5.7 C
United States of America
Thursday, April 3, 2025

Addressing the challenges of infectious bone defects: a evaluate of latest advances in bifunctional biomaterials | Journal of Nanobiotechnology


  • Micheletti C, Hurley A, Gourrier A, Palmquist A, Tang T, Shah FA, Grandfield Ok. Bone mineralorganization on the mesoscale: a evaluate of mineral ellipsoids in bone and at bone interfaces. Acta Biomater. 2022;142:1–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive biomaterials forfacilitating bone defect restore below pathological circumstances. Adv Sci (Weinh). 2023;10: e2204502.

    PubMed 

    Google Scholar
     

  • Liu Z, Yuan X, Liu M, Fernandes G, Zhang Y, Yang S, Ionita CN, Yang S. Antimicrobial peptide mixed with BMP2-modified mesenchymal stem cells promotes calvarial restore in an osteolytic mannequin. Mol Ther. 2018;26:199–207.

    CAS 
    PubMed 

    Google Scholar
     

  • Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissueregenerative therapies. Biomaterials. 2018;185:240–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructivesurgeon’s viewpoint. J Cell Mol Med. 2006;10:7–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Jiang Y, Shang Z, Zhao B, Jiao M, Liu W, Cheng M, Zhai B, et al. Biodegradable metals forbone defect restore: a scientific evaluate and meta-analysis based mostly on animal research. Bioact Mater. 2021;6:40274052.


    Google Scholar
     

  • Wu Z, Pu P, Su Z, Zhang X, Nie L, Chang Y. Schwann cell-derived exosomes promote boneregeneration and restore by enhancing the organic exercise of porous Ti6Al4V scaffolds. Biochem Biophys Res Commun. 2020;531:559–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Ansari M. Bone tissue regeneration: biology, methods and interface research. Prog Biomater. 2019;8:223–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhou J, Wu JL, Ma JC, Wang H, Wen J, Huang S, Lee M, et al. Intrinsic antibacterial andosteoinductive sterosomes promote contaminated bone therapeutic. J Management Launch. 2023;354:713–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Aragon J, Feoli S, Irusta S, Mendoza G. Composite scaffold obtained by electro-hydrodynamictechnique for an infection prevention and remedy in bone restore. Int J Pharm. 2019;557:162–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Klein C, Monet M, Barbier V, Vanlaeys A, Masquelet AC, Gouron R, Mentaverri R. The Masquelettechnique: present ideas, animal fashions, and views. J Tissue Eng Regen Med. 2020;14:1349–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu XX, Xiu ZZ, Li GC, Zhang JY, Shu LJ, Chen Z, Li H, Zou QF, et al. Effectiveness of transversetibial bone transport in remedy of diabetic foot ulcer: a scientific evaluate and meta-analysis. Entrance Endocrinol (Lausanne). 2022;13:1095361.

    PubMed 

    Google Scholar
     

  • Catagni MA, Azzam W, Guerreschi F, Lovisetti L, Poli P, Khan MS, Di Giacomo LM. Trifocal versusbifocal bone transport in remedy of lengthy segmental tibial bone defects. Bone Joint J. 2019;101-B:162–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Ok, Zhang H, Maimaiti X, Yusufu A. Bifocal versus trifocal bone transport for the administration oftibial bone defects brought on by fracture-related an infection: a meta-analysis. J Orthop Surg Res. 2023;18:140.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kashirina A, Yao Y, Liu Y, Leng J. Biopolymers as bone substitutes: a evaluate. Biomater Sci. 2019;7:3961–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect restore: a evaluate. Bioact Mater. 2017;2:224–47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed KR, Beherei HH, El-Rashidy ZM. In vitro examine of nano-hydroxyapatite/chitosan-gelatin composites for bio-applications. J Adv Res. 2014;5:201–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basicscience and scientific developments in fracture therapeutic. Organogenesis. 2012;8:114–24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bonegrafting. J Am Acad Orthop Surg. 2005;13:77–86.

    PubMed 

    Google Scholar
     

  • Agarwal R, Garcia AJ. Biomaterial methods for engineering implants for enhanced osseointegrationand bone restore. Adv Drug Deliv Rev. 2015;94:53–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou J, Zhang Z, Joseph J, Zhang X, Ferdows BE, Patel DN, Chen W, Banfi G, et al. Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Exploration (Beijing). 2021;1:20210011.

    PubMed 

    Google Scholar
     

  • Giordani C, Matacchione G, Giuliani A, Valli D, Scarpa ES, Antonelli A, Sabbatinelli J, Giacchetti G, et al. Professional-osteogenic and anti inflammatory synergistic impact of orthosilicic acid, vitamin K2, curcumin, polydatin and quercetin mixture in younger and senescent bone marrow-derived mesenchymal stromal cells. Int J Mol Sci. 2023;24:8820.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Y, Cui C, Rosen CJ, Sato T, Xu R, Li P, Wei X, Bi R, et al. Klotho in Osx(+)-mesenchymal progenitors exerts pro-osteogenic and anti inflammatory results throughout mandibular alveolar bone formation and restore. Sign Transduct Goal Ther. 2022;7:155.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egawa S, Hirai Ok, Matsumoto R, Yoshii T, Yuasa M, Okawa A, Sugo Ok, Sotome S. Efficacy of antibiotic-loaded hydroxyapatite/collagen composites depends on adsorbability for treating Staphylococcus aureus osteomyelitis in rats. J Orthop Res. 2020;38:843–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Alegrete N, Sousa SR, Peleteiro B, Monteiro FJ, Gutierres M. Native antibiotic supply ceramic bone substitutes for the remedy of contaminated bone cavities and bone regeneration: a scientific evaluate on what we’ve realized from animal fashions. Supplies (Basel). 2023;16:2387.

    CAS 
    PubMed 

    Google Scholar
     

  • Mariano LC, Fernandes MHR, Gomes PS. Antimicrobial biomaterials for the therapeutic of contaminated bonetissue: a scientific evaluate of microtomographic information on experimental animal fashions. J Funct Biomater. 2022;13:193.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hempel U, Matthaus C, Preissler C, Moller S, Hintze V, Dieter P. Synthetic matrices with high-sulfatedglycosaminoglycans and collagen are anti-inflammatory and pro-osteogenic for human mesenchymal stromal cells. J Cell Biochem. 2014;115:1561–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones JR. Reprint of: evaluate of bioactive glass: from hench to hybrids. Acta Biomater. 2015;23(Suppl):S53-82.

    PubMed 

    Google Scholar
     

  • Chotchindakun Ok, Pekkoh J, Ruangsuriya J, Zheng Ok, Unalan I, Boccaccini AR. Fabrication and characterization of cinnamaldehyde-loaded mesoporous bioactive glass nanoparticles/PHBV-based microspheres for stopping bacterial an infection and selling bone tissue regeneration. Polymers (Basel). 2021;13:1794.

    CAS 
    PubMed 

    Google Scholar
     

  • Andrzejowski P, Giannoudis PV. The ‘diamond idea’ for lengthy bone non-union administration. J Orthop Traumatol. 2019;20:21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claes L, Recknagel S, Ignatius A. Fracture therapeutic below wholesome and inflammatory circumstances. Nat Rev Rheumatol. 2012;8:133–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Marsell R, Einhorn TA. The biology of fracture therapeutic. Damage. 2011;42:551–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the inflammatory response and bone therapeutic. Entrance Endocrinol (Lausanne). 2020;11:386.

    PubMed 

    Google Scholar
     

  • Walters G, Pountos I, Giannoudis PV. The cytokines and micro-environment of fracture haematoma: present proof. J Tissue Eng Regen Med. 2018;12:e1662–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T. Systemic irritation and fracture therapeutic. J Leukoc Biol. 2011;89:669–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Segaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, et al. Interleukin-34 promotes tumor development and metastatic course of in osteosarcoma by way of induction of angiogenesis and macrophage recruitment. Int J Most cancers. 2015;137:73–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforminggrowth issue beta superfamily throughout murine fracture therapeutic. J Bone Miner Res. 2002;17:513–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, et al. The immune microenvironment incartilage harm and restore. Acta Biomater. 2022;140:23–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, Abutbul S, Huszar M, et al. The position ofIL-1beta within the early tumor cell-induced angiogenic response. J Immunol. 2013;190:3500–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Coughlin BA, Trombley BT, Mohr S. Interleukin-6 (IL-6) mediates safety towards glucose toxicityin human Muller cells through activation of VEGF-A signaling. Biochem Biophys Res Commun. 2019;517:227–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Huang Y, Huang Z, Zhang R, Wang H, Huang D. FTY-720P suppresses osteoclast formation by regulating expression of interleukin-6 (IL-6), interleukin-4 (IL-4), and matrix metalloproteinase 2 (MMP2). Med Sci Monit. 2016;22:2187–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komi DEA, Redegeld FA. Function of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. 2020;58:313–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP. Callusmineralization and maturation are delayed throughout fracture therapeutic in interleukin-6 knockout mice. Bone. 2007;41:928–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, et al. Exosomes from TNF alpha-treated human gingiva-derived MSCs improve M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Patil AS, Sable RB, Kothari RM. An replace on reworking development factor-beta (TGF-beta): sources, sorts, capabilities and scientific applicability for cartilage/bone therapeutic. J Cell Physiol. 2011;226:3094–103.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao P, Xiao L, Peng J, Qian YQ, Huang CC. Exosomes derived from bone marrow mesenchymal stemcells enhance osteoporosis by way of selling osteoblast proliferation through MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3962–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, Zhang Y, Xiao L, Lu H, Ma Y, Liu Q, Wang X. Floor engineering of titania nanotubesincorporated with double-layered extracellular vesicles to modulate irritation and osteogenesis. Regen Biomater. 2021;8:rbab010.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O’Keefe RJ, Awad HA, et al. NOTCH signalingin skeletal progenitors is vital for fracture restore. J Clin Make investments. 2016;126:1471–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su Z, Li J, Lin J, Li Z, Che Y, Zhang Z, Zheng G, Ye G, et al. TNF-alpha-induced KAT2A impedes BMMSC quiescence by mediating succinylation of the mitophagy-related protein VCP. Adv Sci (Weinh). 2024;11: e2303388.

