokines and most cancers. Int J Most cancers. 2006;119:2026–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penna G, Vulcano M, Sozzani S, Adorini L. Differential migration habits and chemokine manufacturing by myeloid and plasmacytoid dendritic cells. Hum Immunol. 2002;63:1164–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host kind I IFN alerts are required for antitumor CD8+ T cell responses via CD8{alpha}+ dendritic cells. J Exp Med. 2011;208:2005–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corrales L, McWhirter SM, Dubensky TW Jr, Gajewski TF. The host STING pathway on the interface of most cancers and immunity. J Clin Make investments. 2016;126:2404–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veglia F, Gabrilovich DI. Dendritic cells in most cancers: the position revisited. Curr Opin Immunol. 2017;45:43–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, et al. Sort I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208:1989–2003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuertes MB, Woo SR, Burnett B, Fu YX, Gajewski TF. Sort I interferon response and innate immune sensing of most cancers. Traits Immunol. 2013;34:67–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brewitz A, Eickhoff S, Dähling S, Quast T, Bedoui S, Kroczek RA, et al. CD8(+) T cells orchestrate pDC-XCR1(+) dendritic cell spatial and practical cooperativity to optimize priming. Immunity. 2017;46:205–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived components modulating dendritic cell operate. Most cancers Immunol Immunother. 2016;65:821–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, et al. cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature. 2020;584:624–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao T, Chen Q, Qi Y, Solar P, Chen D, Jiang W, et al. Biomineralized Gd(2) O(3) @HSA nanoparticles as a flexible platform for dual-modal imaging and chemo-phototherapy-synergized tumor ablation. Adv Healthc Mater. 2019;8: e1901005.

    Article 
    PubMed 

    Google Scholar
     

  • Lokhov PG, Balashova EE. Antigenic essence: improve of mobile most cancers vaccines. Cancers (Basel). 2021;13:774.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 alerts throughout priming are required for secondary enlargement of CD8+ reminiscence T cells. Nature. 2006;441:890–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourgeois C, Rocha B, Tanchot C. A task for CD40 expression on CD8+ T cells within the era of CD8+ T cell reminiscence. Science. 2002;297:2060–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a transferring goal in immunotherapy. Blood. 2018;131:58–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in most cancers immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwanowycz S, Ngoi S, Li Y, Hill M, Koivisto C, Parrish M, et al. Sort 2 dendritic cells mediate management of cytotoxic T cell resistant tumors. JCI Perception. 2021. https://doi.org/10.1172/jci.perception.145885.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete excessive ranges of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122:932–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al. Dissecting the tumor myeloid compartment reveals uncommon activating antigen-presenting cells crucial for T cell immunity. Most cancers Cell. 2014;26:938.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • den Haan JM, Bevan MJ. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J Exp Med. 2002;196:817–27.

    Article 

    Google Scholar
     

  • Platzer B, Elpek KG, Cremasco V, Baker Okay, Stout MM, Schultz C, et al. IgE/FcεRI-mediated antigen cross-presentation by dendritic cells enhances anti-tumor immune responses. Cell Rep. 2015;10:1487–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato T, Kitawaki T, Fujita H, Iwata M, Iyoda T, Inaba Okay, et al. Human CD1c⁺ myeloid dendritic cells purchase a excessive degree of retinoic acid-producing capability in response to vitamin D₃. J Immunol. 2013;191:3152–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, et al. Unleashing Sort-2 dendritic cells to drive protecting antitumor CD4(+) T cell immunity. Cell. 2019;177:556-571.e16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209:653–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leal Rojas IM, Mok WH, Pearson FE, Minoda Y, Kenna TJ, Barnard RT, et al. Human blood CD1c(+) dendritic cells promote Th1 and Th17 effector operate in reminiscence CD4(+) T cells. Entrance Immunol. 2017;8:971.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reizis B. Plasmacytoid dendritic cells: growth, regulation, and performance. Immunity. 2019;50:37–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune protection towards bacterial an infection. Immunity. 2003;19:59–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AHR, Ugel S, et al. T cell most cancers remedy requires CD40-CD40L activation of tumor necrosis issue and inducible nitric-oxide-synthase-producing dendritic cells. Most cancers Cell. 2016;30:377–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma MD, Rodriguez PC, Koehn BH, Baban B, Cui Y, Guo G, et al. Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c(+)CD103(+) monocytic antigen-presenting cells in tumors. Immunity. 2018;48:91-106.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang MC, Tullett KM, Lee YS, Idris A, Ding Y, McDonald KJ, et al. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur J Immunol. 2016;46:329–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • León B, López-Bravo M, Ardavín C. Monocyte-derived dendritic cells shaped on the an infection web site management the induction of protecting T helper 1 responses towards Leishmania. Immunity. 2007;26:519–31.

