Chen, H., Zhang, W., Zhu, G., Xie, J. & Chen, X. Rethinking most cancers nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).
Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Most cancers nanomedicine: progress, challenges and alternatives. Nat. Rev. Most cancers 17, 20–37 (2017).
AbdElFatah, T. et al. Nanoplasmonic amplification in microfluidics permits accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. Nat. Nanotechnol. 18, 922–932 (2023).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078–1094 (2021).
Kim, M. et al. Detection of ovarian most cancers through the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine studying. Nat. Biomed. Eng. 6, 267–275 (2022).
Zhang, J., Zhao, T., Jakobsson, V. & Chen, X. Scientific translation of radiotheranostics for precision oncology. Nat. Rev. Bioeng. 1, 612–614 (2023).
Fang, R. H., Gao, W. & Zhang, L. Concentrating on medicine to tumours utilizing cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).
Li, X., Lovell, J. F., Yoon, J. & Chen, X. Scientific growth and potential of photothermal and photodynamic therapies for most cancers. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).
Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo supply of gene enhancing brokers. Cell 185, 2806–2827 (2022).
Nam, J. et al. Most cancers nanomedicine for mixture most cancers immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019).
Zhao, H. et al. A robotic platform for the synthesis of colloidal nanocrystals. Nat. Synth. 2, 505–514 (2023).
Huang, X. et al. Nanotechnology-based methods in opposition to SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).
Park, J. et al. An built-in magneto-electrochemical system for the fast profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 5, 678–689 (2021).
Rao, L. et al. Hybrid mobile membrane nanovesicles amplify macrophage immune responses in opposition to most cancers recurrence and metastasis. Nat. Commun. 11, 4909 (2020).
Butler, Ok. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine studying for molecular and supplies science. Nature 559, 547–555 (2018).
LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).
Shen, D., Wu, G. & Suk, H.-I. Deep studying in medical picture evaluation. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).
Camacho, D. M., Collins, Ok. M., Powers, R. Ok., Costello, J. C. & Collins, J. J. Subsequent-generation machine studying for organic networks. Cell 173, 1581–1592 (2018).
Yu, Ok.-H., Beam, A. L. & Kohane, I. S. Synthetic intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).
Ziatdinov, M., Ghosh, A., Wong, C. Y. & Kalinin, S. V. AtomAI framework for deep studying evaluation of picture and spectroscopy knowledge in electron and scanning probe microscopy. Nat. Mach. Intell. 4, 1101–1112 (2022).
Heinzmann, Ok., Carter, L. M., Lewis, J. S. & Aboagye, E. O. Multiplexed imaging for prognosis and remedy. Nat. Biomed. Eng. 1, 697–713 (2017).
Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).
Wong, F., de la Fuente-Nunez, C. & Collins, J. J. Leveraging synthetic intelligence within the battle in opposition to infectious ailments. Science 381, 164–170 (2023).
Breiman, L. Random forests. Mach. Be taught. 45, 5–32 (2001).
Chih-Wei, H. & Chih-Jen, L. A comparability of strategies for multiclass help vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002).
Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a primary instrument of chemometrics. Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).
Masson, J.-F., Biggins, J. S. & Ringe, E. Machine studying for nanoplasmonics. Nat. Nanotechnol. 18, 111–123 (2023).
Wan, F., Wong, F., Collins, J. J. & de la Fuente-Nunez, C. Machine studying for antimicrobial peptide identification and design. Nat. Rev. Bioeng. 2, 392–407 (2024).
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
Tao, H. et al. Nanoparticle synthesis assisted by machine studying. Nat. Rev. Mater. 6, 701–716 (2021).
Dai, X. & Chen, Y. Computational biomaterials: computational simulations for biomedicine. Adv. Mater. 35, 2204798 (2023).
Service provider, A. et al. Scaling deep studying for supplies discovery. Nature 624, 80–85 (2023).
Batra, R. et al. Machine studying overcomes human bias within the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).
Zhu, M. et al. Machine-learning-assisted single-vessel evaluation of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023).
Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle supply. Science 377, eabm5551 (2022).
