Herman, R. G. Advances in catalytic synthesis and utilization of upper alcohols. Catal. At the moment 55, 233–245 (2000).
Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A. & Pérez-Ramírez, J. Standing and prospects in increased alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1426 (2017).
Ao, M., Pham, G. H., Sunarso, J., Tade, M. O. & Liu, S. Lively facilities of catalysts for increased alcohol synthesis from syngas: a evaluate. ACS Catal. 8, 7025–7050 (2018).
Liu, G., Yang, G., Peng, X., Wu, J. & Tsubaki, N. Latest advances within the routes and catalysts for ethanol synthesis from syngas. Chem. Soc. Rev. 51, 5606–5659 (2022).
Kang, J. et al. Single-pass transformation of syngas into ethanol with excessive selectivity by triple tandem catalysis. Nat. Commun. 11, 827 (2020).
Spivey, J. J. & Egbebi, A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 36, 1514–1528 (2007).
Zeng, Z. et al. CoFe alloy carbide catalysts for increased alcohols synthesis from syngas: evolution of energetic websites and Na selling impact. J. Catal. 405, 430–444 (2022).
Pei, Y.-P. et al. Excessive alcohols synthesis through Fischer–Tropsch response at cobalt steel/carbide interface. ACS Catal. 5, 3620–3624 (2015).
Xiang, Y. & Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 7, 13058 (2016).
Lopez, L. et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: impact of Ok and Fe promoters. Appl. Catal. A 526, 77–83 (2016).
Gupta, M., Smith, M. L. & Spivey, J. J. Heterogeneous catalytic conversion of dry syngas to ethanol and better alcohols on Cu-based catalysts. ACS Catal. 1, 641–656 (2011).
Solar, J., Wan, S., Wang, F., Lin, J. & Wang, Y. Selective synthesis of methanol and better alcohols over Cs/Cu/ZnO/Al2O3 catalysts. Ind. Eng. Chem. Res. 54, 7841–7851 (2015).
Wang, N. et al. Enhanced catalytic efficiency and promotional impact of molybdenum sulfide cluster-derived catalysts for increased alcohols synthesis from syngas. Catal. At the moment 316, 177–184 (2018).
Morrill, M. R. et al. Origins of bizarre alcohol selectivities over combined MgAl oxide-supported Ok/MoS2 catalysts for increased alcohol synthesis from syngas. ACS Catal. 3, 1665–1675 (2013).
Qu, H., He, S., Su, Y., Zhang, Y. & Su, H. MoSe2: a promising non-noble steel catalyst for direct ethanol synthesis from syngas. Gas 281, 118760 (2020).
Hu, J. et al. Edge-rich molybdenum disulfide tailors carbon-chain progress for selective hydrogenation of carbon monoxide to increased alcohols. Nat. Commun. 14, 6808 (2023).
Yang, N. et al. Intrinsic selectivity and construction sensitivity of rhodium catalysts for C2+ oxygenate manufacturing. J. Am. Chem. Soc. 138, 3705–3714 (2016).
Preikschas, P. et al. Tuning the Rh–FeOx interface in ethanol synthesis via formation section research at excessive pressures of synthesis gasoline. ACS Catal. 11, 4047–4060 (2021).
Huang, X. et al. Atomic-scale remark of the steel–promoter interplay in Rh-based syngas-upgrading catalysts. Angew. Chem. Int. Ed. 58, 8596 (2019).
Yang, N. et al. Rh-MnO interface websites shaped by atomic layer deposition promote syngas conversion to increased oxygenates. ACS Catal. 7, 5746–5757 (2017).
Schwartz, V., Campos, A., Egbebi, A., Spivey, J. J. & Overbury, S. H. EXAFS and FT-IR characterization of Mn and Li promoted titania-supported Rh catalysts for CO hydrogenation. ACS Catal. 1, 1298–1306 (2011).
Liu, J. et al. Correlating the diploma of metal-promoter interplay to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. J. Catal. 313, 149–158 (2014).
Wang, J., Zhang, Q. & Wang, Y. Rh-catalyzed syngas conversion to ethanol: research on the marketing impact of FeOx. Catal. At the moment 171, 257–265 (2011).
Han, L., Mao, D., Yu, J., Guo, Q. & Lu, G. C2-oxygenates synthesis via CO hydrogenation on SiO2-ZrO2 supported Rh-based catalyst: the impact of help. Appl. Catal. A 454, 81–87 (2013).
Yu, J. et al. Comparative research on ethanol-based oxygenate synthesis through syngas over Rh–Mn bimetallic catalysts supported on completely different UiO MOFs. Vitality Fuels 36, 11940–11949 (2022).
Carrillo, P., Shi, R., Teeluck, Ok., Senanayake, S. D. & White, M. G. In situ formation of FeRh nanoalloys for oxygenate synthesis. ACS Catal. 8, 7279–7286 (2018).
Pan, X. et al. Enhanced ethanol manufacturing inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007).
Wang, C. et al. Direct conversion of syngas to ethanol inside zeolite crystals. Chem 6, 646–657 (2020).
Xu, D., Zhang, H., Ma, H., Qian, W. & Ying, W. Impact of Ce promoter on Rh-Fe/TiO2 catalysts for ethanol synthesis from syngas. Catal. Commun. 98, 90–93 (2017).
Lin, T. et al. Direct manufacturing of upper oxygenates by syngas conversion over a multifunctional catalyst. Angew. Chem. Int. Ed. 58, 4627–4631 (2019).
Luan, X. et al. Selective conversion of syngas into increased alcohols through a reaction-coupling technique on multifunctional relay catalysts. ACS Catal. 10, 2419–2430 (2020).
Ham, H. et al. Selective ethanol synthesis through multi-step reactions from syngas: ferrierite-based catalysts and fluidized-bed reactor software. Catal. At the moment 303, 93–99 (2018).
Wang, Y., Luo, H., Liang, D. & Bao, X. Totally different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts. J. Catal. 196, 46–55 (2000).
Li, Ok. & Chen, J. G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy. ACS Catal. 9, 7840–7861 (2019).
Li, S. et al. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem. Int. Ed. 62, e202218167 (2023).
Shi, L. et al. Al2O3 nanosheets wealthy in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015).
Chen, X. et al. Regulating coordination quantity in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation response. Nat. Commun. 12, 2664 (2021).
Nellist, P. D. & Pennycook, S. J. In Advances in Imaging and Electron Physics Vol. 113 (ed. Hawkes, P. W.) 147–203 (Elsevier, 2000).
van Deelen, T. W., Hernández Mejía, C. & de Jong, Ok. P. Management of metal-support interactions in heterogeneous catalysts to reinforce exercise and selectivity. Nat. Catal. 2, 955–970 (2019).
Zhou, L. et al. Stabilizing non-iridium energetic websites by non-stoichiometric oxide for acidic water oxidation at excessive present density. Nat. Commun. 14, 7644 (2023).
Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).
Yanguas-Gil, A., Libera, J. A. & Elam, J. W. Modulation of the expansion per cycle in atomic layer deposition utilizing reversible floor functionalization. Chem. Mater. 25, 4849–4860 (2013).
Schumann, M., Grunwaldt, J.-D., Jensen, A. D. & Christensen, J. M. Investigations of mechanism, floor species and help results in CO hydrogenation over Rh. J. Catal. 414, 90–100 (2022).
Preikschas, P. et al. Tuning the Rh-FeOx interface in ethanol synthesis via formation section research at excessive pressures of synthesis gasoline. ACS Catal. 11, 4047–4060 (2021).
Fukuoka, A. et al. Bimetallic promotion of alcohol manufacturing in CO hydrogenation and olefin hydroformylation on RhFe, PtFe, PdFe, and IrFe cluster-derived catalysts. J. Catal. 126, 434–450 (1990).
Boffa, A., Lin, C., Bell, A. T. & Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by steel oxides: the affect of oxide Lewis acidity and reducibility. J. Catal. 149, 149–158 (1994).
Carrillo, P., Shi, R., Senanayake, S. D. & White, M. G. In situ structural research of manganese and iron oxide promoted rhodium catalysts for oxygenate synthesis. Appl. Catal. A 608, 117845 (2020).
Subramani, V. & Gangwal, S. Ok. A evaluate of latest literature to seek for an environment friendly catalytic course of for the conversion of syngas to ethanol. Vitality Fuels 22, 814–839 (2008).
Kwon, Y., Kim, T. Y., Kwon, G., Yi, J. & Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017).
Gogate, M. R. & Davis, R. J. X-ray absorption spectroscopy of an Fe-promoted Rh/TiO2 catalyst for synthesis of ethanol from synthesis gasoline. ChemCatChem 1, 295–303 (2009).
Ichikawa, M., Fukushima, T., Yokoyama, T., Kosugi, N. & Kuroda, H. EXAFS proof for direct rhodium-iron bonding in silica-supported rhodium-iron bimetallic catalysts. J. Phys. Chem. 90, 1222–1224 (1986).
Palomino, R. M., Magee, J. W., Llorca, J., Senanayake, S. D. & White, M. G. The impact of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates. J. Catal. 329, 87–94 (2015).
Wang, J. et al. A extremely selective and steady ZnO-ZrO2 stable answer catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).
Piskorz, W. et al. Periodic DFT research of the tetragonal ZrO2 nanocrystals: equilibrium morphology modeling and atomistic floor hydration thermodynamics. J. Phys. Chem. C 116, 19307–19320 (2012).
Yang, C. et al. Robust digital oxide-support interplay over In2O3/ZrO2 for extremely selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 142, 19523–19531 (2020).
Liu, J.-X., Su, Y., Filot, I. A. W. & Hensen, E. J. M. A linear scaling relation for CO oxidation on CeO2-supported Pd. J. Am. Chem. Soc. 140, 4580–4587 (2018).
Deaven, D. M. & Ho, Ok. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995).
Choi, Y. & Liu, P. Mechanism of ethanol synthesis from syngas on Rh(111). J. Am. Chem. Soc. 131, 13054–13061 (2009).
Gao, J., Mo, X. & Goodwin, J. G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: detailed evaluation of kinetics and mechanism. J. Catal. 268, 142–149 (2009).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953 (1994).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).
Igawa, N. & Ishii, Y. Crystal construction of metastable tetragonal zirconia as much as 1473 Ok. J. Am. Ceram. Soc. 84, 1169–1171 (2001).
Kittel, C., McEuen, P. & McEuen, P. Introduction to Strong State Physics Vol. 8 (Wiley, 1996).
Solar, Ok., Zhao, Y., Su, H.-Y. & Li, W.-X. Drive reversed technique for finding transition states. Theor. Chem. Acc. 131, 1–10 (2012).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal power paths. J. Chem. Phys. 113, 9901–9904 (2000).
Henkelman, G. & Jónsson, H. A dimer technique for locating saddle factors on excessive dimensional potential surfaces utilizing solely first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).