    Article 
    PubMed 

    Google Scholar
     

  • Martínez-López M, Iborra S, Conde-Garrosa R, Sancho D. Batf3-dependent CD103+ dendritic cells are main producers of IL-12 that drive native Th1 immunity towards Leishmania main an infection in mice. Eur J Immunol. 2015;45:119–29.

    Article 
    PubMed 

    Google Scholar
     

  • Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, et al. Transcriptional foundation of mouse and human dendritic cell heterogeneity. Cell. 2019;179:846-863.e24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villadangos JA, Younger L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008;29:352–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKenna Okay, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005;79:17–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swiecki M, Colonna M. Accumulation of plasmacytoid DC: roles in illness pathogenesis and targets for immunotherapy. Eur J Immunol. 2010;40:2094–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15:471–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saadeh D, Kurban M, Abbas O. Plasmacytoid dendritic cell position in cutaneous malignancies. J Dermatol Sci. 2016;83:3–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL, et al. Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are present in major melanoma lesions. Eur J Immunol. 2003;33:1052–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombardi VC, Khaiboullina SF, Rizvanov AA. Plasmacytoid dendritic cells, a job in neoplastic prevention and development. Eur J Clin Make investments. 2015;45(Suppl 1):1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costume RJ, Dutertre CA, Giladi A, Schlitzer A, Low I, Shadan NB, et al. Plasmacytoid dendritic cells develop from Ly6D(+) lymphoid progenitors distinct from the myeloid lineage. Nat Immunol. 2019;20:852–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat Immunol. 2018;19:711–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenzel J, Bekisch B, Uerlich M, Haller O, Bieber T, Tüting T. Sort I interferon-associated recruitment of cytotoxic lymphocytes: a standard mechanism in regressive melanocytic lesions. Am J Clin Pathol. 2005;124:37–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohn L, Chatterjee B, Esselborn F, Smed-Sörensen A, Nakamura N, Chalouni C, et al. Antigen supply to early endosomes eliminates the prevalence of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med. 2013;210:1049–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson DA third, Dutertre CA, Ginhoux F, Murphy KM. Genetic fashions of human and mouse dendritic cell growth and performance. Nat Rev Immunol. 2021;21:101–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sisirak V, Faget J, Gobert M, Goutagny N, Vey N, Treilleux I, et al. Impaired IFN-α manufacturing by plasmacytoid dendritic cells favors regulatory T-cell enlargement that will contribute to breast most cancers development. Most cancers Res. 2012;72:5188–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C. Tumor-infiltrating macrophages and dendritic cells in human colorectal most cancers: relation to native regulatory T cells, systemic T-cell response towards tumor-associated antigens and survival. J Transl Med. 2007;5:62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labidi-Galy SI, Treilleux I, Goddard-Leon S, Combes JD, Blay JY, Ray-Coquard I, et al. Plasmacytoid dendritic cells infiltrating ovarian most cancers are related to poor prognosis. Oncoimmunology. 2012;1:380–2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, et al. Identification and practical evaluation of tumor-infiltrating plasmacytoid dendritic cells in head and neck most cancers. Most cancers Res. 2003;63:6478–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Demoulin S, Herfs M, Delvenne P, Hubert P. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: perception into the molecular mechanisms. J Leukoc Biol. 2013;93:343–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerlini G, Urso C, Mariotti G, Di Gennaro P, Palli D, Brandani P, et al. Plasmacytoid dendritic cells characterize a serious dendritic cell subset in sentinel lymph nodes of melanoma sufferers and accumulate in metastatic nodes. Clin Immunol. 2007;125:184–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battaglia A, Buzzonetti A, Baranello C, Ferrandina G, Martinelli E, Fanfani F, et al. Metastatic tumour cells favour the era of a tolerogenic milieu in tumour draining lymph node in sufferers with early cervical most cancers. Most cancers Immunol Immunother. 2009;58:1363–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes instantly activate mature Tregs by way of indoleamine 2,3-dioxygenase. J Clin Make investments. 2007;117:2570–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Make investments. 2004;114:280–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munn DH, Mellor AL. IDO and tolerance to tumors. Traits Mol Med. 2004;10:15–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 however not CD25+CD4+ Tr cells. Blood. 2005;105:1162–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000;192:1213–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A, et al. Quantitative and practical alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian most cancers. Most cancers Res. 2011;71:5423–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Balancing between immunity and tolerance: an interaction between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol. 2007;82:1365–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, grasp of regulation. Nat Immunol. 2008;9:239–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedroza-Gonzalez A, Zhou G, Vargas-Mendez E, Boor PP, Mancham S, Verhoef C, et al. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology. 2015;4: e1008355.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38:729–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koerner J, Horvath D, Groettrup M. Harnessing dendritic cells for poly (D, L-lactide-co-glycolide) microspheres (PLGA MS)-mediated anti-tumor remedy. Entrance Immunol. 2019;10:707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HS, Ho TC, Willner MJ, Becker MW, Kim HW, Leong KW. Dendritic cell-mimicking scaffolds for ex vivo T cell enlargement. Bioact Mater. 2023;21:241–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Jugniot N, Dahl JJ, Paulmurugan R. Immunotheranostic microbubbles (iMBs) – a modular platform for dendritic cell vaccine supply utilized to breast most cancers immunotherapy. J Exp Clin Most cancers Res. 2022;41:299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, et al. Macrophage cell membrane-cloaked nanoplatforms for biomedical functions. Small Strategies. 2022;6: e2200289.

