Liu, L. et al. Spin-torque switching with the large spin Corridor impact of tantalum. Science 336, 555–558 (2012).
Haidar, M. et al. A single layer spin–orbit torque nano-oscillator. Nat. Commun. 10, 2362 (2019).
Demidov, V. E. et al. Magnetic nano-oscillator pushed by pure spin present. Nat. Mater. 11, 1028–1031 (2012).
Liu, L., Pai, C.-F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations pushed by the spin Corridor impact in 3-terminal magnetic tunnel junction gadgets. Phys. Rev. Lett. 109, 186602 (2012).
Duan, Z. et al. Nanowire spin torque oscillator pushed by spin orbit torques. Nat. Commun. 5, 5616 (2014).
Litvinenko, A. et al. Ultrafast GHz-range swept-tuned spectrum analyzer with 20 ns temporal decision primarily based on a spin-torque nano-oscillator with a uniformly magnetized ‘free’ layer. Nano Lett. 22, 1874–1879 (2022).
Seifert, T. et al. Environment friendly metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016).
Ando, Okay. et al. Electrical manipulation of spin rest utilizing the spin Corridor impact. Phys. Rev. Lett. 101, 036601 (2008).
Huang, X. et al. Novel spin–orbit torque era at room temperature in an all-oxide epitaxial La0.7Sr0.3MnO3/SrIrO3 system. Adv. Mater. 33, 2008269 (2021).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics within the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).
Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by present. Nature 607, 474–479 (2022).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane present injection. Nature 476, 189–193 (2011).
Petrović, M. D., Mondal, P., Feiguin, A. E., Plecháč, P. & Nikolić, B. Okay. Spintronics meets density matrix renormalization group: quantum spin–torque-driven nonclassical magnetization reversal and dynamical buildup of long-range entanglement. Phys. Rev. X 11, 021062 (2021).
Hache, T. et al. Bipolar spin Corridor nano-oscillators. Appl. Phys. Lett. 116, 192405 (2020).
Hamadeh, A. A. et al. Simultaneous multitone microwave emission by DC-driven spintronic nano-element. Sci. Adv. 9, eadk1430 (2023).
Woo, S. et al. Commentary of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).
Li, P. et al. Cost–spin interconversion in epitaxial Pt probed by spin–orbit torques in a magnetic insulator. Phys. Rev. Mater. 5, 064404 (2021).
Ikebuchi, T., Shiota, Y., Ono, T., Nakamura, Okay. & Moriyama, T. Crystal orientation dependence of spin Corridor angle in epitaxial Pt/FeNi methods. Appl. Phys. Lett. 120, 072406 (2022).
Safranski, C., Solar, J. Z., Xu, J.-W. & Kent, A. D. Planar Corridor pushed torque in a ferromagnet/nonmagnet/ferromagnet system. Phys. Rev. Lett. 124, 197204 (2020).
Pauyac, C. O., Chshiev, M., Manchon, A. & Nikolaev, S. A. Spin Corridor and spin swapping torques in diffusive ferromagnets. Phys. Rev. Lett. 120, 176802 (2018).
Belashchenko, Okay. D., Kovalev, A. A. & van Schilfgaarde, M. Interfacial contributions to spin–orbit torque and magnetoresistance in ferromagnet/heavy-metal bilayers. Phys. Rev. B 101, 020407 (2020).
Hibino, Y. et al. Large charge-to-spin conversion in ferromagnet by way of spin–orbit coupling. Nat. Commun. 12, 6254 (2021).
Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).
Safranski, C. et al. Spin caloritronic nano-oscillator. Nat. Commun. 8, 117 (2017).
Garello, Okay. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).
Dc, M. et al. Commentary of anti-damping spin–orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3. Nat. Mater. 22, 591–598 (2023).
Gibbons, J. et al. Giant unique spin torques in antiferromagnetic iron rhodium. Phys. Rev. Appl. 18, 024075 (2022).
Romera, M. et al. Binding occasions by the mutual synchronization of spintronic nano-neurons. Nat. Commun. 13, 883 (2022).
Bender, S. A. & Tserkovnyak, Y. Thermally pushed spin torques in layered magnetic insulators. Phys. Rev. B 93, 064418 (2016).
Amin, V. P., Haney, P. M. & Stiles, M. D. Interfacial spin–orbit torques. J. Appl. Phys. 128, 151101 (2020).
Gonçalves, A. M. et al. Spin torque ferromagnetic resonance with magnetic area modulation. Appl. Phys. Lett. 103, 172406 (2013).
Safranski, C., Montoya, E. A. & Krivorotov, I. N. Spin–orbit torque pushed by a planar Corridor present. Nat. Nanotechnol. 14, 27–30 (2019).
Duan, Z. et al. Spin-wave modes in permalloy/platinum wires and tuning of the mode damping by spin Corridor present. Phys. Rev. B 90, 024427 (2014).
Ochoa, H., Zarzuela, R. & Tserkovnyak, Y. Self-induced spin-orbit torques in metallic ferromagnets. J. Magn. Magn. Mater. 538, 168262 (2021).
Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator idea of microwave era by spin-polarized present. IEEE Trans. Magn. 45, 1875–1918 (2009).
Demidov, V. E. et al. Management of magnetic fluctuations by spin present. Phys. Rev. Lett. 107, 107204 (2011).
Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405(R) (2019).
Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Corridor impact and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).
Céspedes-Berrocal, D. et al. Present-induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).
Liu, E. et al. Large anomalous Corridor impact in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
Nakatsuji, S., Kiyohara, N. & Higo, T. Giant anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Awad, A. A. et al. Lengthy-range mutual synchronization of spin Corridor nano-oscillators. Nat. Phys. 13, 292–299 (2017).
Hassan, O., Faria, R., Camsari, Okay. Y., Solar, J. Z. & Datta, S. Low-barrier magnet design for environment friendly {hardware} binary stochastic neurons. IEEE Magn. Lett. 10, 1–5 (2019).
Ryu, Okay.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic area partitions. Nat. Nanotechnol. 8, 527–533 (2013).
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Seaside, G. S. D. Present-driven dynamics of chiral ferromagnetic area partitions. Nat. Mater. 12, 611–616 (2013).
Zhang, W. et al. Present-induced area wall movement in a van der Waals ferromagnet Fe3GeTe2. Nat. Commun. 15, 4851 (2024).
Pham, V. T. et al. Quick current-induced skyrmion movement in artificial antiferromagnets. Science 384, 307–312 (2024).
Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions within the presence of utilized present and temperature. Phys. Rev. Lett. 116, 147203 (2016).
Gibbons, J. D., MacNeill, D., Buhrman, R. A. & Ralph, D. C. Reorientable spin course for spin present produced by the anomalous Corridor impact. Phys. Rev. Appl. 9, 064033 (2018).
Bose, A. et al. Commentary of anomalous spin torque generated by a ferromagnet. Phys. Rev. Appl. 9, 064026 (2018).
Solar, C. et al. Area-free switching of perpendicular magnetization by spin Corridor and anomalous Corridor results in ferromagnet–heavy-metal–ferromagnet buildings. Phys. Rev. Appl. 12, 034022 (2019).
Wang, W. et al. Anomalous spin–orbit torques in magnetic single-layer movies. Nat. Nanotechnol. 14, 819–824 (2019).
Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).
Zhu, L., Zhang, X. S., Muller, D. A., Ralph, D. C. & Buhrman, R. A. Commentary of sturdy bulk damping-like spin–orbit torque in chemically disordered ferromagnetic single layers. Adv. Funct. Mater. 30, 2005201 (2020).
Liu, L. et al. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B 101, 220402(R) (2020).
Zheng, Z. et al. Area-free spin–orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient. Nat. Commun. 12, 4555 (2021).
Hibino, Y., Taniguchi, T., Yakushiji, Okay., Kubota, H. & Yuasa, S. Commentary of self-induced spin–orbit torques in Ni–Fe layers with a vertical gradient of magnetization. Phys. Rev. B 109, L180409 (2024).