Yamankurt, G. et al. Exploration of the nanomedicine-design house with high-throughput screening and machine studying. Nat. Biomed. Eng. 3, 318–327 (2019).
Shamay, Y. et al. Quantitative self-assembly prediction yields focused nanomedicines. Nat. Mater. 17, 361–368 (2018).
Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary results of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).
Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive supplies. Nat. Rev. Mater. 1, 16075 (2016).
Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for organic imaging and nanomedicinal remedy. Chem. Rev. 115, 10816–10906 (2015).
Suwardi, A. et al. Machine learning-driven biomaterials evolution. Adv. Mater. 34, 2102703 (2022).
Rycenga, M. et al. Controlling the synthesis and meeting of silver nanostructures for plasmonic functions. Chem. Rev. 111, 3669–3712 (2011).
Yang, X., Yang, M., Pang, B., Vara, M. & Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015).
Michalet, X. et al. Quantum dots for dwell cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
Kim, P. et al. Quantifying the efficacy of magnetic nanoparticles for MRI and hyperthermia functions through machine studying strategies. Small 19, 2303522 (2023).
Serov, N. & Vinogradov, V. Synthetic intelligence to convey nanomedicine to life. Adv. Drug Deliv. Rev. 184, 114194 (2022).
Grand, J., Auguié, B. & Le Ru, E. C. Mixed extinction and absorption UV–seen spectroscopy as a technique for revealing form imperfections of metallic nanoparticles. Anal. Chem. 91, 14639–14648 (2019).
Gherman, A. M. M. et al. Synthetic neural networks modeling of the parameterized gold nanoparticles era by means of photo-induced course of. Mater. Res. Categorical 5, 085011 (2018).
Shafaei, A. & Khayati, G. R. A predictive mannequin on measurement of silver nanoparticles ready by inexperienced synthesis technique utilizing hybrid synthetic neural community–particle swarm optimization algorithm. Measurement 151, 107199 (2020).
Orimoto, Y. et al. Software of synthetic neural networks to fast knowledge evaluation in combinatorial nanoparticle syntheses. J. Phys. Chem. C 116, 17885–17896 (2012).
Salley, D. et al. A nanomaterials discovery robotic for the Darwinian evolution of form programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).
Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).
Ng, Ok. Ok. & Zheng, G. Molecular interactions in natural nanoparticles for phototheranostic functions. Chem. Rev. 115, 11012–11042 (2015).
Andrews, N. et al. COVID-19 vaccine effectiveness in opposition to the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).
Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA supply and genome enhancing. Nat. Biotechnol. 41, 1410–1415 (2023).
Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine studying algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).
Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interplay of nanomaterials with proteins in a physiological atmosphere. Chem. Soc. Rev. 41, 2780–2799 (2012).
Youshia, J., Ali, M. E. & Lamprecht, A. Synthetic neural community primarily based particle measurement prediction of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 119, 333–342 (2017).
Shalaby, Ok. S. et al. Dedication of things controlling the particle measurement and entrapment effectivity of noscapine in PEG/PLA nanoparticles utilizing synthetic neural networks. Int. J. Nanomed. 9, 4953–4964 (2014).
Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Complete AAV capsid health panorama reveals a viral gene and permits machine-guided design. Science 366, 1139–1143 (2019).
Meng, Q.-F. et al. Inhalation supply of dexamethasone with iSEND nanoparticles attenuates the COVID-19 cytokine storm in mice and nonhuman primates. Sci. Adv. 9, eadg3277 (2023).
Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).
Herrmann, I. Ok., Wooden, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug supply platform. Nat. Nanotechnol. 16, 748–759 (2021).
Madigan, V., Zhang, F. & Dahlman, J. E. Drug supply programs for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).
Kalluri, R. & LeBleu, V. S. The biology, perform, and biomedical functions of exosomes. Science 367, eaau6977 (2020).
Zengel, J. et al. Hardwiring tissue-specific AAV transduction in mice by means of engineered receptor expression. Nat. Strategies 20, 1070–1081 (2023).
Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine studying. Nat. Biotechnol. 39, 691–696 (2021).