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki KG. New insights into the group of plasma membrane and its position in sign transduction. Int Rev Cell Mol Biol. 2015;317:67–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Kuang L, Yin Y, Tang L, Zhang Y, Fan Q, et al. Tumor-antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating immune responses promote therapeutic efficacy towards glioma. ACS Nano. 2023;17:2341–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Z, Deng G, Peng X, Xu X, Liu L, Peng J, et al. Clever photothermal dendritic cells restart the most cancers immunity cycle via enhanced immunogenic cell loss of life. Biomaterials. 2021;279: 121228.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, et al. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10:3199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from most cancers and dendritic cells. Adv Mater. 2019;31: e1900499.

    Article 
    PubMed 

    Google Scholar
     

  • Chen F, Geng Z, Wang L, Zhou Y, Liu J. Biomimetic nanoparticles enabled by cascade cell membrane coating for direct cross-priming of T cells. Small. 2022;18: e2104402.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Ling X, Xia J, Zhu Y, Zhang L, He Y, et al. Mature dendritic cell-derived dendrosomes swallow oxaliplatin-loaded nanoparticles to spice up immunogenic chemotherapy and tumor antigen-specific immunotherapy. Bioact Mater. 2022;15:15–28.

    PubMed 

    Google Scholar
     

  • Zhou M, Xing Y, Li X, Du X, Xu T, Zhang X. Most cancers cell Membrane camouflaged semi-yolk@spiky-shell nanomotor for enhanced cell adhesion and synergistic remedy. Small. 2020;16: e2003834.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung most cancers evolution. Nature. 2019;567:479–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koido S. Dendritic-tumor fusion cell-based most cancers vaccines. Int J Mol Sci. 2016;17:828.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Zhao W, Huang J, Li F, Sheng J, Tune H, et al. Improvement of a dendritic cell/Tumor cell fusion cell membrane nano-vaccine for the remedy of ovarian most cancers. Entrance Immunol. 2022;13: 828263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Yu T, Zeng Y, Lian Okay, Zhou X, Ke J, et al. pH-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromol. 2020;21:2818–28.

    Article 
    CAS 

    Google Scholar
     

  • Ma J, Zhang S, Liu J, Liu F, Du F, Li M, et al. Focused drug supply to stroke by way of chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small. 2019;15: e1902011.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandhi S, Shende P. Cyclodextrins-modified metallic nanoparticles for efficient most cancers remedy. J Management Launch. 2021;339:41–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Deng G, Solar Z, Luo Y, Liu J, Yu X, et al. A biomimetic aggregation-induced emission photosensitizer with antigen-presenting and hitchhiking operate for lipid droplet focused photodynamic immunotherapy. Adv Mater. 2021;33: e2102322.