    PubMed 

    Google Scholar
     

  • Karnes JM, Daffner SD, Watkins CM. A number of roles of tumor necrosis factor-alpha in fracturehealing. Bone. 2015;78:87–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang B, Liu N, Shi H, Wu H, Gao Y, He H, Gu B, Liu H. Excessive glucose microenvironments inhibit theproliferation and migration of bone mesenchymal stem cells by activating GSK3beta. J Bone Miner Metab. 2016;34:140–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhong Q, Wang D, Mai H, Chen R, Xu Y, Lei M, Xie J, Tang Z, et al. Injectable thermo-responsive poloxamer hydrogel/methacrylate gelatin microgels stimulates bone regeneration by way of biomimetic programmed launch of SDF-1a and IGF-1. Int J Biol Macromol. 2024;271: 132742.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Chen Y, Liu Y, Zhang J, Kang Q, Ho Ok, Chai Y, Li G. Impact of SDF-1/Cxcr4 signaling antagonist AMD3100 on bone mineralization in distraction osteogenesis. Calcif Tissue Int. 2017;100: 641652.


    Google Scholar
     

  • Yang F, Xue F, Guan J, Zhang Z, Yin J, Kang Q. Stromal-cell-derived issue (SDF) 1-alpha overexpression promotes bone regeneration by osteogenesis and angiogenesis in osteonecrosis of the femoral head. Cell Physiol Biochem. 2018;46:2561–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Lauer A, Wolf P, Mehler D, Gotz H, Ruzgar M, Baranowski A, Henrich D, Rommens PM, et al. Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration. Int J Mol Sci. 2020;21:2175.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toosi S, Behravan J. Osteogenesis and bone transforming: a concentrate on development components and bioactivepeptides. BioFactors. 2020;46:326–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Li X, Li J, Zhong L, Chen X, Chen S. SDF-1 mediates mesenchymal stem cell recruitmentand migration through the SDF-1/CXCR4 axis in bone defect. J Bone Miner Metab. 2021;39:126–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Bernhard JC, Marolt Presen D, Li M, Monforte X, Ferguson J, Leinfellner G, Heimel P, Betti SL, et al. Results of endochondral and intramembranous ossification pathways on bone tissue formation and vascularization in human tissue-engineered grafts. Cells. 2022;11:3070.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blumer MJF. Bone tissue and histological and molecular occasions throughout growth of the longbones. Ann Anat. 2021;235: 151704.

    PubMed 

    Google Scholar
     

  • Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55:308–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Qiu M, Li C, Cai Z, Li C, Yang Ok, Tulufu N, Chen B, Cheng L, et al. 3D biomimetic calcified cartilaginous callus that induces kind H vessels formation and osteoclastogenesis. Adv Sci (Weinh). 2023;10: e2207089.

    PubMed 

    Google Scholar
     

  • Ghiasi MS, Chen JE, Rodriguez EK, Vaziri A, Nazarian A. Computational modeling of human bonefracture therapeutic affected by completely different circumstances of preliminary therapeutic stage. BMC Musculoskelet Disord. 2019;20:562.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-beta and BMP signaling inbone and cartilage growth, homeostasis and illness. Cell Res. 2024;34:101–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Icer MA, Gezmen-Karadag M. The a number of capabilities and mechanisms of osteopontin. Clin Biochem. 2018;59:17–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Li JJ, Ebied M, Xu J, Zreiqat H. Present approaches to bone tissue engineering: the interfacebetween biology and engineering. Adv Healthc Mater. 2018;7: e1701061.

    PubMed 

    Google Scholar
     

  • Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone transforming. Bone Res. 2022;10:16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Y, Wu S, Li Y, Crane JL. Kind H blood vessels in bone modeling and transforming. Theranostics. 2020;10:426–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gelalis ID, Politis AN, Arnaoutoglou CM, Korompilias AV, Pakos EE, Vekris MD, Karageorgos A, Xenakis TA. Diagnostic and remedy modalities in nonunions of the femoral shaft: a evaluate. Damage. 2012;43:980–8.

    PubMed 

    Google Scholar
     

  • Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture therapeutic within the aged: a evaluate. Maturitas. 2016;92:49–55.

    PubMed 

    Google Scholar
     

  • Kim H, Kim DH, Kim DM, Kholinne E, Lee ES, Alzahrani WM, Kim JW, Jeon IH, et al. Do nonsteroidal anti-inflammatory or COX-2 inhibitor medication improve the nonunion or delayed union charges after fracture surgical procedure?: A propensity-score-matched examine. J Bone Joint Surg Am. 2021;103:1402–10.

    PubMed 

    Google Scholar
     

  • Bell JM, Shields MD, Watters J, Hamilton A, Beringer T, Elliott M, Quinlivan R, Tirupathi S, et al. Interventions to forestall and deal with corticosteroid-induced osteoporosis and stop osteoporotic fractures in Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2017;1:10899.


    Google Scholar
     

  • Sumaiya Ok, Langford D, Natarajaseenivasan Ok, Shanmughapriya S. Macrophage migration inhibitoryfactor (MIF): a multifaceted cytokine regulated by genetic and physiological methods. Pharmacol Ther. 2022;233: 108024.

    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi T, Onodera S, Kondo E, Tohyama H, Fujiki H, Yokoyama A, Yasuda Ok. Impaired fracturehealing in macrophage migration inhibitory factor-deficient mice. Osteoporos Int. 2011;22:1955–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Nagasawa Y, Takei M, Iwata M, Nagatsuka Y, Tsuzuki H, Imai Ok, Imadome KI, Fujiwara S, et al. Human osteoclastogenesis in Epstein-Barr virus-induced erosive arthritis in humanized NOD/Shi-scid/IL2Rgammanull mice. PLoS ONE. 2021;16: e0249340.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Han P, Qi X, Li F, Li M, Fan L, Zhang H, Zhang X, et al. Bcl-2 enhances chimeric antigen receptor T cell persistence by decreasing activation-induced apoptosis. Cancers (Basel). 2021;13:197.

    CAS 
    PubMed 

    Google Scholar
     

  • Kovanen PE, Leonard WJ. Cytokines and immunodeficiency ailments: vital roles of the gamma(c)dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Oei L, Rivadeneira F, Zillikens MC, Oei EH. Diabetes, diabetic problems, and fracture danger. Curr Osteoporos Rep. 2015;13:106–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamoto Ok. Regulation of bone by IL-17-producing T cells. Nihon Rinsho Meneki Gakkai Kaishi. 2017;40:361–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. Function of TNF-alpha in early-stagefracture therapeutic below regular and diabetic circumstances. Comput Strategies Progr Biomed. 2022;213: 106536.


    Google Scholar
     

  • Lin WM, Yuan Q. Newest analysis findings on immune microenvironment regulation in jaw bone associated ailments. Sichuan Da Xue Xue Bao Yi Xue Ban. 2022;53:528–31.

    PubMed 

    Google Scholar
     

  • Dar HY, Perrien DS, Pal S, Stoica A, Uppuganti S, Nyman JS, Jones RM, Weitzmann MN, et al. Callusgammadelta T cells and microbe-induced intestinal Th17 cells enhance fracture therapeutic in mice. J Clin Make investments. 2023;133: e166577.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lisowska B, Kosson D, Domaracka Ok. Lights and shadows of NSAIDs in bone therapeutic: the position ofprostaglandins in bone metabolism. Drug Des Devel Ther. 2018;12:1753–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marquez-Lara A, Hutchinson ID, Nunez F Jr, Smith TL, Miller AN. Nonsteroidal anti-inflammatory medication and bone-healing: a scientific evaluate of analysis high quality. JBJS Rev. 2016;4: e4.