El Andaloussi, S., Mäger, I., Breakefield, X. O. & Wooden, M. J. A. Extracellular vesicles: biology and rising therapeutic alternatives. Nat. Rev. Drug Discov. 12, 347–357 (2013).
Zheng, W. et al. Prognosis of paediatric tuberculosis by optically detecting two virulence components on extracellular vesicles in blood samples. Nat. Biomed. Eng. 6, 979–991 (2022).
Kuypers, S. et al. Unsupervised machine learning-based clustering of nanosized fluorescent extracellular vesicles. Small 17, 2006786 (2021).
Mahmoudi, M. et al. Protein−nanoparticle interactions: alternatives and challenges. Chem. Rev. 111, 5610–5637 (2011).
Salvati, A. et al. Transferrin-functionalized nanoparticles lose their focusing on capabilities when a biomolecule corona adsorbs on the floor. Nat. Nanotechnol. 8, 137–143 (2013).
Nel, A. E. et al. Understanding biophysicochemical interactions on the nano–bio interface. Nat. Mater. 8, 543–557 (2009).
Kingston, B. R., Syed, A. M., Ngai, J., Sindhwani, S. & Chan, W. C. W. Assessing micrometastases as a goal for nanoparticles utilizing 3D microscopy and machine studying. Proc. Natl Acad. Sci. USA 116, 14937–14946 (2019).
Ferdosi, S. et al. Engineered nanoparticles allow deep proteomics research at scale by leveraging tunable nano–bio interactions. Proc. Natl Acad. Sci. USA 119, e2106053119 (2022).
Cha, M. et al. Unifying structural descriptors for organic and bioinspired nanoscale complexes. Nat. Comput. Sci. 2, 243–252 (2022).
Ban, Z. et al. Machine studying predicts the purposeful composition of the protein corona and the mobile recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).
Ouassil, N., Pinals, R. L., Del Bonis-O’Donnell, J. T., Wang, J. W. & Landry, M. P. Supervised studying mannequin predicts protein adsorption to carbon nanotubes. Sci. Adv. 8, eabm0898 (2022).
Saldinger, J. C., Raymond, M., Elvati, P. & Violi, A. Area-agnostic predictions of nanoscale interactions in proteins and nanoparticles. Nat. Comput. Sci. 3, 393–402 (2023).
Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles–cell affiliation primarily based on corona proteins and physicochemical properties. Nanoscale 7, 9664–9675 (2015).
Lazarovits, J. et al. Supervised studying and mass spectrometry predicts the in vivo destiny of nanomaterials. ACS Nano 13, 8023–8034 (2019).
Fourches, D. et al. Quantitative nanostructure−exercise relationship modeling. ACS Nano 4, 5703–5712 (2010).
Behzadi, S. et al. Mobile uptake of nanoparticles: journey contained in the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).
Walkey, C. D. et al. Protein corona fingerprinting predicts the mobile interplay of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).
Loecher, A., Bruyns-Haylett, M., Ballester, P. J., Borros, S. & Oliva, N. A machine studying method to foretell mobile uptake of pBAE polyplexes. Biomater. Sci. 11, 5797–5808 (2023).
Shirokii, N. et al. Quantitative prediction of inorganic nanomaterial mobile toxicity through machine studying. Small 19, 2207106 (2023).
Martin et al. Proof-based prediction of mobile toxicity for amorphous silica nanoparticles. ACS Nano 17, 9987–9999 (2023).
Jyakhwo, S., Serov, N., Dmitrenko, A. & Vinogradov, V. V. Machine studying strengthened genetic algorithm for large focused discovery of selectively cytotoxic inorganic nanoparticles. Small 20, 2305375 (2024).
Puzyn, T. et al. Utilizing nano-QSAR to foretell the cytotoxicity of metallic oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).
Sealfon, R. S. G., Wong, A. Ok. & Troyanskaya, O. G. Machine studying strategies to mannequin multicellular complexity and tissue specificity. Nat. Rev. Mater. 6, 717–729 (2021).
Chen, Q. et al. Meta-analysis of nanoparticle distribution in tumors and main organs in tumor-bearing mice. ACS Nano 17, 19810–19831 (2023).