    Article 
    PubMed 

    Google Scholar
     

  • Su Y, Zhang B, Solar R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug supply: current advances in analysis and utility. Drug Deliv. 2021;28:1397–418.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, et al. Poly(lactic-co-glycolic acid) microsphere manufacturing based mostly on high quality by design: a evaluation. Drug Deliv. 2021;28:1342–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain AK, Das M, Swarnakar NK, Jain S. Engineered PLGA nanoparticles: an rising supply software in most cancers therapeutics. Crit Rev Ther Drug Service Syst. 2011;28:1–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacob S, Nair AB, Shah J. Rising position of nanosuspensions in drug supply methods. Biomater Res. 2020;24:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin JO, Jang S, Kim H, Oh J, Shim S, Kwak M, et al. Immunostimulatory agent analysis: lymphoid tissue extraction and injection route-dependent dendritic cell activation. J Vis Exp. 2018. https://doi.org/10.3791/57640.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard GP, Verma G, Ke X, Thayer WM, Hamerly T, Baxter VK, et al. Crucial measurement restrict of biodegradable nanoparticles for enhanced lymph node trafficking and paracortex penetration. Nano Res. 2019;12:837–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang YN, Lazarovits J, Poon W, Ouyang B, Nguyen LNM, Kingston BR, et al. Nanoparticle measurement influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 2019;19:7226–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey BT, Fu X, Li L, Neupane KR, Anand N, Kolesar JM, et al. Dendritic cell membrane-derived nanovesicles for focused T cell activation. ACS Omega. 2022;7:46222–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochyl LJ, Moon JJ. Dendritic cell membrane vesicles for activation and upkeep of antigen-specific T cells. Adv Healthc Mater. 2019;8: e1801091.

    Article 
    PubMed 

    Google Scholar
     

  • Peng W, Zhang Y, Zhu R, Mechref Y. Comparative membrane proteomics analyses of breast most cancers cell traces to grasp the molecular mechanism of breast most cancers mind metastasis. Electrophoresis. 2017;38:2124–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Ye Z, Wei L, Luo H, Xiao L. Cell membrane-coated porphyrin metal-organic frameworks for most cancers cell focusing on and O(2)-evolving photodynamic remedy. ACS Appl Mater Interf. 2019;11:39594–602.

    Article 
    CAS 

    Google Scholar
     

  • Harris JC, Scully MA, Day ES. Most cancers cell membrane-coated nanoparticles for most cancers administration. Cancers (Basel). 2019;11:1836.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, et al. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14:2181–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic – a brand new method to most cancers remedy. Nat Rev Clin Oncol. 2023;20:265–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhao Q, Zhao B, Zheng Y, Zhuang Q, Liao N, et al. Reworking tumor-associated neutrophils to reinforce dendritic cell-based HCC neoantigen nano-vaccine effectivity. Adv Sci (Weinh). 2022;9: e2105631.

    Article 
    PubMed 

    Google Scholar
     

  • Palucka Okay, Banchereau J. Most cancers immunotherapy by way of dendritic cells. Nat Rev Most cancers. 2012;12:265–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldominos P, Barbera-Mourelle A, Barreiro O, Huang Y, Wight A, Cho JW, et al. Quiescent most cancers cells resist T cell assault by forming an immunosuppressive area of interest. Cell. 2022;185(1694–1708): e19.


    Google Scholar
     

  • Yang J, Davis T, Kazerouni AS, Chen YI, Bloom MJ, Yeh HC, et al. Longitudinal FRET imaging of glucose and lactate dynamics and response to remedy in breast most cancers cells. Mol Imaging Biol. 2022;24:144–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du S, Liu Y, Yuan Y, Wang Y, Chen Y, Wang S, et al. Advances within the research of HSP70 inhibitors to reinforce the sensitivity of tumor cells to radiotherapy. Entrance Cell Dev Biol. 2022;10: 942828.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang X, Ye X, Wang C, Xing C, Miao Q, Xie Z, et al. Photothermal most cancers immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Management Launch. 2019;296:150–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azzi J, Yin Q, Uehara M, Ohori S, Tang L, Cai Okay, et al. Focused supply of immunomodulators to lymph nodes. Cell Rep. 2016;15:1202–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisusi FA, Akala EO. Drug mixtures in breast most cancers remedy. Pharm Nanotechnol. 2019;7:3–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Y, Zhang H, Tune X, Yang Q. Metastatic heterogeneity of breast most cancers: molecular mechanism and potential therapeutic targets. Semin Most cancers Biol. 2020;60:14–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerr AJ, Dodwell D, McGale P, Holt F, Duane F, Mannu G, et al. Adjuvant and neoadjuvant breast most cancers remedies: a scientific evaluation of their results on mortality. Most cancers Deal with Rev. 2022;105: 102375.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sevinsky CJ, Khan F, Kokabee L, Darehshouri A, Maddipati KR, Conklin DS. NDRG1 regulates impartial lipid metabolism in breast most cancers cells. Breast Most cancers Res. 2018;20:55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop Okay, et al. Photodynamic remedy – mechanisms, photosensitizers and mixtures. Biomed Pharmacother. 2018;106:1098–107.