    PubMed 

    Google Scholar
     

  • Lisowska B, Kosson D, Domaracka Ok. Positives and negatives of nonsteroidal anti-inflammatory drugsin bone therapeutic: the results of those medication on bone restore. Drug Des Devel Ther. 2018;12:1809–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geusens P, Emans PJ, de Jong JJ, van den Bergh J. NSAIDs and fracture therapeutic. Curr Opin Rheumatol. 2013;25:524–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol. 2018;61:R75–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okada Ok, Kawao N, Nakai D, Wakabayashi R, Horiuchi Y, Okumoto Ok, Kurashimo S, Takafuji Y, et al. Function of macrophages and plasminogen activator inhibitor-1 in delayed bone restore induced by glucocorticoids in mice. Int J Mol Sci. 2022;23:478.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman SB, Maruyama M. Irritation, bone therapeutic and osteonecrosis: from bedside to bench. J Inflamm Res. 2020;13:913–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory processes affecting bone well being and restore. Curr Osteoporos Rep. 2023;21:842–53.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luthje FL, Skovgaard Ok, Jensen HE, Blirup-Plum SA, Henriksen NL, Aalbaek B, Jensen LK. Receptor activator of nuclear issue kappa-B ligand will not be regulated throughout continual osteomyelitis in pigs. J Comp Pathol. 2020;179:7–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Masters EA, Ricciardi BF, Bentley KLM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletalinfections: microbial pathogenesis, immunity and scientific administration. Nat Rev Microbiol. 2022;20:385–400.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Meng M, Li M, Guan X, Liu J, Gao X, Solar Q, Li J, et al. Integrin alpha5beta1, as a receptor of fibronectin, binds the FbaA protein of group A Streptococcus to provoke autophagy throughout an infection. SmBio. 2020;11:10.


    Google Scholar
     

  • Wen Q, Gu F, Sui Z, Su Z, Yu T. The method of osteoblastic an infection by Staphylococcus aureus. Int J Med Sci. 2020;17:1327–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus an infection. BMC Microbiol. 2014;14:207.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: relationship and consequencesin osteomyelitis. Entrance Cell Infect Microbiol. 2015;5:85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu C, Wang J, Cheng T, Li Q, Shen H, Qin H, Cheng M, Zhang X. The potential position of accelerating therelease of mouse beta-defensin-14 within the remedy of osteomyelitis in mice: a major examine. PLoS ONE. 2014;9: e86874.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu B, Pacureanu A, Olivier C, Cloetens P, Peyrin F. Evaluation of the human bone lacuno-canalicularnetwork on the nanoscale and affect of spatial decision. Sci Rep. 2020;10:4567.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masters EA, Salminen AT, Begolo S, Luke EN, Barrett SC, Overby CT, Gill AL, de Mesy Bentley KL, et al. An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacunocanalicular community throughout continual osteomyelitis. Nanomedicine. 2019;21:102039.

    CAS 
    PubMed 

    Google Scholar
     

  • Masters EA, de Mesy Bentley KL, Gill AL, Hao SP, Galloway CA, Salminen AT, Man DR, McGrath JL, et al. Identification of penicillin binding protein 4 (PBP4) as a vital issue for Staphylococcus aureus bone invasion throughout osteomyelitis in mice. PLoS Pathog. 2020;16: e1008988.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoller SD, Hegde V, Burke ZDC, Park HY, Ishmael CR, Blumstein GW, Sheppard W, Hamad C, et al. Evading the host response: Staphylococcus “hiding” in cortical bone canalicular system causes elevated bacterial burden. Bone Res. 2020;8:43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masters EA, Muthukrishnan G, Ho L, Gill AL, de Mesy Bentley KL, Galloway CA, McGrath JL, Awad HA, et al. Staphylococcus aureus cell wall biosynthesis modulates bone invasion and osteomyelitis pathogenesis. Entrance Microbiol. 2021;12: 723498.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schilcher Ok, Horswill AR. Staphylococcal biofilm growth: construction, regulation, and remedy methods. Microbiol Mol Biol Rev. 2020;84:10.


    Google Scholar
     

  • Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani Ok, Ishikawa M, et al. Evolving ideas in bone an infection: redefining “biofilm”, “acute vs. continual osteomyelitis”, “the immune proteome” and “native antibiotic remedy.” Bone Res. 2019;7:20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a posh developmental organism. Mol Microbiol. 2017;104:365–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui YC, Wu Q, Teh SW, Peli A, Bu G, Qiu YS, Benelli G, Kumar SS. Bone breaking infections—a concentrate on bacterial and mosquito-borne viral infections. Microb Pathog. 2018;122:130–6.

    PubMed 

    Google Scholar
     

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, et al. Bacterial biofilm and related infections. J Chin Med Assoc. 2018;81:7–11.

    PubMed 

    Google Scholar
     

  • Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing: constancy in bioremediation know-how. Biotechnol Genet Eng Rev. 2016;32:43–73.

    PubMed 

    Google Scholar
     

  • Lister JL, Horswill AR. Staphylococcus aureus biofilms: latest developments in biofilm dispersal. Entrance Cell Infect Microbiol. 2014;4:178.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng AG, DeDent AC, Schneewind O, Missiakas D. A play in 4 acts: Staphylococcus aureus abscess formation. Traits Microbiol. 2011;19:225–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malachowa N, Kobayashi SD, Porter AR, Braughton KR, Scott DP, Gardner DJ, Missiakas DM, Schneewind O, et al. Contribution of Staphylococcus aureus coagulases and clumping issue a to abscess formation in a rabbit mannequin of pores and skin and delicate tissue an infection. PLoS ONE. 2016;11: e0158293.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farnsworth CW, Schott EM, Jensen SE, Zukoski J, Benvie AM, Refaai MA, Kates SL, Schwarz EM, et al. Adaptive upregulation of clumping issue A (ClfA) by Staphylococcus aureus within the overweight, kind 2 diabetic host mediates elevated virulence. Infect Immun. 2017;85:10.


    Google Scholar
     

  • Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol. 2015;185:1518–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofstee MI, Riool M, Terjajevs I, Thompson Ok, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Three-dimensional in vitro Staphylococcus aureus abscess communities show antibiotic tolerance and safety from neutrophil clearance. Infect Immun. 2020;88:10.


    Google Scholar
     

  • Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone growth and restore. Nat Rev Mol Cell Biol. 2020;21:696–711.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson CT, Sok MCP, Martin KE, Kalelkar PP, Caplin JD, Botchwey EA, Garcia AJ. Lysostaphin and BMP-2 co-delivery reduces S. aureus an infection and regenerates critical-sized segmental bone defects. Sci Adv. 2019;5:1228.


    Google Scholar
     

  • Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regenerationstrategies: engineered scaffolds, bioactive molecules and stem cells present stage and future views. Biomaterials. 2018;180:143–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, et al. Neutrophils escort circulating tumour cells to allow cell cycle development. Nature. 2019;566:553–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider AH, Taira TM, Publio GA, da Silva D, Donate Yabuta PB, Dos Santos JC, Machado CC, de Souza FF, et al. Neutrophil extracellular traps mediate bone erosion in rheumatoid arthritis by enhancing RANKL-induced osteoclastogenesis. Br J Pharmacol. 2024;181:429–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, et al. Oxidative stress and irritation in osteoporosis: molecular mechanisms concerned and the connection with microRNAs. Int J Mol Sci. 2023;24:3772.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugisaki R, Miyamoto Y, Yoshimura Ok, Sasa Ok, Kaneko Ok, Tanaka M, Itose M, Inoue S, et al. Doable involvement of elastase in enhanced osteoclast differentiation by neutrophils by way of degradation of osteoprotegerin. Bone. 2020;132: 115216.

    CAS 
    PubMed 

    Google Scholar
     

  • Kong L, Smith W, Hao D. Overview of RAW2647 for osteoclastogensis examine: phenotype andstimuli. J Cell Mol Med. 2019;23:3077–87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Liu Ok, Qin Y, Chen S, Guan G, Huang Y, Chen Y, Mo Z. Results of pereskia aculeate miller petroleum ether extract on full freund’s adjuvant-induced rheumatoid arthritis in rats and its potential molecular mechanisms. Entrance Pharmacol. 2022;13: 869810.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kral-Pointner JB, Haider P, Szabo PL, Salzmann M, Brekalo M, Schneider KH, Schrottmaier WC, Kaun C, et al. Lowered monocyte and neutrophil infiltration and activation by P-selectin/CD62P inhibition enhances thrombus decision in mice. Arterioscler Thromb Vasc Biol. 2024;44:954–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nightingale TD, McCormack JJ, Grimes W, Robinson C, Lopes da Silva M, White IJ, Vaughan A, Cramer LP, et al. Tuning the endothelial response: differential launch of exocytic cargos from Weibel-Palade our bodies. J Thromb Haemost. 2018;16:1873–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mussbacher M, Derler M, Basilio J, Schmid JA. NF-kappaB in monocytes and macrophages—an inflammatory grasp regulator in multitalented immune cells. Entrance Immunol. 2023;14:1134661.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, Awad HA, Yanoso L, et al. Ubiquitinligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by selling proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem. 2008;283:23084–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande S, James AW, Blough J, Donneys A, Wang SC, Cederna PS, Buchman SR, Levi B. Reconciling the results of inflammatory cytokines on mesenchymal cell osteogenic differentiation. J Surg Res. 2013;185:278–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel Ok, et al. Osteoclasts recycle through osteomorphs throughout RANKL-stimulated bone resorption. Cell. 2021;184(1330–1347): e1313.


    Google Scholar
     

  • Kim HJ, Kang WY, Seong SJ, Kim SY, Lim MS, Yoon YR. Follistatin-like 1 promotes osteoclastformation through RANKL-mediated NF-kappaB activation and M-CSF-induced precursor proliferation. Cell Sign. 2016;28:1137–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang W, Jin Y, Zhang S, Ding Y, Huo Ok, Yang J, Zhao L, Nian B, et al. PGE2 prompts EP4 insubchondral bone osteoclasts to manage osteoarthritis. Bone Res. 2022;10:27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Somayaji SN, Ritchie S, Sahraei M, Marriott I, Hudson MC. Staphylococcus aureus induces expressionof receptor activator of NF-kappaB ligand and prostaglandin E2 in contaminated murine osteoblasts. Infect Immun. 2008;76:5120–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-based biomaterial scaffoldsfor the restore of contaminated bone defects. Entrance Bioeng Biotechnol. 2022;10: 899760.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi H, Chen G, He Y, Chen G, Tu H, Liu X, Yan J, Wang X. 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone restore. Int J Nanomedicine. 2020;15:5825–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Zhang Q, Li H, Wei Q, Zhao X, Chen F. Elastin-like polypeptide modified silk fibroin porousscaffold promotes osteochondral restore. Bioact Mater. 2021;6:589–601.

    CAS 
    PubMed 

    Google Scholar
     

  • Hickok NJ, Shapiro IM. Immobilized antibiotics to forestall orthopaedic implant infections. Adv Drug Deliv Rev. 2012;64:1165–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zegre M, Barros J, Ribeiro IAC, Santos C, Caetano LA, Goncalves L, Monteiro FJ, Ferraz MP, et al. Poly(DL-lactic acid) scaffolds as a bone focusing on platform for the co-delivery of antimicrobial brokers towards S. aureusC. albicans blended biofilms. Int J Pharm. 2022;622:121832.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial perform for bonetissue engineering: a evaluate. Bioact Mater. 2022;18:383–98.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their bodily and chemical properties. Nanoscale Res Lett. 2018;13:44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaikh S, Nazam N, Rizvi SMD, Ahmad Ok, Baig MH, Lee EJ, Choi I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20:2468.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slavin YN, Asnis J, Hafeli UO, Bach H. Steel nanoparticles: understanding the mechanisms behindantibacterial exercise. J Nanobiotechnology. 2017;15:65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical purposes of reactive oxygen speciesgeneration by metallic nanoparticles. Supplies (Basel). 2020;14:53.

    PubMed 

    Google Scholar
     

  • Teixeira ABV, de Castro DT, Schiavon MA, Dos Reis AC. Cytotoxicity and launch ions of endodonticsealers integrated with a silver and vanadium base nanomaterial. Odontology. 2020;108:661–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Spirescu VA, Chircov C, Grumezescu AM, Vasile BS, Andronescu E. Inorganic nanoparticles andcomposite movies for antimicrobial therapies. Int J Mol Sci. 2021;22:4595.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Li X, Xiao D, Zhao Q, Chen S, Yang F, Liu J, Duan Ok. Cu(2+) launch from polylactic acid coating on titanium reduces bone implant-related an infection. J Funct Biomater. 2022;13:78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Ai F, Miao X, Liao H, Li F, Liu M, Yu F, Dong L, et al. “The return of ceramic implants”: rosestem impressed twin layered modification of ceramic scaffolds with improved mechanical and anti-infective properties. Mater Sci Eng C Mater Biol Appl. 2018;93:873–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Adv Sci (Weinh). 2018;5:1700527.

    PubMed 

    Google Scholar
     

  • Kjalarsdottir L, Dyrfjord A, Dagbjartsson A, Laxdal EH, Orlygsson G, Gislason J, Einarsson JM, et al. Bone transforming impact of a chitosan and calcium phosphate-based composite. Regen Biomater. 2019;6:241–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shariatinia Z. Carboxymethyl chitosan: properties and biomedical purposes. Int J Biol Macromol. 2018;120:1406–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Ardean C, Davidescu CM, Nemes NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, et al. Elements influencing the antibacterial exercise of chitosan and chitosan modified by functionalization. Int J Mol Sci. 2021;22:7449.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raafat D, von Bargen Ok, Haas A, Sahl HG. Insights into the mode of motion of chitosan as antibacterial compound. Appl Environ Microbiol. 2008;74:3764–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi S, Shi W, Zhou B, Qiu S. Analysis and utility of chitosan nanoparticles in orthopaedic infections. Int J Nanomed. 2024;19:6589–602.


    Google Scholar
     

  • Chung YC, Yeh JY, Tsai CF. Antibacterial traits and exercise of water-soluble chitosanderivatives ready by the Maillard response. Molecules. 2011;16:8504–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and purposes of chitosan. Polymers (Basel). 2021;13:904.

    CAS 
    PubMed 

    Google Scholar
     

  • Ganesan S, Alagarasan JK, Sonaimuthu M, Aruchamy Ok, Alkallas FH, Ben Gouider Trabelsi A, Kusmartsev FV, Polisetti V, et al. Preparation and characterization of salsalate-loaded chitosan nanoparticles: in vitro launch and antibacterial and antibiofilm exercise. Mar Medication. 2022;20:733.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosannanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus an infection. Carbohydr Polym. 2023;315: 121013.

    CAS 
    PubMed 

    Google Scholar
     

  • Haji Hossein Tabrizi A, Habibi M, Foroohi F, Mohammadian T, Asadi Karam MR. Investigation of the results of antimicrobial and anti-biofilm peptide IDR1018 and chitosan nanoparticles on ciprofloxacin-resistant Escherichia coli. J Fundamental Microbiol. 2022;62:1229–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao D, Yu S, Solar B, Gao S, Guo S, Zhao Ok. Biomedical purposes of chitosan and its spinoff nanoparticles. Polymers (Basel). 2018;10:462.

    PubMed 

    Google Scholar
     

  • Kimna C, Deger S, Tamburaci S, Tihminlioglu F. Chitosan/montmorillonite composite nanospheres forsustained antibiotic supply at post-implantation bone an infection remedy. Biomed Mater. 2019;14: 044101.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu C, Liu W, Cheng X, Zhang A, Zhang S, Liu C, Li N, et al. Apatite formation induced by chitosan/gelatin hydrogel coating anchored on poly(aryl ether nitrile ketone) substrates to advertise osteoblastic differentiation. Macromol Biosci. 2021;21: e2100262.

    PubMed 

    Google Scholar
     

  • Ge J, Li M, Fan J, Celia C, Xie Y, Chang Q, Deng X. Synthesis, characterization, and antibacterial exercise of chitosan-chelated silver nanoparticles. J Biomater Sci Polym Ed. 2024;35:45–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Tao J, Zhang Y, Shen A, Yang Y, Diao L, Wang L, Cai D, Hu Y. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for native supply of vancomycin within the remedy of osteomyelitis. Int J Nanomed. 2020;15:5855–71.

    CAS 

    Google Scholar
     

  • Yang Y, Li M, Luo H, Zhang D. Floor-decorated graphene oxide sheets with copper nano derivatives for bone regeneration: an in vitro and in vivo examine concerning molecular mechanisms, osteogenesis, and anti-infection potential. ACS Infect Dis. 2022;8:499–515.

    CAS 
    PubMed 

    Google Scholar
     

  • Iaconisi GN, Lunetti P, Gallo N, Cappello AR, Fiermonte G, Dolce V, Capobianco L. Hyaluronic acid: a robust biomolecule with wide-ranging purposes—a complete evaluate. Int J Mol Sci. 2023;24:10296.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano CL, De Vecchi E, Bortolin M, Morelli I, Drago L. Hyaluronic acid and its composites as alocal antimicrobial/antiadhesive barrier. J Bone Jt Infect. 2017;2:63–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He R, Sui J, Wang G, Wang Y, Xu Ok, Qin S, Xu S, Ji F, et al. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloids Surf B Biointerfaces. 2022;216: 112582.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Wang Y, Gao Y, Wang Z, Yin C, Ding X, Yang E, Solar D, et al. Environment friendly sterilization systemcombining flavonoids and hyaluronic acid with metallic natural frameworks as service. J Biomed Mater Res B Appl Biomater. 2022;110:1887–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Valverde A, Perez-Alvarez L, Ruiz-Rubio L, Pacha Olivenza MA, Garcia Blanco MB, Diaz-Fuentes M, Vilas-Vilela JL. Antibacterial hyaluronic acid/chitosan multilayers onto clean and micropatterned titanium surfaces. Carbohydr Polym. 2019;207:824–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Lai Z, Shan A. Advances of antimicrobial peptide-based biomaterials for the remedy of bacterial infections. Adv Sci (Weinh). 2023;10: e2206602.

    PubMed 

    Google Scholar
     

  • Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Solar S, Wu D, et al. Antibacterial peptides-loaded bioactivematerials for the remedy of bone an infection. Colloids Surf B Biointerfaces. 2023;225: 113255.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao M, Jasensky J, Foster L, Kuroda Ok, Chen Z. Monitoring antimicrobial mechanisms of floor immobilized peptides in situ. Langmuir. 2018;34:2057–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides in the direction of scientific utility: supply and formulation. Adv Drug Deliv Rev. 2021;175: 113818.

    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, et al. Improvement of an antimicrobial peptideloaded mineralized collagen bone scaffold for infective bone defect restore. Regen Biomater. 2020;7:515–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou H, Zhu Y, Yang B, Huo Y, Yin Y, Jiang X, Ji W. Stimuli-responsive peptide hydrogels forbiomedical purposes. J Mater Chem B. 2024;12:1748–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W, et al. Implantable biomedical supplies for remedy of bone an infection. Entrance Bioeng Biotechnol. 2023;11:1081446.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial supplies: design, platforms and purposes. J Mater Chem B. 2021;9:2802–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Matos AC, Ribeiro IA, Guedes RC, Pinto R, Vaz MA, Goncalves LM, Almeida AJ, Bettencourt AF. Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic supply. Int J Pharm. 2015;485:317–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Gandomkarzadeh M, Moghimi HR, Mahboubi A. Analysis of the impact of ciprofloxacin andvancomycin on mechanical properties of PMMA cement; a preliminary examine on molecular weight. Sci Rep. 2020;10:3981.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Maeda T, Miyazaki T. Preparation of bioactive and antibacterial PMMA-based bone cementby modification with quaternary ammonium and alkoxysilane. J Biomater Appl. 2021;36:311–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized chitosan as an antimicrobial agent: antimicrobialactivity, mechanism of motion and biomedical purposes in orthopedics. Int J Mol Sci. 2013;14:1854–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo X, Xiao D, Zhang C, Wang G. The roles of exosomes upon metallic ions stimulation in bone regeneration. J Funct Biomater. 2022;13:126.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho H, Lee J, Jang S, Lee J, Oh TI, Son Y, Lee E. CaSR-mediated hBMSCs exercise modulation: extra coupling mechanism in bone transforming compartment. Int J Mol Sci. 2020;22:325.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haag SL, Schiele NR, Bernards MT. Enhancement and mechanisms of MC3T3-E1 osteoblast-like celladhesion to albumin by way of calcium publicity. Biotechnol Appl Biochem. 2022;69:492–502.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Wu Q, Yin C, Jia X, Zhao Z, Zhang X, Yuan G, Hu H, et al. Sustained calcium ion releasefrom bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction. J Leukoc Biol. 2021;110:485–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Garcia E, Shalaurova I, Matyus SP, Schutten JC, Bakker SJL, Dullaart RPF, Connelly MA. Nuclear magnetic resonance-measured ionized magnesium is inversely related to kind 2 diabetes within the insulin resistance atherosclerosis examine. Vitamins. 2022;14:1792.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Ma XY, Feng YF, Ma ZS, Ma TC, Zhang Y, Li X, Wang L, et al. Magnesium ions promote the organic behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Hint Elem Res. 2017;179:284–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Choi S, Kim KJ, Cheon S, Kim EM, Kim YA, Park C, Kim KK. Biochemical exercise of magnesiumions on human osteoblast migration. Biochem Biophys Res Commun. 2020;531:588–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhai Z, Qu X, Li H, Yang Ok, Wan P, Tan L, Ouyang Z, Liu X, et al. The impact of metallic magnesium degradation merchandise on osteoclast-induced osteolysis and attenuation of NF-kappaB and NFATc1 signaling. Biomaterials. 2014;35:6299–310.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Chen Q, Mao X. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int. 2019;2019:7908205.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, et al. TRPM7 kinase-mediated immunomodulation in macrophage performs a central position in magnesium ion-induced bone regeneration. Nat Commun. 2021;12:2885.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin H, Weng J, Zhou B, Zhang W, Li G, Chen Y, Qi T, Zhu Y, et al. Magnesium ions promote in vitro rat bone marrow stromal cell angiogenesis by way of notch signaling. Biol Hint Elem Res. 2023;201:28232842.


    Google Scholar
     

  • Pilmane M, Salma-Ancane Ok, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: historic evaluate of a few of their capabilities. Mater Sci Eng C Mater Biol Appl. 2017;78:1222–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Li Y, Zhang Y, Wang T, Lin Ok, Liu J. A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis through FAK/MAPK and PI3K/AKT signaling pathways. Mater Sci Eng C Mater Biol Appl. 2021;131: 112482.

    CAS 
    PubMed 

    Google Scholar
     

  • Li T, He H, Yang Z, Wang J, Zhang Y, He G, Huang J, Music D, et al. Strontium-doped gelatin scaffoldspromote M2 macrophage change and angiogenesis by way of modulating the polarization of neutrophils. Biomater Sci. 2021;9:2931–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Naruphontjirakul P, Li S, Pinna A, Barrak F, Chen S, Redpath AN, Rankin SM, Porter AE, et al. Interplay of monodispersed strontium containing bioactive glass nanoparticles with macrophages. Biomater Adv. 2022;133: 112610.

    CAS 
    PubMed 

    Google Scholar
     

  • Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Results of strontium ions with potential antibacterial exercise on in vivo bone regeneration. Sci Rep. 2021;11:8745.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Li R, Xia D, Zhao X, Zhu Y, Gu R, Yoon J, Liu Y. The affect of Zn-doped artificial polymermaterials on bone regeneration: a scientific evaluate. Stem Cell Res Ther. 2021;12:123.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao Y, Zhang W, Tian P, Meng F, Zhu H, Jiang X, Liu X, Chu PK. Stimulation of bone development following zinc incorporation into biomaterials. Biomaterials. 2014;35:6882–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki M, Suzuki T, Watanabe M, Hatakeyama S, Kimura S, Nakazono A, Honma A, Nakamaru Y, et al. Function of intracellular zinc in molecular and mobile perform in allergic inflammatory ailments. Allergol Int. 2021;70:190–200.

    CAS 
    PubMed 

    Google Scholar
     

  • Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. ROS induced bactericidal exercise of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomater. 2020;107:313–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zhao Y, Zhang Y, Yao X, Dangle R. Exosomes derived from macrophages upon Zn ion stimulationpromote osteoblast and endothelial cell capabilities. J Mater Chem B. 2021;9:3800–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Meng G, Wu X, Yao R, He J, Yao W, Wu F. Impact of zinc substitution in hydroxyapatite coating onosteoblast and osteoclast differentiation below osteoblast/osteoclast co-culture. Regen Biomater. 2019;6: 349359.


    Google Scholar
     

  • Zhang H, Cui Y, Zhuo X, Kim J, Li H, Li S, Yang H, Su Ok, et al. Organic fixation of bioactive bonecement in vertebroplasty: the primary scientific investigation of borosilicate glass (BSG) Strengthened PMMA bone cement. ACS Appl Mater Interf. 2022;14:51711–27.

    CAS 

    Google Scholar
     

  • Bee SL, Bustami Y, Ul-Hamid A, Lim Ok, Abdul Hamid ZA. Synthesis of silver nanoparticle-decoratedhydroxyapatite nanocomposite with mixed bioactivity and antibacterial properties. J Mater Sci Mater Med. 2021;32:106.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallet-Regi M, Ruiz-Hernandez E. Bioceramics: from bone regeneration to most cancers nanomedicine. Adv Mater. 2011;23:5177–218.

    CAS 
    PubMed 

    Google Scholar
     

  • Punj S, Singh J, Singh Ok. Ceramic biomaterials: properties, state-of-the-art and futureprospectives. Ceram Int. 2021;47:28059–74.

    CAS 

    Google Scholar
     

  • Wu S, Lei L, Bao C, Liu J, Weir MD, Ren Ok, Schneider A, Oates TW, et al. An injectable andantibacterial calcium phosphate scaffold inhibiting Staphylococcus aureus and supporting stem cells for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;120: 111688.

    CAS 
    PubMed 

    Google Scholar
     

  • Calabrese G, Petralia S, Franco D, Nocito G, Fabbi C, Forte L, Guglielmino S, Squarzoni S, et al. Anew Ag-nanostructured hydroxyapatite porous scaffold: antibacterial impact and cytotoxicity examine. Mater Sci Eng C Mater Biol Appl. 2021;118: 111394.

    CAS 
    PubMed 

    Google Scholar
     

  • Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo Ok, Tahriri M, Bastami F, Lobner D, Tayebi L. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater. 2017;33:1205–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu T, Pan H, Hu Y, Tao H, Wang Ok, Zhang C. Autologous platelet-rich plasma induces bone formationof tissue-engineered bone with bone marrow mesenchymal stem cells on beta-tricalcium phosphate ceramics. J Orthop Surg Res. 2017;12:178.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Zhao Q, Chen C, Wu C, Ma Y. beta-tricalcium phosphate/gelatin composite scaffolds integrated with gentamycin-loaded chitosan microspheres for contaminated bone defect remedy. PLoS ONE. 2022;17: e0277522.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattnaik S, Nethala S, Tripathi A, Saravanan S, Moorthi A, Selvamurugan N. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol. 2011;49:1167–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Li P, Guo B, Ma PX. Antibacterial and conductive injectable hydrogels based mostly on quaternizedchitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Oftadeh MO, Bakhshandeh B, Dehghan MM, Khojasteh A. Sequential utility of mineralized electroconductive scaffold and electrical stimulation for environment friendly osteogenesis. J Biomed Mater Res A. 2018;106:1200–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Kazimierczak P, Kolmas J, Przekora A. Organic response to macroporous chitosan-agarose bonescaffolds comprising Mg- and Zn-doped nano-hydroxyapatite. Int J Mol Sci. 2019;20:3835.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Li Z, Wang Q, Han J, Wang W, Li S, Liu H, Guo S, et al. Graphene oxide/chitosan/hydroxyapatite composite membranes improve osteoblast adhesion and guided bone regeneration. ACS Appl Bio Mater. 2021;4:8049–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Ciolek L, Krok-Borkowicz M, Gasinski A, Biernat M, Antosik A, Pamula E. Bioactive glasses enriched with strontium or zinc with completely different levels of structural order as elements of chitosan-based composite scaffolds for bone tissue engineering. Polymers (Basel). 2023;15:3994.

