Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Yu, X. Z. et al. Close to room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).
Yu, X. Z. et al. Actual-space remark of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Leonov, A. O. & Mostovoy, M. Multiply periodic states and remoted skyrmions in an anisotropic pissed off magnet. Nat. Commun. 6, 8275 (2015).
Takagi, R. et al. A number of-q noncollinear magnetism in an itinerant hexagonal magnet. Sci. Adv. 4, eaau3402 (2018).
Spethmann, J. et al. Discovery of magnetic single- and triple-q states in Mn/Re(0001). Phys. Rev. Lett. 124, 227203 (2020).
Hayami, S. et al. Section shift in skyrmion crystals. Nat. Commun. 12, 6927 (2020).
Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Actual-space remark of helical spin order. Science 311, 359–361 (2006).
Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).
Jia, C. L. et al. Direct remark of steady electrical dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).
Tang, Y. L. et al. Remark of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 movies. Science 348, 547–551 (2015).
Geng, W. et al. Atomic-scale tunable flexoelectric couplings in oxide multiferroics. Nano Lett. 21, 9601–9608 (2021).
Tang, Y. L. et al. Big linear pressure gradient with extraordinarily low elastic vitality in a perovskite nanostructure array. Nat. Commun. 8, 15994 (2017).
Yadav, A. Ok. et al. Remark of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Das, S. et al. Remark of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).
Gong, F. H. et al. Atomic mapping of periodic dipole waves in ferroelectric oxide. Sci. Adv. 7, eabg5503 (2021).
Govinden, V. et al. Ferroelectric solitons crafted in epitaxial bismuth ferrite superlattices. Nat. Commun. 14, 4178 (2023).
Govinden, V. et al. Spherical ferroelectric solitons. Nat. Mater. 22, 553–561 (2023).
Zhao, H. J. et al. Dzyaloshinskii–Moriya-like interplay in ferroelectrics and antiferroelectrics. Nat. Mater. 20, 341–345 (2021).
Yu, L. et al. The anti-symmetric and anisotropic symmetric change interactions between electrical dipoles in hafnia. Nat. Commun. 14, 8127 (2023).
Yuan, S. et al. Hexagonal close-packed polar-skyrmion lattice in ultrathin ferroelectric PbTiO3 movies. Phys. Rev. Lett. 130, 226801 (2023).
Khalyavin, D. D. et al. Emergent helical texture of electrical dipoles. Science 369, 680–684 (2020).
Rusu, D. et al. Ferroelectric incommensurate spin crystals. Nature 602, 240–244 (2022).
Zeches, R. J. et al. A strain-driven morphotropic part boundary in BiFeO3. Science 326, 977–980 (2009).
Shibata, N. et al. Differential phase-contrast microscopy at atomic decision. Nat. Phys. 8, 611–615 (2012).
Anthony, S. M. & Granick, S. Picture evaluation with fast and correct two-dimensional Gaussian becoming. Langmuir 25, 8152–8160 (2009).
Liu, Z. et al. In-plane charged area partitions with memristive behaviour in a ferroelectric movie. Nature 613, 656–661 (2023).
Strauch, A. et al. Systematic errors of electrical discipline measurements in ferroelectrics by unit cell averaged momentum transfers in STEM. Microsc. Microanal. 29, 499–511 (2023).
Chen, Z. et al. Manipulation of nanoscale area switching utilizing an electron beam with omnidirectional electrical discipline distribution. Phys. Rev. Lett. 117, 027601 (2016).
Guo, S. et al. Mending cracks atom-by-atom in rutile TiO2 with electron beam radiolysis. Nat. Commun. 14, 6005 (2023).
Wei, J. et al. Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021).
Labuda, A. & Proksch, R. Quantitative measurements of electromechanical response with a mixed optical beam and interferometric atomic power microscope. Appl. Phys. Lett. 106, 253103 (2015).
Kelley, Ok. et al. Thickness and pressure dependence of piezoelectric coefficient in BaTiO3 skinny movies. Phys. Rev. Mater. 4, 024407 (2020).
Wang, J. et al. Epitaxial BiFeO3 multiferroic skinny movie heterostructures. Science 299, 1719–1722 (2003).
Chen, P. et al. Microscopic origin of the electrical Dzyaloshinskii–Moriya interplay. Phys. Rev. B 106, 224101 (2022).
Zhang, J. X. et al. Microscopic origin of the enormous ferroelectric polarization in tetragonal-like BiFeO3. Phys. Rev. Lett. 107, 147602 (2011).
Geng, W. R. et al. Magneto-electric-optical coupling in multiferroic BiFeO3-based movies. Adv. Mater. 34, e2106396 (2022).
Hytch, M. J. et al. Quantitative measurement of displacement and pressure fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).
Xue, F. et al. Pressure part separation: formation of ferroelastic area buildings. Phys. Rev. B 94, 220101 (2016).
Tagantsev, A. Ok. Landau growth for ferroelectrics: which variable to make use of? Ferroelectrics 375, 19–27 (2008).
Cao, Y. et al. Stress-induced switching in ferroelectrics: phase-field modeling, electrochemistry, flexoelectric impact, and bulk emptiness dynamics. Phys. Rev. B 96, 184109 (2017).
Eliseev, E. A. et al. Spontaneous flexoelectric/flexomagnetic impact in nanoferroics. Phys. Rev. B 79, 165433 (2009).
Liu, D. et al. Section-field simulations of vortex chirality manipulation in ferroelectric skinny movies. npj Quantum Mater. 7, 34 (2022).
Park, S. M. et al. Selective management of a number of ferroelectric switching pathways utilizing a trailing flexoelectric discipline. Nat. Nanotechnol. 13, 366–370 (2018).
Morozovska, A. N. et al. Interfacial polarization and pyroelectricity in antiferrodistortive buildings induced by a flexoelectric impact and rotostriction. Phys. Rev. B 85, 094107 (2012).
Li, Y. L. et al. Impact of substrate constraint on the steadiness and evolution of ferroelectric area buildings in skinny movies. Acta Mater. 50, 395–411 (2002).
Li, Y. L. et al. Impact {of electrical} boundary circumstances on ferroelectric area buildings in skinny movies. Appl. Phys. Lett. 81, 427–429 (2002).
Geng, W. R. et al. Dipolar wavevector interference induces a polar skyrmion lattice in strained BiFeO3 movies. Zenodo https://doi.org/10.5281/zenodo.14071478 (2024).
Feng, Y. et al. Misfit pressure relaxations of (101)-oriented ferroelectric PbTiO3/(La, Sr)(Al, Ta)O3 skinny movie techniques. J. Mater. Res. 33, 4156–4164 (2018).
Mateika, D. et al. Blended-perovskite substrates for high-Tc superconductors. J. Cryst. Development 109, 447–456 (1991).
Sasaura, M. et al. Thermal growth coefficients of excessive‐Tc superconductor substrate NdGaO3 single crystal. J. Appl. Phys. 68, 3643–3644 (1990).