MacMillan, P. et al. Towards predicting nanoparticle distribution in heterogeneous tumor tissues. Nano Lett. 23, 7197–7205 (2023).
Liu, X. et al. Predictive modeling of nanomaterial publicity results in organic programs. Int. J. Nanomed. 8, 31–43 (2023).
Gilbertson, L. M. et al. Towards safer multi-walled carbon nanotube design: establishing a statistical mannequin that relates floor cost and embryonic zebrafish mortality. Nanotoxicology 10, 10–19 (2016).
Tune, Y. et al. 3D-printed epifluidic digital pores and skin for machine learning-powered multimodal well being surveillance. Sci. Adv. 9, eadi6492 (2023).
Lin, A. A., Nimgaonkar, V., Issadore, D. & Carpenter, E. L. Extracellular vesicle-based multianalyte liquid biopsy as a diagnostic for most cancers. Annu. Rev. Biomed. Information Sci. 5, 269–292 (2022).
Xu, C., Solomon, S. A. & Gao, W. Synthetic intelligence-powered digital pores and skin. Nat. Mach. Intell. 5, 1344–1355 (2023).
Altug, H., Oh, S.-H., Maier, S. A. & Homola, J. Advances and functions of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).
Safir, F. et al. Combining acoustic bioprinting with AI-assisted raman spectroscopy for high-throughput identification of micro organism in blood. Nano Lett. 23, 2065–2073 (2023).
Shin, H. et al. Single test-based prognosis of a number of most cancers sorts utilizing exosome-SERS-AI for early stage cancers. Nat. Commun. 14, 1644 (2023).
Kavungal, D. et al. Synthetic intelligence-coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative ailments. Sci. Adv. 9, eadg9644 (2023).
Gao, Z. et al. Machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine storm profiling in COVID-19 sufferers. ACS Nano 15, 18023–18036 (2021).
Thrift, W. J. et al. Deep studying evaluation of vibrational spectra of bacterial lysate for fast antimicrobial susceptibility testing. ACS Nano 14, 15336–15348 (2020).
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, Ok. F. Nanopore sequencing expertise, bioinformatics and functions. Nat. Biotechnol. 39, 1348–1365 (2021).
Zhang, M. et al. Actual-time detection of 20 amino acids and discrimination of pathologically related peptides with functionalized nanopore. Nat. Strategies 21, 609–618 (2024).
Ying, Y.-L. et al. Nanopore-based applied sciences past DNA sequencing. Nat. Nanotechnol. 17, 1136–1146 (2022).
Jena, M. Ok. & Pathak, B. Growth of an artificially clever nanopore for high-throughput DNA sequencing with a machine-learning-aided quantum-tunneling method. Nano Lett. 23, 2511–2521 (2023).
Taniguchi, M. et al. Combining machine studying and nanopore building creates a synthetic intelligence nanopore for coronavirus detection. Nat. Commun. 12, 3726 (2021).
Xia, Ok. et al. Artificial heparan sulfate requirements and machine studying facilitate the event of solid-state nanopore evaluation. Proc. Natl Acad. Sci. USA 118, e2022806118 (2021).
Li, M. et al. Identification of tagged glycans with a protein nanopore. Nat. Commun. 14, 1737 (2023).
Wang, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications utilizing an engineered nanopore. Nat. Nanotechnol. 17, 976–983 (2022).
Greive, S. J., Bacri, L., Cressiot, B. & Pelta, J. Identification of conformational variants for bradykinin biomarker peptides from a biofluid utilizing a nanopore and machine studying. ACS Nano 18, 539–550 (2024).
Sajda, P. Machine studying for detection and prognosis of illness. Annu. Rev. Biomed. Eng. 8, 537–565 (2006).
Tian, F. et al. Protein evaluation of extracellular vesicles to observe and predict therapeutic response in metastatic breast most cancers. Nat. Commun. 12, 2536 (2021).
Sahu, A. et al. Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles. Nat. Getting older 1, 1148–1161 (2021).
Mangalwedhekar, R. et al. Reaching nanoscale precision utilizing neuromorphic localization microscopy. Nat. Nanotechnol. 18, 380–389 (2023).
Reis, M. et al. Machine-learning-guided discovery of 19F MRI brokers enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143, 17677–17689 (2021).
Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep studying for in vivo near-infrared imaging. Proc. Natl Acad. Sci. USA 118, e2021446118 (2021).
Moen, E. et al. Deep studying for mobile picture evaluation. Nat. Strategies 16, 1233–1246 (2019).
Bouchard, C. et al. Decision enhancement with a task-assisted GAN to information optical nanoscopy picture evaluation and acquisition. Nat. Mach. Intell. 5, 830–844 (2023).
Park, J. et al. Synthetic intelligence-enabled quantitative section imaging strategies for all times sciences. Nat. Strategies 20, 1645–1660 (2023).
Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Synthetic intelligence in histopathology: enhancing most cancers analysis and medical oncology. Nat. Most cancers 3, 1026–1038 (2022).
Hong, G. et al. By means of-skull fluorescence imaging of the mind in a brand new near-infrared window. Nat. Photon. 8, 723–730 (2014).
Chen, X. et al. Synthetic confocal microscopy for deep label-free imaging. Nat. Photon. 17, 250–258 (2023).
Ham, D., Park, H., Hwang, S. & Kim, Ok. Neuromorphic electronics primarily based on copying and pasting the mind. Nat. Electron. 4, 635–644 (2021).
Oumano, M. & Yu, H. A deep studying method to gold nanoparticle quantification in computed tomography. Phys. Med. 87, 83–89 (2021).
Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).
Hsueh, H. T. et al. Machine learning-driven multifunctional peptide engineering for sustained ocular drug supply. Nat. Commun. 14, 2509 (2023).
Castillo-Hair, S. M. & Seelig, G. Machine studying for designing next-generation mRNA therapeutics. Acc. Chem. Res. 55, 24–34 (2022).
Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).
Ebrahimi, S. B., Samanta, D., Kusmierz, C. D. & Mirkin, C. A. Protein transfection through spherical nucleic acids. Nat. Protoc. 17, 327–357 (2022).
Huang, J. et al. Identification of potent antimicrobial peptides through a machine-learning pipeline that mines all the house of peptide sequences. Nat. Biomed. Eng. 7, 797–810 (2023).
O’Callaghan, J. How OpenAI’s text-to-video instrument Sora might change science—and society. Nature 627, 475–476 (2024).
Thorp, H. H. ChatGPT is enjoyable, however not an creator. Science 379, 313 (2023).
Tropsha, A., Mills, Ok. C. & Hickey, A. J. Reproducibility, sharing and progress in nanomaterial databases. Nat. Nanotechnol. 12, 1111–1114 (2017).
de la Iglesia, D. et al. A machine studying method to determine medical trials involving nanodrugs and nanodevices from ClinicalTrials.gov. PLoS ONE 9, e110331 (2014).
Wyrzykowska, E. et al. Representing and describing nanomaterials in predictive nanoinformatics. Nat. Nanotechnol. 17, 924–932 (2022).
Ekins, S. et al. Exploiting machine studying for end-to-end drug discovery and growth. Nat. Mater. 18, 435–441 (2019).
Erion, G. et al. A price-aware framework for the event of AI fashions for healthcare functions. Nat. Biomed. Eng. 6, 1384–1398 (2022).
Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Building of a web-based nanomaterial database by massive knowledge curation and modeling pleasant nanostructure annotations. Nat. Commun. 11, 2519 (2020).
Wang, Y. & Kohane, D. S. Exterior triggering and triggered focusing on methods for drug supply. Nat. Rev. Mater. 2, 17020 (2017).
Ling, Q., Herstine, J. A., Bradbury, A. & Grey, S. J. AAV-based in vivo gene remedy for neurological problems. Nat. Rev. Drug Discov. 22, 789–806 (2023).
Hu, S. et al. A mussel-inspired movie for adhesion to moist buccal tissue and environment friendly buccal drug supply. Nat. Commun. 12, 1689 (2021).