    Article 
    PubMed 

    Google Scholar
     

  • Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2016. CA Most cancers J Clin. 2016;66:7–30.

    Article 
    PubMed 

    Google Scholar
     

  • Tan Z, Huang H, Solar W, Li Y, Jia Y. Present progress of ferroptosis research in ovarian most cancers. Entrance Mol Biosci. 2022;9: 966007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin D, Jiang Y, Chang L, Wei J, Solar J. New therapeutic methods based mostly on biasing IL-2 mutants for cancers and autoimmune ailments. Int Immunopharmacol. 2022;110: 108935.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moleiro ML, Gouveia AB. Further-abdominal lymph node metastases as the primary presentation in ovarian and fallopian tube carcinomas. Reprod Sci. 2023;30:1017–32.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Z, Huang J, Zhang C, Yang H, Qiu H, Li J, et al. Infiltration of dendritic cells and T lymphocytes predicts favorable end result in epithelial ovarian most cancers. Most cancers Gene Ther. 2015;22:198–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He XY, Xu Y, Xia QJ, Zhao XM, Li S, He XQ, et al. Mixed scutellarin and C(18)H(17)NO(6) imperils the survival of glioma: partly related to the repression of PSEN1/PI3K-AKT signaling axis. Entrance Oncol. 2021;11: 663262.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao H. Progress and views on focusing on nanoparticles for mind drug supply. Acta Pharm Sin B. 2016;6:268–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Yan R, Zhang L, Meng X, Solar W. Main glioblastoma transcriptome knowledge evaluation for screening survival-related genes. J Cell Biochem. 2020;121:1901–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz MF, Gennaro MV, Bastone LC, Godoy AR, Torruella M, Perez GR. Molecular biomarkers and built-in pathological prognosis within the reclassification of gliomas. Mol Clin Oncol. 2021;15:150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh Okay, Batich KA, Wen PY, Tan AC, Bagley SJ, Lim M, et al. Designing scientific trials for mixture immunotherapy: a framework for glioblastoma. Clin Most cancers Res. 2022;28:585–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Bodegraven EJ, Sluijs JA, Tan AK, Gown P, Hol EM. New GFAP splice isoform (GFAPmicro) differentially expressed in glioma interprets into 21 kDa N-terminal GFAP protein. FASEB J. 2021;35: e21389.

    Article 
    PubMed 

    Google Scholar
     

  • Muller C, Holtschmidt J, Auer M, Heitzer E, Lamszus Okay, Schulte A, et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med. 2014;6:247.

    Article 

    Google Scholar
     

  • Allen GM, Frankel NW, Reddy NR, Bhargava HK, Yoshida MA, Stark SR, et al. Artificial cytokine circuits that drive T cells into immune-excluded tumors. Science. 2022;378:1624.

    Article 

    Google Scholar
     

  • Dong L, Tian X, Zhao Y, Tu H, Wong A, Yang Y. The roles of MiRNAs (MicroRNAs) in melanoma immunotherapy. Int J Mol Sci. 2022;23:14775.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, Rossi CR, Mocellin S. Systemic remedies for metastatic cutaneous melanoma. Cochrane Database Syst Rev. 2018;2:11123.


    Google Scholar
     

  • Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P, et al. Immunotherapy within the remedy of metastatic melanoma: present data and future instructions. J Immunol Res. 2020;2020:9235638.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal I, Ramsey JD. The position of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev. 2011;63:909–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aldahhan R, Almohazey D, Khan FA. Rising tendencies within the utility of gold nanoformulations in colon most cancers prognosis and remedy. Semin Most cancers Biol. 2022;86:1056–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey A, Mitra A, Pathak S, Prasad S, Zhang AS, Zhang H, et al. Latest developments, limitations, and future views of using personalised drugs in remedy of colon most cancers. Technol Most cancers Res Deal with. 2023;22:15330338231178404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalabi M, Verschoor YL, Tan PB, Balduzzi S, Van Lent AU, Grootscholten C, et al. Neoadjuvant immunotherapy in domestically superior mismatch repair-deficient colon most cancers. N Engl J Med. 2024;390:1949–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan FA, Albalawi R, Pottoo FH. Traits in focused supply of nanomaterials in colon most cancers prognosis and remedy. Med Res Rev. 2022;42:227–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the Ipilimumab approval decennial. Nat Rev Drug Discovery. 2022;21:509–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao P, Xu Y, Ji W, Li L, Qiu L, Zhou S, et al. Hybrid Membrane Nanovaccines Mixed with Immune Checkpoint Blockade to Improve Most cancers Immunotherapy. Int J Nanomedicine. 2022;17:73–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles