Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with artificial biology. Science 359, eaad1067 (2018).
Xie, M. & Fussenegger, M. Designing cell perform: meeting of artificial gene circuits for cell biology functions. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).
Cubillos-Ruiz, A. et al. Engineering dwelling therapeutics with artificial biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).
Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human scientific samples by way of amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra283 (2015).
Chang, H.-J. et al. Programmable receptors allow bacterial biosensors to detect pathological biomarkers in scientific samples. Nat. Commun. 12, 5216 (2021).
Kwong, G. A. et al. Artificial biomarkers: a twenty-first century path to early most cancers detection. Nat. Rev. Most cancers 21, 655–668 (2021).
Danino, T. et al. Programmable probiotics for detection of most cancers in urine. Sci. Transl. Med. 7, 289ra284–289ra284 (2015).
Panteli, J. T., Van Dessel, N. & Forbes, N. S. Detection of tumors with fluoromarker-releasing micro organism. Int. J. Most cancers 146, 137–149 (2020).
Cho, J. H., Collins, J. J. & Wong, W. W. Common chimeric antigen receptors for multiplexed and logical management of T cell responses. Cell 173, 1426–1438.e1411 (2018).
Roybal, Ok. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).
Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013).
Kaseniit, Ok. E. et al. Modular, programmable RNA sensing utilizing ADAR modifying in dwelling cells. Nat. Biotechnol. 41, 482–487 (2023).
Kawasaki, S., Fujita, Y., Nagaike, T., Tomita, Ok. & Saito, H. Artificial mRNA gadgets that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res. 45, e117–e117 (2017).
Wagner, T. E. et al. Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nat. Chem. Biol. 14, 1043–1050 (2018).
Mc Cafferty, S. et al. In vivo validation of a reversible small molecule-based swap for artificial self-amplifying mRNA regulation. Mol. Ther. 29, 1164–1173 (2021).
Vlahos, A. E. et al. Protease-controlled secretion and show of intercellular alerts. Nat. Commun. 13, 912 (2022).
Wang, X. et al. A programmable protease-based protein secretion platform for therapeutic functions. Nat. Chem. Biol. 20, 432–442 (2023).
Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in dwelling cells. Science 361, 1252–1258 (2018).
Chen, Z. et al. De novo design of protein logic gates. Science 368, 78 (2020).
Holt, B. A. & Kwong, G. A. Protease circuits for processing organic data. Nat. Commun. 11, 5021 (2020).
Holt, B. A. et al. Dimensionless parameter predicts bacterial prodrug success. Mol. Syst. Biol. 18, e10495 (2022).
Widen, J. C. et al. AND-gate distinction brokers for enhanced fluorescence-guided surgical procedure. Nat. Biomed. Eng. 5, 264–277 (2021).
Holt, B. A. et al. Embracing enzyme promiscuity with activity-based compressed biosensing. Cell Rep. Strategies 3, 100372 (2023).
Zhuang, Q., Holt, B. A., Kwong, G. A. & Qiu, P. Deconvolving multiplexed protease signatures with substrate discount and exercise clustering. PLoS Comput. Biol. 15, e1006909 (2019).
Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection by way of nanosensors of granzyme B exercise. Nat. Biomed. Eng. 3, 281–291 (2019).
Mac, Q. D. et al. Urinary detection of early responses to checkpoint blockade and of resistance to it by way of protease-cleaved antibody-conjugated sensors. Nat. Biomed. Eng. 6, 310–324 (2022).
Werle, M. & Bernkop-Schnurch, A. Methods to enhance plasma half life time of peptide and protein medication. Amino Acids 30, 351–367 (2006).
Diao, L. & Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet. 52, 855–868 (2013).
Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and remedy. Nanomedicine 6, 715–728 (2011).
Kwong, G. A. et al. Mass-encoded artificial biomarkers for multiplexed urinary monitoring of illness. Nat. Biotechnol. 31, 63–70 (2013).
Dall, E. & Brandstetter, H. Mechanistic and structural research on legumain clarify its zymogenicity, distinct activation pathways, and regulation. Proc. Natl Acad. Sci. USA 110, 10940–10945 (2013).
Aggarwal, S. et al. Fibroblast activation protein peptide substrates recognized from human collagen I derived gelatin cleavage websites. Biochemistry 47, 1076–1086 (2008).
Joo, S. H. Cyclic peptides as therapeutic brokers and biochemical instruments. Biomol. Ther. (Seoul) 20, 19–26 (2012).
Nielsen, D. S. et al. Orally absorbed cyclic peptides. Chem. Rev. 117, 8094–8128 (2017).
McKay, C. S. & Finn, M. G. Polyvalent catalysts working on polyvalent substrates: a mannequin for surface-controlled reactivity. Angew. Chem. Int. Ed. 55, 12643–12649 (2016).
Algar, W. R. et al. Proteolytic exercise at quantum dot-conjugates: kinetic evaluation reveals enhanced enzyme exercise and localized interfacial “hopping”. Nano Lett. 12, 3793–3802 (2012).
Chen, P. L. et al. Evaluation of immune signatures in longitudinal tumor samples yields perception into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Most cancers Discov. 6, 827–837 (2016).
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict most cancers immunotherapy response. Nat. Med. 24, 1550–1558 (2018).
Kessenbrock, Ok., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).
Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).
Yap, T. A. et al. Improvement of immunotherapy mixture methods in most cancers. Most cancers Discov. 11, 1368–1397 (2021).
Nguyen, A. et al. Granzyme B nanoreporter for early monitoring of tumor response to immunotherapy. Sci. Adv. 6, eabc2777 (2020).
Zhao, N. et al. In vivo measurement of granzyme proteolysis from activated immune cells with PET. ACS Cent. Sci. 7, 1638–1649 (2021).
Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Major, adaptive, and bought resistance to most cancers immunotherapy. Cell 168, 707–723 (2017).
Smith, B. L. et al. Feasibility examine of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast most cancers in breast conserving surgical procedure. Ann. Surg. Oncol. 27, 1854–1861 (2020).
Whitley, M. J. et al. A mouse-human section 1 co-clinical trial of a protease-activated fluorescent probe for imaging most cancers. Sci. Transl. Med. 8, 320ra324 (2016).
Steinkamp, P. J. et al. A standardized framework for fluorescence-guided margin evaluation for head and neck most cancers utilizing a tumor acidosis delicate optical imaging agent. Mol. Imaging Biol. 23, 809–817 (2021).
Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a pure born killer. Immunol. Rev. 193, 31–38 (2003).
Trapani, J. A. & Sutton, V. R. Granzyme B: pro-apoptotic, antiviral and antitumor features. Curr. Opin. Immunol. 15, 533–543 (2003).
Solar, Q. et al. Immune checkpoint remedy for stable tumours: scientific dilemmas and future tendencies. Sign Transduct. Goal. Ther. 8, 320 (2023).
Vaddepally, R. Ok., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Evaluation of indications of FDA-approved immune checkpoint inhibitors per NCCN tips with the extent of proof. Cancers (Basel) 12, 738 (2020).
Tune, B. X. J. et al. Matrix metalloproteinases in chemoresistance: regulatory roles, molecular interactions, and potential inhibitors. J. Oncol. 2022, 3249766 (2022).
Vyas, D., Laput, G. & Vyas, A. Ok. Chemotherapy-enhanced irritation could result in the failure of remedy and metastasis. OncoTargets Ther. 7, 1015–1023 (2014).
Goodwin, R. A. & Asmis, T. R. Overview of systemic remedy for colorectal most cancers. Clin. Colon Rectal Surg. 22, 251–256 (2009).
Zhang, X. et al. Hepatitis B virus reactivation in most cancers sufferers with constructive hepatitis B floor antigen present process PD-1 inhibition. J. Immunother. Most cancers 7, 322 (2019).
Hutchinson, J. A. et al. Virus-specific reminiscence T cell responses unmasked by immune checkpoint blockade trigger hepatitis. Nat. Commun. 12, 1439 (2021).
Esfahani, Ok. et al. Shifting in direction of personalised remedies of immune-related adversarial occasions. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).
Kyi, C., Hellmann, M. D., Wolchok, J. D., Chapman, P. B. & Postow, M. A. Opportunistic infections in sufferers handled with immunotherapy for most cancers. J. Immunother. Most cancers 2, 19 (2014).
Del Castillo, M. et al. The spectrum of significant infections amongst sufferers receiving immune checkpoint blockade for the therapy of melanoma. Clin. Infect. Dis. 63, 1490–1493 (2016).
Zhu, I. et al. Modular design of artificial receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443.e1416 (2022).
Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: growth and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).
Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).
Su, F.-Y. et al. In vivo mRNA supply to virus-specific T cells by light-induced ligand change of MHC class I antigen-presenting nanoparticles. Sci. Adv. 8, eabm7950 (2022).
Smith, T. T. et al. In situ programming of leukaemia-specific T cells utilizing artificial DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).
Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for efficient remedy. Nat. Med. 24, 541–550 (2018).
Fridman, W. H., Zitvogel, L., Sautès–Fridman, C. & Kroemer, G. The immune contexture in most cancers prognosis and therapy. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).
He, S., Cheng, P. & Pu, Ok. Activatable near-infrared probes for the detection of particular populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).
Kratochwil, C. et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 totally different sorts of most cancers. J. Nucl. Med. 60, 801–805 (2019).
Galluzzi, L., Guilbaud, E., Schmidt, D., Kroemer, G. & Marincola, F. M. Focusing on immunogenic cell stress and demise for most cancers remedy. Nat. Rev. Drug Discov. 23, 445–460 (2024).
Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).
Park, J.-H. et al. Magnetic iron oxide nanoworms for tumor focusing on and imaging. Adv. Mater. 20, 1630–1635 (2008).