    CAS 
    PubMed 

    Google Scholar
     

  • Adithya SP, Sidharthan DS, Abhinandan R, Balagangadharan Ok, Selvamurugan N. Nanosheetsincorporated bio-composites containing pure and artificial polymers/ceramics for bone tissue engineering. Int J Biol Macromol. 2020;164:1960–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Divband B, Aghazadeh M, Al-Qaim ZH, Samiei M, Hussein FH, Shaabani A, Shahi S, Sedghi R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF service for osteogenesis of dental pulp stem cells. Carbohydr Polym. 2021;273: 118589.

    CAS 
    PubMed 

    Google Scholar
     

  • Han S, Yang H, Ni X, Deng Y, Li Z, Xing X, Du M. Programmed launch of vascular endothelial development issue and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol. 2023;253: 126721.

    CAS 
    PubMed 

    Google Scholar
     

  • Stuckensen Ok, Schwab A, Knauer M, Muinos-Lopez E, Ehlicke F, Reboredo J, Granero-Molto F, Gbureck U, et al. Tissue mimicry in morphology and composition promotes hierarchical matrix transforming of invading stem cells in osteochondral and meniscus scaffolds. Adv Mater. 2018;30: e1706754.

    PubMed 

    Google Scholar
     

  • Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue Ok, Levett PA, Klein TJ, Melchels FP, et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue tradition platforms. Nat Protoc. 2016;11:727–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Sarker B, Zehnder T, Rath SN, Horch RE, Kneser U, Detsch R, Boccaccini AR. Oxidized alginate gelatin hydrogel: a positive matrix for development and osteogenic differentiation of adipose-derived stem cells in 3D. ACS Biomater Sci Eng. 2017;3:1730–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Filippi M, Born G, Chaaban M, Scherberich A. Pure polymeric scaffolds in bone regeneration. Entrance Bioeng Biotechnol. 2020;8:474.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymersfor tissue engineering purposes. Entrance Bioeng Biotechnol. 2019;7:164.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Enzymatically-degradablealginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials. 2019;217: 119294.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao D, Wang X, Cheng B, Yin M, Hou Z, Li X, Liu Ok, Tie C, et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone restore. ACS Appl Mater Interfaces. 2022;14:21886–905.

    CAS 
    PubMed 

    Google Scholar
     

  • Ueng SW, Lin SS, Wang IC, Yang CY, Cheng RC, Liu SJ, Chan EC, Lai CF, et al. Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for remedy of experimental bone an infection attributable to Staphylococcus aureus. J Orthop Surg Res. 2016;11:52.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Huang X, Li L, Wu J, Yi W, Lai Y, Qin L. LL-37-coupled porous composite scaffold for thetreatment of contaminated segmental bone defect. Pharmaceutics. 2022;15:1792.


    Google Scholar
     

  • Garcia-Garcia J, Azuara G, Fraile-Martinez O, Garcia-Montero C, Alvarez-Mon MA, Ruiz-Diez S, Alvarez-Mon M, Bujan J, et al. Modification of the polymer of a bone cement with biodegradable microspheres of PLGA and loading with daptomycin and vancomycin enhance the response to bone tissue an infection. Polymers (Basel). 2022;14:888.

    CAS 
    PubMed 

    Google Scholar
     

  • He M, Wang H, Han Q, Shi X, He S, Solar J, Zhu Z, Gan X, et al. Glucose-primed PEEK orthopaedic implants for antibacterial remedy and safeguarding diabetic osseointegration. Biomaterials. 2023;303: 122355.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei S, Jian C, Xu F, Bao T, Lan S, Wu G, Qi B, Bai Z, et al. Vancomycin-impregnated electrospunpolycaprolactone (PCL) membrane for the remedy of contaminated bone defects: an animal examine. J Biomater Appl. 2018;32:1187–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Al Thaher Y, Alotaibi HF, Yang L, Prokopovich P. PMMA bone cement containing lengthy releasing silicabased chlorhexidine nanocarriers. PLoS ONE. 2021;16: e0257947.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koons GL, Diba M, Mikos AG. Supplies design for bone-tissue engineering. Nat Rev Mater. 2020;5:584–603.

    CAS 

    Google Scholar
     

  • Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and materials choice for bone restore. Acta Biomater. 2019;84:16–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Han Z, Hao JN, Zhang D, Li X, Cao Y, Huang J, Li Y. Engineering of a NIR-activable hydrogel coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone spinoff launch property for angiogenesis and bone regeneration. Bioact Mater. 2023;26:1–13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Wu Y, Zhang X, Wu T, Huang Ok, Wang B, Liao J. Self-healing hydrogels for bone defectrepair. RSC Adv. 2023;13:16773–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu M, Tulufu N, Tang G, Ye W, Qi J, Deng L, Li C. Black phosphorus accelerates bone regeneration based mostly on immunoregulation. Adv Sci (Weinh). 2024;11: e2304824.

    PubMed 

    Google Scholar
     

  • Seliktar D. Designing cell-compatible hydrogels for biomedical purposes. Science. 2012;336:11241128.


    Google Scholar
     

  • Jose G, Shalumon KT, Chen JP. Pure Polymers based mostly hydrogels for cell tradition purposes. Curr Med Chem. 2020;27:2734–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei M, Hsu Y-I, Asoh T-A, Sung M-H, Uyama H. Injectable poly(γ-glutamic acid)-basedbiodegradable hydrogels with tunable gelation charge and mechanical power. J Mater Chem B. 2021;9:3584–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Nie R, Solar Y, Lv H, Lu M, Huangfu H, Li Y, Zhang Y, Wang D, et al. 3D printing of MXene compositehydrogel scaffolds for photothermal antibacterial exercise and bone regeneration in contaminated bone defect fashions. Nanoscale. 2022;14:8112–29.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Zhai X, Ma T, Zhang M, Yang H, Zhang S, Wang J, Liu W, et al. A unified therapeuticprophylactic tissue-engineering scaffold demonstrated to forestall tumor recurrence and overcoming an infection towards bone transforming. Adv Mater. 2023;35: e2300313.

    PubMed 

    Google Scholar
     

  • Xu Y, Xu C, Yang Ok, Ma L, Li G, Shi Y, Feng X, Tan L, et al. Copper Ion-modified germaniumphosphorus nanosheets built-in with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration. Adv Healthc Mater. 2023;12: e2301151.

    PubMed 

    Google Scholar
     

  • Qi H, Wang B, Wang M, Xie H, Chen C. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug supply and enhanced osteogenic differentiation in vitro. Int J Pharm. 2024;657: 124134.

    CAS 
    PubMed 

    Google Scholar
     

  • Qin B, Dong H, Tang X, Liu Y, Feng G, Wu S, Zhang H. Antisense yycF and BMP-2 co-delivery gelatin methacryloyl and carboxymethyl chitosan hydrogel composite for infective bone defects regeneration. Int J Biol Macromol. 2023;253: 127233.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Lei H, Mi Y, Ma P, Fan D. Chitosan and hyaluronic acid based mostly injectable twin community hydrogels—mediating antimicrobial and inflammatory modulation to advertise therapeutic of contaminated bone defects. Int J Biol Macromol. 2024;274: 133124.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Zhou X, Du H, Ha Y, Xu Y, Ao R, He C. Bifunctional hydrogel-integrated 3D printed scaffold for repairing contaminated bone defects. ACS Biomater Sci Eng. 2023;9:4583–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu L, Ye Q, Xie J, Yang J, Jiang W, Yuan H, Li J. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for contaminated bone defect restore. J Mater Chem B. 2022;10:282–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Guan X, Wu S, Ouyang S, Ren S, Cui N, Wu X, Xiang D, Chen W, et al. Reworking microenvironment for implant-associated osteomyelitis by twin metallic peroxide. Adv Healthc Mater. 2024;13: e2303529.

