Krems, M., Pershin, Y. V. & Di Ventra, M. Ionic memcapacitive results in nanopores. Nano Lett. 10, 2674–2678 (2010).
Wang, D. et al. Hysteresis costs within the dynamic enrichment and depletion of ions in single conical nanopores. ChemElectroChem 5, 3089–3095 (2018).
Klausen, L. H., Fuhs, T. & Dong, M. Mapping floor cost density of lipid bilayers by quantitative floor conductivity microscopy. Nat. Commun. 7, 12447 (2016).
Ebadi, F., Taghavinia, N., Mohammadpour, R., Hagfeldt, A. & Tress, W. Origin of obvious light-enhanced and destructive capacitance in perovskite photo voltaic cells. Nat. Commun. 10, 1574 (2019).
Kumar, R. et al. Unveiling the morphology impact on the destructive capacitance and huge ideality think about perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 12, 34265–34273 (2020).
Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of focus polarization in mesopores results in excessive conductance ionic diodes and excessive efficiency osmotic energy. J. Am. Chem. Soc. 141, 3691–3698 (2019).
Yeh, H.-C., Chang, C.-C. & Yang, R.-J. Electro-osmotic pumping and ion-concentration polarization primarily based on conical nanopores. Phys. Rev. E 91, 062302 (2015).
Melnikov, D. V., Hulings, Z. Ok. & Gracheva, M. E. Focus polarization, floor cost, and ionic present blockade in nanopores. J. Phys. Chem. C 124, 19802–19808 (2020).
Brown, W., Kvetny, M., Yang, R. & Wang, G. Selective ion enrichment and cost storage via transport hysteresis in conical nanopipettes. J. Phys. Chem. C 126, 10872–10879 (2022).
Diard, J.-P. & Montella, C. Diffusion-trapping impedance below restricted linear diffusion situations. J. Electroanal. Chem. 557, 19–36 (2003).
Hatsuki, R., Yujiro, F. & Yamamoto, T. Direct measurement of electrical double layer in a nanochannel by electrical impedance spectroscopy. Microfluid. Nanofluid. 14, 983–988 (2013).
Schiffbauer, J., Park, S. & Yossifon, G. Electrical impedance spectroscopy of microchannel-nanochannel interface gadgets. Phys. Rev. Lett. 110, 204504 (2013).
Ramos‐Barrado, J., Galan Montenegro, P. & Cambón, C. C. A generalized Warburg impedance for a nonvanishing leisure course of. J. Chem. Phys. 105, 2813–2815 (1996).
Ren, H., Zhao, Y., Chen, S. & Yang, L. A comparative research of lumped equal circuit fashions of a lithium battery for state of cost prediction. Int. J. Vitality Res. 43, 7306–7315 (2019).
Bruch, M., Millet, L., Kowal, J. & Vetter, M. Novel technique for the parameterization of a dependable equal circuit mannequin for the exact simulation of a battery cell’s electrical habits. J. Energy Sources 490, 229513 (2021).
Lukács, Z. & Kristóf, T. A generalized mannequin of the equal circuits within the electrochemical impedance spectroscopy. Electrochim. Acta 363, 137199 (2020).
Dierickx, S., Weber, A. & Ivers-Tiffée, E. How the distribution of leisure instances enhances advanced equal circuit fashions for gas cells. Electrochim. Acta 355, 136764 (2020).
Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. In the direction of an understanding of induced-charge electrokinetics at massive utilized voltages in concentrated options. Adv. Colloid Interface Sci. 152, 48–88 (2009).
García-Sánchez, P., Ramos, A., Gonzalez, A., Inexperienced, N. G. & Morgan, H. Move reversal in traveling-wave electrokinetics: an evaluation of forces as a consequence of ionic focus gradients. Langmuir 25, 4988–4997 (2009).
Biesheuvel, P. & Van Soestbergen, M. Counterion quantity results in combined electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007).
Mishchuk, N. A. Focus polarization of interface and non-linear electrokinetic phenomena. Adv. Colloid Interface Sci. 160, 16–39 (2010).
Lan, W.-J., Holden, D. A. & White, H. S. Strain-dependent ion present rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133, 13300–13303 (2011).
Luo, L., Holden, D. A. & White, H. S. Adverse differential electrolyte resistance in a solid-state nanopore ensuing from electroosmotic move bistability. ACS Nano 8, 3023–3030 (2014).
Yusko, E. C., An, R. & Mayer, M. Electroosmotic move can generate ion present rectification in nano- and micropores. ACS Nano 4, 477–487 (2010).
Smeets, R. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA 105, 417–421 (2008).
Wang, D. & Wang, G. Dynamics of ion transport and electrical double layer in single conical nanopores. J. Electroanal. Chem. 779, 39–46 (2016).
Wen, C. et al. Generalized noise research of solid-state nanopores at low frequencies. ACS Sens. 2, 300–307 (2017).
Bazant, M. Z., Thornton, Ok. & Ajdari, A. Diffuse-charge dynamics in electrochemical methods. Phys. Rev. E 70, 021506 (2004).
Zhang, L.-X., Cao, X.-H., Cai, W.-P. & Li, Y.-Q. Observations of the impact of confined house on fluorescence and diffusion properties of molecules in single conical nanopore channels. J. Fluoresc. 21, 1865–1870 (2011).
Alvarez, O. & Latorre, R. Voltage-dependent capacitance in lipid bilayers created from monolayers. Biophys. J. 21, 1–17 (1978).
Lastra, L. S., Bandara, Y., Nguyen, M., Farajpour, N. & Freedman, Ok. J. On the origins of conductive pulse sensing inside a nanopore. Nat. Commun. 13, 2186 (2022).
Carlsen, A. T., Zahid, O. Ok., Ruzicka, J., Taylor, E. W. & Corridor, A. R. Deciphering the conductance blockades of DNA translocations via solid-state nanopores. ACS Nano 8, 4754–4760 (2014).
Chau, C. et al. Probing RNA conformations utilizing a polymer–electrolyte solid-state nanopore. ACS Nano 16, 20075–20085 (2022).
Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore. Nano Lett. 20, 5553–5561 (2020).
Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing. Nano Lett. 18, 6084–6093 (2018).
Al Sulaiman, D., Gatehouse, A., Ivanov, A. P., Edel, J. B. & Ladame, S. Size-dependent, single-molecule evaluation of brief double-stranded DNA fragments via hydrogel-filled nanopores: a possible instrument for dimension profiling cell-free DNA. ACS Appl. Mater. Interfaces 13, 26673–26681 (2021).
Zhang, Y. et al. Ionic present modulation from DNA translocation via nanopores below excessive ionic energy and focus gradients. Nanoscale 9, 930–939 (2017).