    PubMed 

    Google Scholar
     

  • Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW. Gelatin-methacryloyl hydrogels: in the direction of biofabrication-based tissue restore. Traits Biotechnol. 2016;34:394–407.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv B, Lu L, Hu L, Cheng P, Hu Y, Xie X, Dai G, Mi B, et al. Latest advances in GelMA hydrogel transplantation for musculoskeletal issues and associated illness remedy. Theranostics. 2023;13:2015–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for superior tissue therapeutics. Bioact Mater. 2022;8:267–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoud AH, Han Y, Dal-Fabbro R, Daghrery A, Xu J, Kaigler D, Bhaduri SB, Malda J, et al. Nanoscale beta-TCP-laden GelMA/PCL composite membrane for guided bone regeneration. ACS Appl Mater Interfaces. 2023;15:32121–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Li J, Jiang J, Lv F, Chang J, Chen S, Wu C. An osteogenesis/angiogenesis-stimulation synthetic ligament for anterior cruciate ligament reconstruction. Acta Biomater. 2017;54:399–410.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Music J, Jiang Y, Li M, Wei J, Qin J, Peng W, Lopez Lasaosa F, et al. Injectable adhesive self therapeutic multicross-linked double-network hydrogel facilitates full-thickness pores and skin wound therapeutic. ACS Appl Mater Interfaces. 2020;12:57782–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Wang J, Zhou X, Solar J, Zhu B, Duan C, Chen P, Guo X, et al. A brand new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Entrance Bioeng Biotechnol. 2020;8: 564731.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Yu C, Xiong Y, Chen Ok, Liu P, Panayi AC, Xiao X, Feng Q, et al. Multifunctional hydrogel enhances bone regeneration by way of sustained launch of stromal cell-derived factor-1alpha and exosomes. Bioact Mater. 2023;25:460–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Bai H, Zhao Y, Wang C, Wang Z, Wang J, Liu H, Feng Y, Lin Q, et al. Enhanced osseointegration ofthree-dimensional supramolecular bioactive interface by way of osteoporotic microenvironment regulation. Theranostics. 2020;10:4779–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pariza G, Mavrodin CI, Antoniac I. Dependency between the porosity andpolymeric construction of biomaterials utilized in hernia surgical procedure and continual mesh – an infection. Mater Plast. 2015;1:4.


    Google Scholar
     

  • Zhao Y, Wang Z, Jiang Y, Liu H, Music S, Wang C, Li Z, Yang Z, et al. Biomimetic composite scaffoldsto manipulate stem cells for aiding rheumatoid arthritis administration. Adv Funct Mater. 2019;29:1807860.


    Google Scholar
     

  • Qiao S, Wu D, Li Z, Zhu Y, Zhan F, Lai H, Gu Y. The mix of multi-functional ingredientsloaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect remedy. J Tissue Eng. 2020;11:2041731420965797.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Ok, Li Y, Xie LH, Li X, Li JR. Development and utility of base-stable MOFs: a vital evaluate. Chem Soc Rev. 2022;51:6417–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Stanley PM, Haimerl J, Shustova NB, Fischer RA, Warnan J. Merging molecular catalysts and metalorganic frameworks for photocatalytic gas manufacturing. Nat Chem. 2022;14:1342–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou HC, Kitagawa S. Steel-organic frameworks (MOFs). Chem Soc Rev. 2014;43:5415–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Mallakpour S, Nikkhoo E, Hussain CM. Software of MOF supplies as drug supply programs forcancer remedy and dermal remedy. Coord Chem Rev. 2022;451:214262.

    CAS 

    Google Scholar
     

  • Ma X, Ren X, Guo X, Fu C, Wu Q, Tan L, Li H, Zhang W, et al. Multifunctional iron-based metallic natural framework as biodegradable nanozyme for microwave enhancing dynamic remedy. Biomaterials. 2019;214: 119223.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu ZH, Liu Y, Music C, Hu Y, Feng G, Tang BZ. Porphyrin-based two-dimensional layered metalorganic framework with sono-/photocatalytic exercise for water decontamination. ACS Nano. 2022;16:13461357.


    Google Scholar
     

  • Meng J, Liu X, Niu C, Pang Q, Li J, Liu F, Liu Z, Mai L. Advances in metal-organic framework coatings: versatile synthesis and broad purposes. Chem Soc Rev. 2020;49:3142–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Cheng Y, Feng X, Zhang X, Lei J, Wang H, Xu Y, Tong B, et al. A janus-ROS therapeutic system selling infectious bone regeneration through sono-epigenetic modulation. Adv Mater. 2024;36: e2307846.

    PubMed 

    Google Scholar
     

  • Yan B, Tan J, Zhang H, Liu L, Chen L, Qiao Y, Liu X. Developing fluorine-doped Zr-MOF movies ontitanium for antibacteria, anti-inflammation, and osteogenesis. Biomater Adv. 2022;134: 112699.

    CAS 
    PubMed 

    Google Scholar
     

  • Karakecili A, Topuz B, Ersoy FS, Sahin T, Gunyakti A, Demirtas TT. UiO-66 metal-organic frameworkas a double actor in chitosan scaffolds: antibiotic service and osteogenesis promoter. Biomater Adv. 2022;136: 212757.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Chai H, Guo L, Jiang Y, Xu L, Huang W, Shen Y, Yu L, et al. In situ preparation of porousmetal-organic frameworks ZIF-8@Ag on poly-ether-ether-ketone with synergistic antibacterial exercise. Colloids Surf B Biointerf. 2021;205: 111920.

    CAS 

    Google Scholar
     

  • Karakecili A, Topuz B, Korpayev S, Erdek M. Steel-organic frameworks for on-demand pH managed supply of vancomycin from chitosan scaffolds. Mater Sci Eng C Mater Biol Appl. 2019;105: 110098.

    CAS 
    PubMed 

    Google Scholar
     

  • Fandzloch M, Augustyniak AW, Trzcinska-Wencel J, Golinska P, Roszek Ok. A brand new MOF@bioactiveglass composite bolstered with silver nanoparticles—a brand new method to designing antibacterial biomaterials. Dalton Trans. 2024;53:10928–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Tao B, Lin C, He Y, Yuan Z, Chen M, Xu Ok, Li Ok, Guo A, et al. Osteoimmunomodulation mediatingimproved osteointegration by OGP-loaded cobalt-metal natural framework on titanium implants with antibacterial property. Chem Eng J. 2021;423:130176.

    CAS 

    Google Scholar
     

  • Wang B, Chen H, Peng S, Li X, Liu X, Ren H, Yan Y, Zhang Q. Multifunctional magnesium-organicframework doped biodegradable bone cement for antibacterial development, inflammatory regulation and osteogenic differentiation. J Mater Chem B. 2023;11:2872–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaya S, Cresswell M, Boccaccini AR. Mesoporous silica-based bioactive glasses for antibiotic-free anti bacterial purposes. Mater Sci Eng C Mater Biol Appl. 2018;83:99–107.

    CAS 
    PubMed 

    Google Scholar
     

  • Han L, Huang Z, Zhu M, Zhu Y, Li H. Drug-loaded zeolite imidazole framework-8-functionalizedbioglass scaffolds with antibacterial exercise for bone restore. Ceram Int. 2022;48:6890.

    CAS 

    Google Scholar
     

  • Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, Pang Y, Li D, et al. Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for selling bone regeneration. ACS Appl Mater Interf. 2021;13:50836–50.

    CAS 

    Google Scholar
     

  • Shou P, Yu Z, Wu Y, Feng Q, Zhou B, Xing J, Liu C, Tu J, et al. Zn(2+) doped ultrasmall prussianblue nanotheranostic agent for breast most cancers photothermal remedy below MR imaging steerage. Adv Healthc Mater. 2020;9: e1900948.

    PubMed 

    Google Scholar
     

  • Li ZH, Chen Y, Solar Y, Zhang XZ. Platinum-doped prussian blue nanozymes for multiwavelength bioimaging guided photothermal remedy of tumor and anti-inflammation. ACS Nano. 2021;15:5189–200.

    CAS 
    PubMed 

    Google Scholar
     

  • Han D, Li Y, Liu X, Li B, Han Y, Zheng Y, Yeung KW, Li C, Cui Z, Liang Y, Li Z. Fast micro organism trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for fast tissue restore of bacterial contaminated wounds. Chem Eng J. 2020;396:125194.

    CAS 

    Google Scholar
     

  • Zhao C, Shu C, Yu J, Zhu Y. Steel-organic frameworks functionalized biomaterials for selling bonerepair. Mater Immediately Bio. 2023;21: 100717.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Music S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, et al. 2D MOF periodontitis photodynamic ion remedy. J Am Chem Soc. 2021;143:15427–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Dang W, Ma B, Li B, Huan Z, Ma N, Zhu H, Chang J, Xiao Y, et al. 3D printing of metal-organicframework nanosheets-structured scaffolds with tumor remedy and bone development. Biofabrication. 2020;12: 025005.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Jambhulkar S, Zhu Y, Ravichandran D, Music Ok. 3D printing for polymer/particle-basedprocessing: A Overview. Compos Half B Eng. 2021;223:109102.

    CAS 

    Google Scholar
     

  • Ghosh C, Sarkar P, Issa R, Haldar J. Options to traditional antibiotics within the period ofantimicrobial resistance. Traits Microbiol. 2019;27:323–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Present advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8: e1801106.

    PubMed 

    Google Scholar
     

  • Mo S, Tang Ok, Liao Q, Xie L, Wu Y, Wang G, Ruan Q, Gao A, et al. Tuning the association oflamellar nanostructures: reaching the twin perform of bodily killing micro organism and selling osteogenesis. Mater Horiz. 2023;10:881–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Bogatcheva E, Dubuisson T, Protopopova M, Einck L, Nacy CA, Reddy VM. Chemical modification of capuramycins to reinforce antibacterial exercise. J Antimicrob Chemother. 2011;66:578–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Yavari SA, Croes M, Akhavan B, Jahanmard F, Eigenhuis CC, Dadbakhsh S, Vogely HC, Bilek MM, et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Add Manuf. 2020. https://doi.org/10.1016/j.addma.2019.100991.

    Article 

    Google Scholar
     

  • Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells inclinical bone regeneration. Nat Rev Endocrinol. 2015;11:140–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, et al. Development of vascularized tissue engineered bone with nHA-coated BCP bioceramics loaded with peripheral blood-derived MSC and EPC to restore giant segmental femoral bone defect. ACS Appl Mater Interfaces. 2023;15:249–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Li H, Yang Y, Yuan Ok, Zhou F, Liu H, Zhou Q, Yang S, et al. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial an infection. Bioact Mater. 2021;6:1318–29.

    CAS 
    PubMed 

    Google Scholar
     

  • Kuang Z, Dai G, Wan R, Zhang D, Zhao C, Chen C, Li J, Gu H, et al. Osteogenic and antibacterial twin capabilities of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold. Genes Dis. 2021;8:193–202.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin Liang Z, Chen L, Quan WY. 3D printed PLGA scaffoldwith nano-hydroxyapatite carrying linezolid for remedy of contaminated bone defects. Biomed Pharmacother. 2024;172:116228.


    Google Scholar
     

  • Qayoom I, Teotia AK, Panjla A, Verma S, Kumar A. Native and sustained supply of rifampicin froma bioactive ceramic service treats bone an infection in rat tibia. ACS Infect Dis. 2020;6:2938–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan J, Wang B, Han C, Huang X, Xiao H, Lu X, Lu J, Zhang D, et al. Nanosized-Ag-doped porousbeta-tricalcium phosphate for organic purposes. Mater Sci Eng C Mater Biol Appl. 2020;114: 111037.

    CAS 
    PubMed 

    Google Scholar
     

  • Alves APN, Arango-Ospina M, Oliveira R, Ferreira IM, de Moraes EG, Hartmann M, de Oliveira APN, Boccaccini AR, et al. 3D-printed beta-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: coating optimization, in vitro bioactivity and antibacterial properties. J Biomed Mater Res B Appl Biomater. 2023;111:881–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Chen J, Yang S, Zhang Z, Wu H, He J, Qin L, Cao J, et al. 3D printed multifunctional biomimetic bone scaffold mixed with TP-Mg nanoparticles for the infectious bone defects restore. Small. 2024;20: e2403681.

    PubMed 

    Google Scholar
     

  • Ji Y, Yang S, Solar J, Ning C. Realizing each antibacterial exercise and cytocompatibility insilicocarnotite bioceramic through germanium incorporation. J Funct Biomater. 2023;14:154.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rumian L, Tiainen H, Cibor U, Krok-Borkowicz M, Brzychczy-Wloch M, Haugen HJ, Pamula E. Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and remedy of bone tissue infections. Mater Sci Eng C Mater Biol Appl. 2016;69:856–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-ladenmesoporous bioglass/PLGA composite scaffolds for bone regeneration in contaminated bone defects. Artif Cells Nanomed Biotechnol. 2018;46:1935–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar H, Hu C, Zhou C, Wu L, Solar J, Zhou X, Xing F, Lengthy C, et al. 3D printing of calcium phosphate scaffoldswith managed launch of antibacterial capabilities for jaw bone restore. Mater Des. 2020;189:108540.

    CAS 

    Google Scholar
     

  • Kargozar S, Montazerian M, Hamzehlou S, Kim HW, Baino F. Mesoporous bioactive glasses: promising platforms for antibacterial methods. Acta Biomater. 2018;81:1–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Ke D, Tarafder S, Vahabzadeh S, Bose S. Results of MgO, ZnO, SrO, and SiO(2) in tricalciumphosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;96:10–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu Q, Chang M, Zhang Y, Wang E, Xing M, Gao L, Huan Z, Guo F, et al. PDA/Cu bioactive hydrogelwith “scorching ions impact” for inhibition of drug-resistant micro organism and enhancement of infectious pores and skin wound therapeutic. ACS Appl Mater Interfaces. 2020;12:31255–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C. 3D-printed bioceramic scaffolds withantibacterial and osteogenic exercise. Biofabrication. 2017;9: 025037.

    PubMed 

    Google Scholar
     

  • Baino F, Potestio I, Vitale-Brovarone C. Manufacturing and physicochemical characterization of cudoped silicate bioceramic scaffolds. Supplies (Basel). 2018;11:1524.

    PubMed 

    Google Scholar
     

  • Sugimoto H, Biggemann J, Fey T, Singh P, Kakimoto KI. Lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3 scaffolds for enhanced antibacterial property. Mater Lett. 2021;297: 129969.

    CAS 

    Google Scholar
     

  • Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, et al. 2D supplies for bonetherapy. Adv Drug Deliv Rev. 2021;178: 113970.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Kang H, Xia Y, Solar L, Li F, Dai H. 3D printed photothermal scaffold sandwiching bacteriainside and out of doors improves the contaminated micro setting and repairs bone defects. Adv Healthc Mater. 2024;13: e2302879.

    PubMed 

    Google Scholar
     

  • He Y, Liu X, Lei J, Ma L, Zhang X, Wang H, Lei C, Feng X, et al. Correction: bioactive VS4-basedsonosensitizer for strong chemodynamic, sonodynamic and osteogenic remedy of contaminated bone defects. J Nanobiotechnology. 2024;22:46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Li J, Yu Z, Li J, Liang Ok, Deng Y. Elaborated bio-heterojunction with strong sterilizationeffect for contaminated tissue regeneration through activating competent cell-like antibacterial tactic. Adv Mater. 2024;36: e2414111.

    PubMed 

    Google Scholar
     

  • Zhang L, Zhang H, Zhou H, Tan Y, Zhang Z, Yang W, Zhao L, Zhao Z. A Ti(3)C(2) MXene-integratednear-infrared-responsive multifunctional porous scaffold for contaminated bone defect restore. J Mater Chem B. 2023;12:79–96.

    PubMed 

    Google Scholar
     

  • Jing X, Xu C, Su W, Ding Q, Ye B, Su Y, Yu Ok, Zeng L, et al. Photosensitive and conductive hydrogelinduced innerved bone regeneration for contaminated bone defect restore. Adv Healthc Mater. 2023;12: e2201349.

    PubMed 

    Google Scholar
     

  • Wu Y, Liao Q, Wu L, Luo Y, Zhang W, Guan M, Pan H, Tong L, et al. ZnL(2)-BPs built-in bone scaffold below sequential photothermal mediation: a win-win technique delivering antibacterial remedy and fostering osteogenesis thereafter. ACS Nano. 2021;15:17854–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu C, Cheng X, Wang J, Pan Y, Liu C, Zhang S, Jian X. PDA-BPs built-in mussel-inspiredmultifunctional hydrogel coating on PPENK implants for anti-tumor remedy, antibacterial an infection and bone regeneration. Bioact Mater. 2023;27:546–59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu C, He M, Solar D, Huang Y, Huang L, Du M, Wang J, Wang J, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal remedy of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13:47327–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, Chen B, Fu Q, et al. Sericin/nano-hydroxyapatite hydrogels based mostly on graphene oxide for efficient bone regeneration through immunomodulation and osteoinduction. Int J Nanomedicine. 2023;18:1875–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu S, Gan T, Xie L, Deng S, Liu Y, Zhang H, Hu X, Lei L. Antibacterial efficiency of grapheneoxide/alginate-based antisense hydrogel for potential therapeutic utility in Staphylococcus aureus an infection. Biomater Adv. 2022;141: 213121.

    CAS 
    PubMed 

    Google Scholar
     

  • Jin L, Wu S, Mao C, Wang C, Zhu S, Zheng Y, Zhang Y, Li Z, et al. Fast and efficient remedy ofchronic osteomyelitis by conductive network-like MoS(2)/CNTs by way of a number of reflection and scattering enhanced synergistic remedy. Bioact Mater. 2024;31:284–97.

    PubMed 

    Google Scholar
     

  • Parajuli D, Murali N, Cad Ok, Karki B, Samatha Ok, Kim AA, Park M, Pant B. Developments in MXene polymer nanocomposites in power storage and biomedical purposes. Polymers (Basel). 2022;14:3433.

    CAS 
    PubMed 

    Google Scholar
     

  • Yin J, Han Q, Zhang J, Liu Y, Gan X, Xie Ok, Xie L, Deng Y. MXene-based hydrogels endow polyetheretherketone with efficient osteogenicity and mixed remedy of osteosarcoma and bacterial an infection. ACS Appl Mater Interfaces. 2020;12:45891–903.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu M, Liu H, Zhu Y, Chen F, Chen Z, Guo L, Wu P, Li G, et al. Delicate photothermal-stimulation basedon injectable and photocurable hydrogels orchestrates immunomodulation and osteogenesis for highperformance bone regeneration. Small. 2023;19: e2300111.

    PubMed 

    Google Scholar
     

  • Vergara A, Fernandez-Pittol MJ, Munoz-Mahamud E, Morata L, Bosch J, Vila J, Soriano A, CasalsPascual C. Analysis of lipocalin-2 as a biomarker of periprosthetic joint an infection. J Arthroplasty. 2019;34:123–5.

    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles