Micheletti C, Hurley A, Gourrier A, Palmquist A, Tang T, Shah FA, Grandfield Ok. Bone mineralorganization on the mesoscale: a evaluate of mineral ellipsoids in bone and at bone interfaces. Acta Biomater. 2022;142:1–13.
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive biomaterials forfacilitating bone defect restore below pathological circumstances. Adv Sci (Weinh). 2023;10: e2204502.
Liu Z, Yuan X, Liu M, Fernandes G, Zhang Y, Yang S, Ionita CN, Yang S. Antimicrobial peptide mixed with BMP2-modified mesenchymal stem cells promotes calvarial restore in an osteolytic mannequin. Mol Ther. 2018;26:199–207.
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissueregenerative therapies. Biomaterials. 2018;185:240–75.
Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructivesurgeon’s viewpoint. J Cell Mol Med. 2006;10:7–19.
Zhang J, Jiang Y, Shang Z, Zhao B, Jiao M, Liu W, Cheng M, Zhai B, et al. Biodegradable metals forbone defect restore: a scientific evaluate and meta-analysis based mostly on animal research. Bioact Mater. 2021;6:40274052.
Wu Z, Pu P, Su Z, Zhang X, Nie L, Chang Y. Schwann cell-derived exosomes promote boneregeneration and restore by enhancing the organic exercise of porous Ti6Al4V scaffolds. Biochem Biophys Res Commun. 2020;531:559–65.
Ansari M. Bone tissue regeneration: biology, methods and interface research. Prog Biomater. 2019;8:223–37.
Zhang Y, Zhou J, Wu JL, Ma JC, Wang H, Wen J, Huang S, Lee M, et al. Intrinsic antibacterial andosteoinductive sterosomes promote contaminated bone therapeutic. J Management Launch. 2023;354:713–25.
Aragon J, Feoli S, Irusta S, Mendoza G. Composite scaffold obtained by electro-hydrodynamictechnique for an infection prevention and remedy in bone restore. Int J Pharm. 2019;557:162–9.
Klein C, Monet M, Barbier V, Vanlaeys A, Masquelet AC, Gouron R, Mentaverri R. The Masquelettechnique: present ideas, animal fashions, and views. J Tissue Eng Regen Med. 2020;14:1349–59.
Hu XX, Xiu ZZ, Li GC, Zhang JY, Shu LJ, Chen Z, Li H, Zou QF, et al. Effectiveness of transversetibial bone transport in remedy of diabetic foot ulcer: a scientific evaluate and meta-analysis. Entrance Endocrinol (Lausanne). 2022;13:1095361.
Catagni MA, Azzam W, Guerreschi F, Lovisetti L, Poli P, Khan MS, Di Giacomo LM. Trifocal versusbifocal bone transport in remedy of lengthy segmental tibial bone defects. Bone Joint J. 2019;101-B:162–9.
Liu Ok, Zhang H, Maimaiti X, Yusufu A. Bifocal versus trifocal bone transport for the administration oftibial bone defects brought on by fracture-related an infection: a meta-analysis. J Orthop Surg Res. 2023;18:140.
Kashirina A, Yao Y, Liu Y, Leng J. Biopolymers as bone substitutes: a evaluate. Biomater Sci. 2019;7:3961–83.
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect restore: a evaluate. Bioact Mater. 2017;2:224–47.
Mohamed KR, Beherei HH, El-Rashidy ZM. In vitro examine of nano-hydroxyapatite/chitosan-gelatin composites for bio-applications. J Adv Res. 2014;5:201–8.
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basicscience and scientific developments in fracture therapeutic. Organogenesis. 2012;8:114–24.
Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bonegrafting. J Am Acad Orthop Surg. 2005;13:77–86.
Agarwal R, Garcia AJ. Biomaterial methods for engineering implants for enhanced osseointegrationand bone restore. Adv Drug Deliv Rev. 2015;94:53–62.
Zhou J, Zhang Z, Joseph J, Zhang X, Ferdows BE, Patel DN, Chen W, Banfi G, et al. Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Exploration (Beijing). 2021;1:20210011.
Giordani C, Matacchione G, Giuliani A, Valli D, Scarpa ES, Antonelli A, Sabbatinelli J, Giacchetti G, et al. Professional-osteogenic and anti inflammatory synergistic impact of orthosilicic acid, vitamin K2, curcumin, polydatin and quercetin mixture in younger and senescent bone marrow-derived mesenchymal stromal cells. Int J Mol Sci. 2023;24:8820.
Fan Y, Cui C, Rosen CJ, Sato T, Xu R, Li P, Wei X, Bi R, et al. Klotho in Osx(+)-mesenchymal progenitors exerts pro-osteogenic and anti inflammatory results throughout mandibular alveolar bone formation and restore. Sign Transduct Goal Ther. 2022;7:155.
Egawa S, Hirai Ok, Matsumoto R, Yoshii T, Yuasa M, Okawa A, Sugo Ok, Sotome S. Efficacy of antibiotic-loaded hydroxyapatite/collagen composites depends on adsorbability for treating Staphylococcus aureus osteomyelitis in rats. J Orthop Res. 2020;38:843–51.
Alegrete N, Sousa SR, Peleteiro B, Monteiro FJ, Gutierres M. Native antibiotic supply ceramic bone substitutes for the remedy of contaminated bone cavities and bone regeneration: a scientific evaluate on what we’ve realized from animal fashions. Supplies (Basel). 2023;16:2387.
Mariano LC, Fernandes MHR, Gomes PS. Antimicrobial biomaterials for the therapeutic of contaminated bonetissue: a scientific evaluate of microtomographic information on experimental animal fashions. J Funct Biomater. 2022;13:193.
Hempel U, Matthaus C, Preissler C, Moller S, Hintze V, Dieter P. Synthetic matrices with high-sulfatedglycosaminoglycans and collagen are anti-inflammatory and pro-osteogenic for human mesenchymal stromal cells. J Cell Biochem. 2014;115:1561–71.
Jones JR. Reprint of: evaluate of bioactive glass: from hench to hybrids. Acta Biomater. 2015;23(Suppl):S53-82.
Chotchindakun Ok, Pekkoh J, Ruangsuriya J, Zheng Ok, Unalan I, Boccaccini AR. Fabrication and characterization of cinnamaldehyde-loaded mesoporous bioactive glass nanoparticles/PHBV-based microspheres for stopping bacterial an infection and selling bone tissue regeneration. Polymers (Basel). 2021;13:1794.
Andrzejowski P, Giannoudis PV. The ‘diamond idea’ for lengthy bone non-union administration. J Orthop Traumatol. 2019;20:21.
Claes L, Recknagel S, Ignatius A. Fracture therapeutic below wholesome and inflammatory circumstances. Nat Rev Rheumatol. 2012;8:133–43.
Marsell R, Einhorn TA. The biology of fracture therapeutic. Damage. 2011;42:551–5.
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the inflammatory response and bone therapeutic. Entrance Endocrinol (Lausanne). 2020;11:386.
Walters G, Pountos I, Giannoudis PV. The cytokines and micro-environment of fracture haematoma: present proof. J Tissue Eng Regen Med. 2018;12:e1662–77.
Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T. Systemic irritation and fracture therapeutic. J Leukoc Biol. 2011;89:669–73.
Segaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, et al. Interleukin-34 promotes tumor development and metastatic course of in osteosarcoma by way of induction of angiogenesis and macrophage recruitment. Int J Most cancers. 2015;137:73–85.
Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforminggrowth issue beta superfamily throughout murine fracture therapeutic. J Bone Miner Res. 2002;17:513–20.
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, et al. The immune microenvironment incartilage harm and restore. Acta Biomater. 2022;140:23–42.
Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, Abutbul S, Huszar M, et al. The position ofIL-1beta within the early tumor cell-induced angiogenic response. J Immunol. 2013;190:3500–9.
Coughlin BA, Trombley BT, Mohr S. Interleukin-6 (IL-6) mediates safety towards glucose toxicityin human Muller cells through activation of VEGF-A signaling. Biochem Biophys Res Commun. 2019;517:227–32.
Zhang D, Huang Y, Huang Z, Zhang R, Wang H, Huang D. FTY-720P suppresses osteoclast formation by regulating expression of interleukin-6 (IL-6), interleukin-4 (IL-4), and matrix metalloproteinase 2 (MMP2). Med Sci Monit. 2016;22:2187–94.
Komi DEA, Redegeld FA. Function of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. 2020;58:313–25.
Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP. Callusmineralization and maturation are delayed throughout fracture therapeutic in interleukin-6 knockout mice. Bone. 2007;41:928–36.
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, et al. Exosomes from TNF alpha-treated human gingiva-derived MSCs improve M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24.
Patil AS, Sable RB, Kothari RM. An replace on reworking development factor-beta (TGF-beta): sources, sorts, capabilities and scientific applicability for cartilage/bone therapeutic. J Cell Physiol. 2011;226:3094–103.
Zhao P, Xiao L, Peng J, Qian YQ, Huang CC. Exosomes derived from bone marrow mesenchymal stemcells enhance osteoporosis by way of selling osteoblast proliferation through MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3962–70.
Zhao Q, Zhang Y, Xiao L, Lu H, Ma Y, Liu Q, Wang X. Floor engineering of titania nanotubesincorporated with double-layered extracellular vesicles to modulate irritation and osteogenesis. Regen Biomater. 2021;8:rbab010.
Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O’Keefe RJ, Awad HA, et al. NOTCH signalingin skeletal progenitors is vital for fracture restore. J Clin Make investments. 2016;126:1471–81.
Su Z, Li J, Lin J, Li Z, Che Y, Zhang Z, Zheng G, Ye G, et al. TNF-alpha-induced KAT2A impedes BMMSC quiescence by mediating succinylation of the mitophagy-related protein VCP. Adv Sci (Weinh). 2024;11: e2303388.
Karnes JM, Daffner SD, Watkins CM. A number of roles of tumor necrosis factor-alpha in fracturehealing. Bone. 2015;78:87–93.
Zhang B, Liu N, Shi H, Wu H, Gao Y, He H, Gu B, Liu H. Excessive glucose microenvironments inhibit theproliferation and migration of bone mesenchymal stem cells by activating GSK3beta. J Bone Miner Metab. 2016;34:140–50.
Zhong Q, Wang D, Mai H, Chen R, Xu Y, Lei M, Xie J, Tang Z, et al. Injectable thermo-responsive poloxamer hydrogel/methacrylate gelatin microgels stimulates bone regeneration by way of biomimetic programmed launch of SDF-1a and IGF-1. Int J Biol Macromol. 2024;271: 132742.
Xu J, Chen Y, Liu Y, Zhang J, Kang Q, Ho Ok, Chai Y, Li G. Impact of SDF-1/Cxcr4 signaling antagonist AMD3100 on bone mineralization in distraction osteogenesis. Calcif Tissue Int. 2017;100: 641652.
Yang F, Xue F, Guan J, Zhang Z, Yin J, Kang Q. Stromal-cell-derived issue (SDF) 1-alpha overexpression promotes bone regeneration by osteogenesis and angiogenesis in osteonecrosis of the femoral head. Cell Physiol Biochem. 2018;46:2561–75.
Lauer A, Wolf P, Mehler D, Gotz H, Ruzgar M, Baranowski A, Henrich D, Rommens PM, et al. Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration. Int J Mol Sci. 2020;21:2175.
Toosi S, Behravan J. Osteogenesis and bone transforming: a concentrate on development components and bioactivepeptides. BioFactors. 2020;46:326–40.
Zhang H, Li X, Li J, Zhong L, Chen X, Chen S. SDF-1 mediates mesenchymal stem cell recruitmentand migration through the SDF-1/CXCR4 axis in bone defect. J Bone Miner Metab. 2021;39:126–38.
Bernhard JC, Marolt Presen D, Li M, Monforte X, Ferguson J, Leinfellner G, Heimel P, Betti SL, et al. Results of endochondral and intramembranous ossification pathways on bone tissue formation and vascularization in human tissue-engineered grafts. Cells. 2022;11:3070.
Blumer MJF. Bone tissue and histological and molecular occasions throughout growth of the longbones. Ann Anat. 2021;235: 151704.
Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55:308–27.
Qiu M, Li C, Cai Z, Li C, Yang Ok, Tulufu N, Chen B, Cheng L, et al. 3D biomimetic calcified cartilaginous callus that induces kind H vessels formation and osteoclastogenesis. Adv Sci (Weinh). 2023;10: e2207089.
Ghiasi MS, Chen JE, Rodriguez EK, Vaziri A, Nazarian A. Computational modeling of human bonefracture therapeutic affected by completely different circumstances of preliminary therapeutic stage. BMC Musculoskelet Disord. 2019;20:562.
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-beta and BMP signaling inbone and cartilage growth, homeostasis and illness. Cell Res. 2024;34:101–23.
Icer MA, Gezmen-Karadag M. The a number of capabilities and mechanisms of osteopontin. Clin Biochem. 2018;59:17–24.
Li JJ, Ebied M, Xu J, Zreiqat H. Present approaches to bone tissue engineering: the interfacebetween biology and engineering. Adv Healthc Mater. 2018;7: e1701061.
Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone transforming. Bone Res. 2022;10:16.
Peng Y, Wu S, Li Y, Crane JL. Kind H blood vessels in bone modeling and transforming. Theranostics. 2020;10:426–36.
Gelalis ID, Politis AN, Arnaoutoglou CM, Korompilias AV, Pakos EE, Vekris MD, Karageorgos A, Xenakis TA. Diagnostic and remedy modalities in nonunions of the femoral shaft: a evaluate. Damage. 2012;43:980–8.
Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture therapeutic within the aged: a evaluate. Maturitas. 2016;92:49–55.
Kim H, Kim DH, Kim DM, Kholinne E, Lee ES, Alzahrani WM, Kim JW, Jeon IH, et al. Do nonsteroidal anti-inflammatory or COX-2 inhibitor medication improve the nonunion or delayed union charges after fracture surgical procedure?: A propensity-score-matched examine. J Bone Joint Surg Am. 2021;103:1402–10.
Bell JM, Shields MD, Watters J, Hamilton A, Beringer T, Elliott M, Quinlivan R, Tirupathi S, et al. Interventions to forestall and deal with corticosteroid-induced osteoporosis and stop osteoporotic fractures in Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2017;1:10899.
Sumaiya Ok, Langford D, Natarajaseenivasan Ok, Shanmughapriya S. Macrophage migration inhibitoryfactor (MIF): a multifaceted cytokine regulated by genetic and physiological methods. Pharmacol Ther. 2022;233: 108024.
Kobayashi T, Onodera S, Kondo E, Tohyama H, Fujiki H, Yokoyama A, Yasuda Ok. Impaired fracturehealing in macrophage migration inhibitory factor-deficient mice. Osteoporos Int. 2011;22:1955–65.
Nagasawa Y, Takei M, Iwata M, Nagatsuka Y, Tsuzuki H, Imai Ok, Imadome KI, Fujiwara S, et al. Human osteoclastogenesis in Epstein-Barr virus-induced erosive arthritis in humanized NOD/Shi-scid/IL2Rgammanull mice. PLoS ONE. 2021;16: e0249340.
Wang H, Han P, Qi X, Li F, Li M, Fan L, Zhang H, Zhang X, et al. Bcl-2 enhances chimeric antigen receptor T cell persistence by decreasing activation-induced apoptosis. Cancers (Basel). 2021;13:197.
Kovanen PE, Leonard WJ. Cytokines and immunodeficiency ailments: vital roles of the gamma(c)dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83.
Oei L, Rivadeneira F, Zillikens MC, Oei EH. Diabetes, diabetic problems, and fracture danger. Curr Osteoporos Rep. 2015;13:106–15.
Okamoto Ok. Regulation of bone by IL-17-producing T cells. Nihon Rinsho Meneki Gakkai Kaishi. 2017;40:361–6.
Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. Function of TNF-alpha in early-stagefracture therapeutic below regular and diabetic circumstances. Comput Strategies Progr Biomed. 2022;213: 106536.
Lin WM, Yuan Q. Newest analysis findings on immune microenvironment regulation in jaw bone associated ailments. Sichuan Da Xue Xue Bao Yi Xue Ban. 2022;53:528–31.
Dar HY, Perrien DS, Pal S, Stoica A, Uppuganti S, Nyman JS, Jones RM, Weitzmann MN, et al. Callusgammadelta T cells and microbe-induced intestinal Th17 cells enhance fracture therapeutic in mice. J Clin Make investments. 2023;133: e166577.
Lisowska B, Kosson D, Domaracka Ok. Lights and shadows of NSAIDs in bone therapeutic: the position ofprostaglandins in bone metabolism. Drug Des Devel Ther. 2018;12:1753–8.
Marquez-Lara A, Hutchinson ID, Nunez F Jr, Smith TL, Miller AN. Nonsteroidal anti-inflammatory medication and bone-healing: a scientific evaluate of analysis high quality. JBJS Rev. 2016;4: e4.
Lisowska B, Kosson D, Domaracka Ok. Positives and negatives of nonsteroidal anti-inflammatory drugsin bone therapeutic: the results of those medication on bone restore. Drug Des Devel Ther. 2018;12:1809–14.
Geusens P, Emans PJ, de Jong JJ, van den Bergh J. NSAIDs and fracture therapeutic. Curr Opin Rheumatol. 2013;25:524–31.
Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol. 2018;61:R75–90.
Okada Ok, Kawao N, Nakai D, Wakabayashi R, Horiuchi Y, Okumoto Ok, Kurashimo S, Takafuji Y, et al. Function of macrophages and plasminogen activator inhibitor-1 in delayed bone restore induced by glucocorticoids in mice. Int J Mol Sci. 2022;23:478.
Goodman SB, Maruyama M. Irritation, bone therapeutic and osteonecrosis: from bedside to bench. J Inflamm Res. 2020;13:913–23.
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory processes affecting bone well being and restore. Curr Osteoporos Rep. 2023;21:842–53.
Luthje FL, Skovgaard Ok, Jensen HE, Blirup-Plum SA, Henriksen NL, Aalbaek B, Jensen LK. Receptor activator of nuclear issue kappa-B ligand will not be regulated throughout continual osteomyelitis in pigs. J Comp Pathol. 2020;179:7–24.
Masters EA, Ricciardi BF, Bentley KLM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletalinfections: microbial pathogenesis, immunity and scientific administration. Nat Rev Microbiol. 2022;20:385–400.
Wang J, Meng M, Li M, Guan X, Liu J, Gao X, Solar Q, Li J, et al. Integrin alpha5beta1, as a receptor of fibronectin, binds the FbaA protein of group A Streptococcus to provoke autophagy throughout an infection. SmBio. 2020;11:10.
Wen Q, Gu F, Sui Z, Su Z, Yu T. The method of osteoblastic an infection by Staphylococcus aureus. Int J Med Sci. 2020;17:1327–32.
Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus an infection. BMC Microbiol. 2014;14:207.
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: relationship and consequencesin osteomyelitis. Entrance Cell Infect Microbiol. 2015;5:85.
Zhu C, Wang J, Cheng T, Li Q, Shen H, Qin H, Cheng M, Zhang X. The potential position of accelerating therelease of mouse beta-defensin-14 within the remedy of osteomyelitis in mice: a major examine. PLoS ONE. 2014;9: e86874.
Yu B, Pacureanu A, Olivier C, Cloetens P, Peyrin F. Evaluation of the human bone lacuno-canalicularnetwork on the nanoscale and affect of spatial decision. Sci Rep. 2020;10:4567.
Masters EA, Salminen AT, Begolo S, Luke EN, Barrett SC, Overby CT, Gill AL, de Mesy Bentley KL, et al. An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacunocanalicular community throughout continual osteomyelitis. Nanomedicine. 2019;21:102039.
Masters EA, de Mesy Bentley KL, Gill AL, Hao SP, Galloway CA, Salminen AT, Man DR, McGrath JL, et al. Identification of penicillin binding protein 4 (PBP4) as a vital issue for Staphylococcus aureus bone invasion throughout osteomyelitis in mice. PLoS Pathog. 2020;16: e1008988.
Zoller SD, Hegde V, Burke ZDC, Park HY, Ishmael CR, Blumstein GW, Sheppard W, Hamad C, et al. Evading the host response: Staphylococcus “hiding” in cortical bone canalicular system causes elevated bacterial burden. Bone Res. 2020;8:43.
Masters EA, Muthukrishnan G, Ho L, Gill AL, de Mesy Bentley KL, Galloway CA, McGrath JL, Awad HA, et al. Staphylococcus aureus cell wall biosynthesis modulates bone invasion and osteomyelitis pathogenesis. Entrance Microbiol. 2021;12: 723498.
Schilcher Ok, Horswill AR. Staphylococcal biofilm growth: construction, regulation, and remedy methods. Microbiol Mol Biol Rev. 2020;84:10.
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani Ok, Ishikawa M, et al. Evolving ideas in bone an infection: redefining “biofilm”, “acute vs. continual osteomyelitis”, “the immune proteome” and “native antibiotic remedy.” Bone Res. 2019;7:20.
Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a posh developmental organism. Mol Microbiol. 2017;104:365–76.
Cui YC, Wu Q, Teh SW, Peli A, Bu G, Qiu YS, Benelli G, Kumar SS. Bone breaking infections—a concentrate on bacterial and mosquito-borne viral infections. Microb Pathog. 2018;122:130–6.
Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, et al. Bacterial biofilm and related infections. J Chin Med Assoc. 2018;81:7–11.
Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing: constancy in bioremediation know-how. Biotechnol Genet Eng Rev. 2016;32:43–73.
Lister JL, Horswill AR. Staphylococcus aureus biofilms: latest developments in biofilm dispersal. Entrance Cell Infect Microbiol. 2014;4:178.
Cheng AG, DeDent AC, Schneewind O, Missiakas D. A play in 4 acts: Staphylococcus aureus abscess formation. Traits Microbiol. 2011;19:225–32.
Malachowa N, Kobayashi SD, Porter AR, Braughton KR, Scott DP, Gardner DJ, Missiakas DM, Schneewind O, et al. Contribution of Staphylococcus aureus coagulases and clumping issue a to abscess formation in a rabbit mannequin of pores and skin and delicate tissue an infection. PLoS ONE. 2016;11: e0158293.
Farnsworth CW, Schott EM, Jensen SE, Zukoski J, Benvie AM, Refaai MA, Kates SL, Schwarz EM, et al. Adaptive upregulation of clumping issue A (ClfA) by Staphylococcus aureus within the overweight, kind 2 diabetic host mediates elevated virulence. Infect Immun. 2017;85:10.
Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol. 2015;185:1518–27.
Hofstee MI, Riool M, Terjajevs I, Thompson Ok, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Three-dimensional in vitro Staphylococcus aureus abscess communities show antibiotic tolerance and safety from neutrophil clearance. Infect Immun. 2020;88:10.
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone growth and restore. Nat Rev Mol Cell Biol. 2020;21:696–711.
Johnson CT, Sok MCP, Martin KE, Kalelkar PP, Caplin JD, Botchwey EA, Garcia AJ. Lysostaphin and BMP-2 co-delivery reduces S. aureus an infection and regenerates critical-sized segmental bone defects. Sci Adv. 2019;5:1228.
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regenerationstrategies: engineered scaffolds, bioactive molecules and stem cells present stage and future views. Biomaterials. 2018;180:143–62.
Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, et al. Neutrophils escort circulating tumour cells to allow cell cycle development. Nature. 2019;566:553–7.
Schneider AH, Taira TM, Publio GA, da Silva D, Donate Yabuta PB, Dos Santos JC, Machado CC, de Souza FF, et al. Neutrophil extracellular traps mediate bone erosion in rheumatoid arthritis by enhancing RANKL-induced osteoclastogenesis. Br J Pharmacol. 2024;181:429–46.
Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, et al. Oxidative stress and irritation in osteoporosis: molecular mechanisms concerned and the connection with microRNAs. Int J Mol Sci. 2023;24:3772.
Sugisaki R, Miyamoto Y, Yoshimura Ok, Sasa Ok, Kaneko Ok, Tanaka M, Itose M, Inoue S, et al. Doable involvement of elastase in enhanced osteoclast differentiation by neutrophils by way of degradation of osteoprotegerin. Bone. 2020;132: 115216.
Kong L, Smith W, Hao D. Overview of RAW2647 for osteoclastogensis examine: phenotype andstimuli. J Cell Mol Med. 2019;23:3077–87.
Chen Y, Liu Ok, Qin Y, Chen S, Guan G, Huang Y, Chen Y, Mo Z. Results of pereskia aculeate miller petroleum ether extract on full freund’s adjuvant-induced rheumatoid arthritis in rats and its potential molecular mechanisms. Entrance Pharmacol. 2022;13: 869810.
Kral-Pointner JB, Haider P, Szabo PL, Salzmann M, Brekalo M, Schneider KH, Schrottmaier WC, Kaun C, et al. Lowered monocyte and neutrophil infiltration and activation by P-selectin/CD62P inhibition enhances thrombus decision in mice. Arterioscler Thromb Vasc Biol. 2024;44:954–68.
Nightingale TD, McCormack JJ, Grimes W, Robinson C, Lopes da Silva M, White IJ, Vaughan A, Cramer LP, et al. Tuning the endothelial response: differential launch of exocytic cargos from Weibel-Palade our bodies. J Thromb Haemost. 2018;16:1873–86.
Mussbacher M, Derler M, Basilio J, Schmid JA. NF-kappaB in monocytes and macrophages—an inflammatory grasp regulator in multitalented immune cells. Entrance Immunol. 2023;14:1134661.
Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, Awad HA, Yanoso L, et al. Ubiquitinligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by selling proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem. 2008;283:23084–92.
Deshpande S, James AW, Blough J, Donneys A, Wang SC, Cederna PS, Buchman SR, Levi B. Reconciling the results of inflammatory cytokines on mesenchymal cell osteogenic differentiation. J Surg Res. 2013;185:278–85.
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel Ok, et al. Osteoclasts recycle through osteomorphs throughout RANKL-stimulated bone resorption. Cell. 2021;184(1330–1347): e1313.
Kim HJ, Kang WY, Seong SJ, Kim SY, Lim MS, Yoon YR. Follistatin-like 1 promotes osteoclastformation through RANKL-mediated NF-kappaB activation and M-CSF-induced precursor proliferation. Cell Sign. 2016;28:1137–44.
Jiang W, Jin Y, Zhang S, Ding Y, Huo Ok, Yang J, Zhao L, Nian B, et al. PGE2 prompts EP4 insubchondral bone osteoclasts to manage osteoarthritis. Bone Res. 2022;10:27.
Somayaji SN, Ritchie S, Sahraei M, Marriott I, Hudson MC. Staphylococcus aureus induces expressionof receptor activator of NF-kappaB ligand and prostaglandin E2 in contaminated murine osteoblasts. Infect Immun. 2008;76:5120–6.
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-based biomaterial scaffoldsfor the restore of contaminated bone defects. Entrance Bioeng Biotechnol. 2022;10: 899760.
Chi H, Chen G, He Y, Chen G, Tu H, Liu X, Yan J, Wang X. 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone restore. Int J Nanomedicine. 2020;15:5825–38.
Chen Z, Zhang Q, Li H, Wei Q, Zhao X, Chen F. Elastin-like polypeptide modified silk fibroin porousscaffold promotes osteochondral restore. Bioact Mater. 2021;6:589–601.
Hickok NJ, Shapiro IM. Immobilized antibiotics to forestall orthopaedic implant infections. Adv Drug Deliv Rev. 2012;64:1165–76.
Zegre M, Barros J, Ribeiro IAC, Santos C, Caetano LA, Goncalves L, Monteiro FJ, Ferraz MP, et al. Poly(DL-lactic acid) scaffolds as a bone focusing on platform for the co-delivery of antimicrobial brokers towards S. aureus–C. albicans blended biofilms. Int J Pharm. 2022;622:121832.
Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial perform for bonetissue engineering: a evaluate. Bioact Mater. 2022;18:383–98.
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their bodily and chemical properties. Nanoscale Res Lett. 2018;13:44.
Shaikh S, Nazam N, Rizvi SMD, Ahmad Ok, Baig MH, Lee EJ, Choi I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20:2468.
Slavin YN, Asnis J, Hafeli UO, Bach H. Steel nanoparticles: understanding the mechanisms behindantibacterial exercise. J Nanobiotechnology. 2017;15:65.
Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical purposes of reactive oxygen speciesgeneration by metallic nanoparticles. Supplies (Basel). 2020;14:53.
Teixeira ABV, de Castro DT, Schiavon MA, Dos Reis AC. Cytotoxicity and launch ions of endodonticsealers integrated with a silver and vanadium base nanomaterial. Odontology. 2020;108:661–8.
Spirescu VA, Chircov C, Grumezescu AM, Vasile BS, Andronescu E. Inorganic nanoparticles andcomposite movies for antimicrobial therapies. Int J Mol Sci. 2021;22:4595.
Zhang C, Li X, Xiao D, Zhao Q, Chen S, Yang F, Liu J, Duan Ok. Cu(2+) launch from polylactic acid coating on titanium reduces bone implant-related an infection. J Funct Biomater. 2022;13:78.
Li C, Ai F, Miao X, Liao H, Li F, Liu M, Yu F, Dong L, et al. “The return of ceramic implants”: rosestem impressed twin layered modification of ceramic scaffolds with improved mechanical and anti-infective properties. Mater Sci Eng C Mater Biol Appl. 2018;93:873–9.
Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Adv Sci (Weinh). 2018;5:1700527.
Kjalarsdottir L, Dyrfjord A, Dagbjartsson A, Laxdal EH, Orlygsson G, Gislason J, Einarsson JM, et al. Bone transforming impact of a chitosan and calcium phosphate-based composite. Regen Biomater. 2019;6:241–7.
Shariatinia Z. Carboxymethyl chitosan: properties and biomedical purposes. Int J Biol Macromol. 2018;120:1406–19.
Ardean C, Davidescu CM, Nemes NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, et al. Elements influencing the antibacterial exercise of chitosan and chitosan modified by functionalization. Int J Mol Sci. 2021;22:7449.
Raafat D, von Bargen Ok, Haas A, Sahl HG. Insights into the mode of motion of chitosan as antibacterial compound. Appl Environ Microbiol. 2008;74:3764–73.
Shi S, Shi W, Zhou B, Qiu S. Analysis and utility of chitosan nanoparticles in orthopaedic infections. Int J Nanomed. 2024;19:6589–602.
Chung YC, Yeh JY, Tsai CF. Antibacterial traits and exercise of water-soluble chitosanderivatives ready by the Maillard response. Molecules. 2011;16:8504–14.
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and purposes of chitosan. Polymers (Basel). 2021;13:904.
Ganesan S, Alagarasan JK, Sonaimuthu M, Aruchamy Ok, Alkallas FH, Ben Gouider Trabelsi A, Kusmartsev FV, Polisetti V, et al. Preparation and characterization of salsalate-loaded chitosan nanoparticles: in vitro launch and antibacterial and antibiofilm exercise. Mar Medication. 2022;20:733.
Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosannanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus an infection. Carbohydr Polym. 2023;315: 121013.
Haji Hossein Tabrizi A, Habibi M, Foroohi F, Mohammadian T, Asadi Karam MR. Investigation of the results of antimicrobial and anti-biofilm peptide IDR1018 and chitosan nanoparticles on ciprofloxacin-resistant Escherichia coli. J Fundamental Microbiol. 2022;62:1229–40.
Zhao D, Yu S, Solar B, Gao S, Guo S, Zhao Ok. Biomedical purposes of chitosan and its spinoff nanoparticles. Polymers (Basel). 2018;10:462.
Kimna C, Deger S, Tamburaci S, Tihminlioglu F. Chitosan/montmorillonite composite nanospheres forsustained antibiotic supply at post-implantation bone an infection remedy. Biomed Mater. 2019;14: 044101.
Li Y, Liu C, Liu W, Cheng X, Zhang A, Zhang S, Liu C, Li N, et al. Apatite formation induced by chitosan/gelatin hydrogel coating anchored on poly(aryl ether nitrile ketone) substrates to advertise osteoblastic differentiation. Macromol Biosci. 2021;21: e2100262.
Ge J, Li M, Fan J, Celia C, Xie Y, Chang Q, Deng X. Synthesis, characterization, and antibacterial exercise of chitosan-chelated silver nanoparticles. J Biomater Sci Polym Ed. 2024;35:45–62.
Tao J, Zhang Y, Shen A, Yang Y, Diao L, Wang L, Cai D, Hu Y. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for native supply of vancomycin within the remedy of osteomyelitis. Int J Nanomed. 2020;15:5855–71.
Yang Y, Li M, Luo H, Zhang D. Floor-decorated graphene oxide sheets with copper nano derivatives for bone regeneration: an in vitro and in vivo examine concerning molecular mechanisms, osteogenesis, and anti-infection potential. ACS Infect Dis. 2022;8:499–515.
Iaconisi GN, Lunetti P, Gallo N, Cappello AR, Fiermonte G, Dolce V, Capobianco L. Hyaluronic acid: a robust biomolecule with wide-ranging purposes—a complete evaluate. Int J Mol Sci. 2023;24:10296.
Romano CL, De Vecchi E, Bortolin M, Morelli I, Drago L. Hyaluronic acid and its composites as alocal antimicrobial/antiadhesive barrier. J Bone Jt Infect. 2017;2:63–72.
He R, Sui J, Wang G, Wang Y, Xu Ok, Qin S, Xu S, Ji F, et al. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloids Surf B Biointerfaces. 2022;216: 112582.
Yang J, Wang Y, Gao Y, Wang Z, Yin C, Ding X, Yang E, Solar D, et al. Environment friendly sterilization systemcombining flavonoids and hyaluronic acid with metallic natural frameworks as service. J Biomed Mater Res B Appl Biomater. 2022;110:1887–98.
Valverde A, Perez-Alvarez L, Ruiz-Rubio L, Pacha Olivenza MA, Garcia Blanco MB, Diaz-Fuentes M, Vilas-Vilela JL. Antibacterial hyaluronic acid/chitosan multilayers onto clean and micropatterned titanium surfaces. Carbohydr Polym. 2019;207:824–33.
Li G, Lai Z, Shan A. Advances of antimicrobial peptide-based biomaterials for the remedy of bacterial infections. Adv Sci (Weinh). 2023;10: e2206602.
Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Solar S, Wu D, et al. Antibacterial peptides-loaded bioactivematerials for the remedy of bone an infection. Colloids Surf B Biointerfaces. 2023;225: 113255.
Xiao M, Jasensky J, Foster L, Kuroda Ok, Chen Z. Monitoring antimicrobial mechanisms of floor immobilized peptides in situ. Langmuir. 2018;34:2057–62.
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides in the direction of scientific utility: supply and formulation. Adv Drug Deliv Rev. 2021;175: 113818.
He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, et al. Improvement of an antimicrobial peptideloaded mineralized collagen bone scaffold for infective bone defect restore. Regen Biomater. 2020;7:515–25.
Zhou H, Zhu Y, Yang B, Huo Y, Yin Y, Jiang X, Ji W. Stimuli-responsive peptide hydrogels forbiomedical purposes. J Mater Chem B. 2024;12:1748–74.
Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W, et al. Implantable biomedical supplies for remedy of bone an infection. Entrance Bioeng Biotechnol. 2023;11:1081446.
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial supplies: design, platforms and purposes. J Mater Chem B. 2021;9:2802–15.
Matos AC, Ribeiro IA, Guedes RC, Pinto R, Vaz MA, Goncalves LM, Almeida AJ, Bettencourt AF. Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic supply. Int J Pharm. 2015;485:317–28.
Gandomkarzadeh M, Moghimi HR, Mahboubi A. Analysis of the impact of ciprofloxacin andvancomycin on mechanical properties of PMMA cement; a preliminary examine on molecular weight. Sci Rep. 2020;10:3981.
Wang H, Maeda T, Miyazaki T. Preparation of bioactive and antibacterial PMMA-based bone cementby modification with quaternary ammonium and alkoxysilane. J Biomater Appl. 2021;36:311–20.
Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized chitosan as an antimicrobial agent: antimicrobialactivity, mechanism of motion and biomedical purposes in orthopedics. Int J Mol Sci. 2013;14:1854–69.
Luo X, Xiao D, Zhang C, Wang G. The roles of exosomes upon metallic ions stimulation in bone regeneration. J Funct Biomater. 2022;13:126.
Cho H, Lee J, Jang S, Lee J, Oh TI, Son Y, Lee E. CaSR-mediated hBMSCs exercise modulation: extra coupling mechanism in bone transforming compartment. Int J Mol Sci. 2020;22:325.
Haag SL, Schiele NR, Bernards MT. Enhancement and mechanisms of MC3T3-E1 osteoblast-like celladhesion to albumin by way of calcium publicity. Biotechnol Appl Biochem. 2022;69:492–502.
Zhang J, Wu Q, Yin C, Jia X, Zhao Z, Zhang X, Yuan G, Hu H, et al. Sustained calcium ion releasefrom bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction. J Leukoc Biol. 2021;110:485–96.
Garcia E, Shalaurova I, Matyus SP, Schutten JC, Bakker SJL, Dullaart RPF, Connelly MA. Nuclear magnetic resonance-measured ionized magnesium is inversely related to kind 2 diabetes within the insulin resistance atherosclerosis examine. Vitamins. 2022;14:1792.
Wang J, Ma XY, Feng YF, Ma ZS, Ma TC, Zhang Y, Li X, Wang L, et al. Magnesium ions promote the organic behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Hint Elem Res. 2017;179:284–93.
Choi S, Kim KJ, Cheon S, Kim EM, Kim YA, Park C, Kim KK. Biochemical exercise of magnesiumions on human osteoblast migration. Biochem Biophys Res Commun. 2020;531:588–94.
Zhai Z, Qu X, Li H, Yang Ok, Wan P, Tan L, Ouyang Z, Liu X, et al. The impact of metallic magnesium degradation merchandise on osteoclast-induced osteolysis and attenuation of NF-kappaB and NFATc1 signaling. Biomaterials. 2014;35:6299–310.
Zhang X, Chen Q, Mao X. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int. 2019;2019:7908205.
Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, et al. TRPM7 kinase-mediated immunomodulation in macrophage performs a central position in magnesium ion-induced bone regeneration. Nat Commun. 2021;12:2885.
Qin H, Weng J, Zhou B, Zhang W, Li G, Chen Y, Qi T, Zhu Y, et al. Magnesium ions promote in vitro rat bone marrow stromal cell angiogenesis by way of notch signaling. Biol Hint Elem Res. 2023;201:28232842.
Pilmane M, Salma-Ancane Ok, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: historic evaluate of a few of their capabilities. Mater Sci Eng C Mater Biol Appl. 2017;78:1222–30.
Solar Y, Li Y, Zhang Y, Wang T, Lin Ok, Liu J. A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis through FAK/MAPK and PI3K/AKT signaling pathways. Mater Sci Eng C Mater Biol Appl. 2021;131: 112482.
Li T, He H, Yang Z, Wang J, Zhang Y, He G, Huang J, Music D, et al. Strontium-doped gelatin scaffoldspromote M2 macrophage change and angiogenesis by way of modulating the polarization of neutrophils. Biomater Sci. 2021;9:2931–46.
Naruphontjirakul P, Li S, Pinna A, Barrak F, Chen S, Redpath AN, Rankin SM, Porter AE, et al. Interplay of monodispersed strontium containing bioactive glass nanoparticles with macrophages. Biomater Adv. 2022;133: 112610.
Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Results of strontium ions with potential antibacterial exercise on in vivo bone regeneration. Sci Rep. 2021;11:8745.
Wang S, Li R, Xia D, Zhao X, Zhu Y, Gu R, Yoon J, Liu Y. The affect of Zn-doped artificial polymermaterials on bone regeneration: a scientific evaluate. Stem Cell Res Ther. 2021;12:123.
Qiao Y, Zhang W, Tian P, Meng F, Zhu H, Jiang X, Liu X, Chu PK. Stimulation of bone development following zinc incorporation into biomaterials. Biomaterials. 2014;35:6882–97.
Suzuki M, Suzuki T, Watanabe M, Hatakeyama S, Kimura S, Nakazono A, Honma A, Nakamaru Y, et al. Function of intracellular zinc in molecular and mobile perform in allergic inflammatory ailments. Allergol Int. 2021;70:190–200.
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. ROS induced bactericidal exercise of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomater. 2020;107:313–24.
Liu J, Zhao Y, Zhang Y, Yao X, Dangle R. Exosomes derived from macrophages upon Zn ion stimulationpromote osteoblast and endothelial cell capabilities. J Mater Chem B. 2021;9:3800–7.
Meng G, Wu X, Yao R, He J, Yao W, Wu F. Impact of zinc substitution in hydroxyapatite coating onosteoblast and osteoclast differentiation below osteoblast/osteoclast co-culture. Regen Biomater. 2019;6: 349359.
Zhang H, Cui Y, Zhuo X, Kim J, Li H, Li S, Yang H, Su Ok, et al. Organic fixation of bioactive bonecement in vertebroplasty: the primary scientific investigation of borosilicate glass (BSG) Strengthened PMMA bone cement. ACS Appl Mater Interf. 2022;14:51711–27.
Bee SL, Bustami Y, Ul-Hamid A, Lim Ok, Abdul Hamid ZA. Synthesis of silver nanoparticle-decoratedhydroxyapatite nanocomposite with mixed bioactivity and antibacterial properties. J Mater Sci Mater Med. 2021;32:106.
Vallet-Regi M, Ruiz-Hernandez E. Bioceramics: from bone regeneration to most cancers nanomedicine. Adv Mater. 2011;23:5177–218.
Punj S, Singh J, Singh Ok. Ceramic biomaterials: properties, state-of-the-art and futureprospectives. Ceram Int. 2021;47:28059–74.
Wu S, Lei L, Bao C, Liu J, Weir MD, Ren Ok, Schneider A, Oates TW, et al. An injectable andantibacterial calcium phosphate scaffold inhibiting Staphylococcus aureus and supporting stem cells for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;120: 111688.
Calabrese G, Petralia S, Franco D, Nocito G, Fabbi C, Forte L, Guglielmino S, Squarzoni S, et al. Anew Ag-nanostructured hydroxyapatite porous scaffold: antibacterial impact and cytotoxicity examine. Mater Sci Eng C Mater Biol Appl. 2021;118: 111394.
Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo Ok, Tahriri M, Bastami F, Lobner D, Tayebi L. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater. 2017;33:1205–16.
Yu T, Pan H, Hu Y, Tao H, Wang Ok, Zhang C. Autologous platelet-rich plasma induces bone formationof tissue-engineered bone with bone marrow mesenchymal stem cells on beta-tricalcium phosphate ceramics. J Orthop Surg Res. 2017;12:178.
Liu Y, Zhao Q, Chen C, Wu C, Ma Y. beta-tricalcium phosphate/gelatin composite scaffolds integrated with gentamycin-loaded chitosan microspheres for contaminated bone defect remedy. PLoS ONE. 2022;17: e0277522.
Pattnaik S, Nethala S, Tripathi A, Saravanan S, Moorthi A, Selvamurugan N. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol. 2011;49:1167–72.
Zhao X, Li P, Guo B, Ma PX. Antibacterial and conductive injectable hydrogels based mostly on quaternizedchitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–48.
Oftadeh MO, Bakhshandeh B, Dehghan MM, Khojasteh A. Sequential utility of mineralized electroconductive scaffold and electrical stimulation for environment friendly osteogenesis. J Biomed Mater Res A. 2018;106:1200–10.
Kazimierczak P, Kolmas J, Przekora A. Organic response to macroporous chitosan-agarose bonescaffolds comprising Mg- and Zn-doped nano-hydroxyapatite. Int J Mol Sci. 2019;20:3835.
Liu S, Li Z, Wang Q, Han J, Wang W, Li S, Liu H, Guo S, et al. Graphene oxide/chitosan/hydroxyapatite composite membranes improve osteoblast adhesion and guided bone regeneration. ACS Appl Bio Mater. 2021;4:8049–59.
Ciolek L, Krok-Borkowicz M, Gasinski A, Biernat M, Antosik A, Pamula E. Bioactive glasses enriched with strontium or zinc with completely different levels of structural order as elements of chitosan-based composite scaffolds for bone tissue engineering. Polymers (Basel). 2023;15:3994.
Adithya SP, Sidharthan DS, Abhinandan R, Balagangadharan Ok, Selvamurugan N. Nanosheetsincorporated bio-composites containing pure and artificial polymers/ceramics for bone tissue engineering. Int J Biol Macromol. 2020;164:1960–72.
Divband B, Aghazadeh M, Al-Qaim ZH, Samiei M, Hussein FH, Shaabani A, Shahi S, Sedghi R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF service for osteogenesis of dental pulp stem cells. Carbohydr Polym. 2021;273: 118589.
Han S, Yang H, Ni X, Deng Y, Li Z, Xing X, Du M. Programmed launch of vascular endothelial development issue and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol. 2023;253: 126721.
Stuckensen Ok, Schwab A, Knauer M, Muinos-Lopez E, Ehlicke F, Reboredo J, Granero-Molto F, Gbureck U, et al. Tissue mimicry in morphology and composition promotes hierarchical matrix transforming of invading stem cells in osteochondral and meniscus scaffolds. Adv Mater. 2018;30: e1706754.
Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue Ok, Levett PA, Klein TJ, Melchels FP, et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue tradition platforms. Nat Protoc. 2016;11:727–46.
Sarker B, Zehnder T, Rath SN, Horch RE, Kneser U, Detsch R, Boccaccini AR. Oxidized alginate gelatin hydrogel: a positive matrix for development and osteogenic differentiation of adipose-derived stem cells in 3D. ACS Biomater Sci Eng. 2017;3:1730–7.
Filippi M, Born G, Chaaban M, Scherberich A. Pure polymeric scaffolds in bone regeneration. Entrance Bioeng Biotechnol. 2020;8:474.
Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymersfor tissue engineering purposes. Entrance Bioeng Biotechnol. 2019;7:164.
Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Enzymatically-degradablealginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials. 2019;217: 119294.
Zhao D, Wang X, Cheng B, Yin M, Hou Z, Li X, Liu Ok, Tie C, et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone restore. ACS Appl Mater Interfaces. 2022;14:21886–905.
Ueng SW, Lin SS, Wang IC, Yang CY, Cheng RC, Liu SJ, Chan EC, Lai CF, et al. Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for remedy of experimental bone an infection attributable to Staphylococcus aureus. J Orthop Surg Res. 2016;11:52.
Li X, Huang X, Li L, Wu J, Yi W, Lai Y, Qin L. LL-37-coupled porous composite scaffold for thetreatment of contaminated segmental bone defect. Pharmaceutics. 2022;15:1792.
Garcia-Garcia J, Azuara G, Fraile-Martinez O, Garcia-Montero C, Alvarez-Mon MA, Ruiz-Diez S, Alvarez-Mon M, Bujan J, et al. Modification of the polymer of a bone cement with biodegradable microspheres of PLGA and loading with daptomycin and vancomycin enhance the response to bone tissue an infection. Polymers (Basel). 2022;14:888.
He M, Wang H, Han Q, Shi X, He S, Solar J, Zhu Z, Gan X, et al. Glucose-primed PEEK orthopaedic implants for antibacterial remedy and safeguarding diabetic osseointegration. Biomaterials. 2023;303: 122355.
Wei S, Jian C, Xu F, Bao T, Lan S, Wu G, Qi B, Bai Z, et al. Vancomycin-impregnated electrospunpolycaprolactone (PCL) membrane for the remedy of contaminated bone defects: an animal examine. J Biomater Appl. 2018;32:1187–96.
Al Thaher Y, Alotaibi HF, Yang L, Prokopovich P. PMMA bone cement containing lengthy releasing silicabased chlorhexidine nanocarriers. PLoS ONE. 2021;16: e0257947.
Koons GL, Diba M, Mikos AG. Supplies design for bone-tissue engineering. Nat Rev Mater. 2020;5:584–603.
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and materials choice for bone restore. Acta Biomater. 2019;84:16–33.
Liu S, Han Z, Hao JN, Zhang D, Li X, Cao Y, Huang J, Li Y. Engineering of a NIR-activable hydrogel coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone spinoff launch property for angiogenesis and bone regeneration. Bioact Mater. 2023;26:1–13.
Li W, Wu Y, Zhang X, Wu T, Huang Ok, Wang B, Liao J. Self-healing hydrogels for bone defectrepair. RSC Adv. 2023;13:16773–88.
Qiu M, Tulufu N, Tang G, Ye W, Qi J, Deng L, Li C. Black phosphorus accelerates bone regeneration based mostly on immunoregulation. Adv Sci (Weinh). 2024;11: e2304824.
Seliktar D. Designing cell-compatible hydrogels for biomedical purposes. Science. 2012;336:11241128.
Jose G, Shalumon KT, Chen JP. Pure Polymers based mostly hydrogels for cell tradition purposes. Curr Med Chem. 2020;27:2734–76.
Wei M, Hsu Y-I, Asoh T-A, Sung M-H, Uyama H. Injectable poly(γ-glutamic acid)-basedbiodegradable hydrogels with tunable gelation charge and mechanical power. J Mater Chem B. 2021;9:3584–94.
Nie R, Solar Y, Lv H, Lu M, Huangfu H, Li Y, Zhang Y, Wang D, et al. 3D printing of MXene compositehydrogel scaffolds for photothermal antibacterial exercise and bone regeneration in contaminated bone defect fashions. Nanoscale. 2022;14:8112–29.
Huang Y, Zhai X, Ma T, Zhang M, Yang H, Zhang S, Wang J, Liu W, et al. A unified therapeuticprophylactic tissue-engineering scaffold demonstrated to forestall tumor recurrence and overcoming an infection towards bone transforming. Adv Mater. 2023;35: e2300313.
Xu Y, Xu C, Yang Ok, Ma L, Li G, Shi Y, Feng X, Tan L, et al. Copper Ion-modified germaniumphosphorus nanosheets built-in with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration. Adv Healthc Mater. 2023;12: e2301151.
Qi H, Wang B, Wang M, Xie H, Chen C. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug supply and enhanced osteogenic differentiation in vitro. Int J Pharm. 2024;657: 124134.
Qin B, Dong H, Tang X, Liu Y, Feng G, Wu S, Zhang H. Antisense yycF and BMP-2 co-delivery gelatin methacryloyl and carboxymethyl chitosan hydrogel composite for infective bone defects regeneration. Int J Biol Macromol. 2023;253: 127233.
Wang S, Lei H, Mi Y, Ma P, Fan D. Chitosan and hyaluronic acid based mostly injectable twin community hydrogels—mediating antimicrobial and inflammatory modulation to advertise therapeutic of contaminated bone defects. Int J Biol Macromol. 2024;274: 133124.
Zhang Q, Zhou X, Du H, Ha Y, Xu Y, Ao R, He C. Bifunctional hydrogel-integrated 3D printed scaffold for repairing contaminated bone defects. ACS Biomater Sci Eng. 2023;9:4583–96.
Xu L, Ye Q, Xie J, Yang J, Jiang W, Yuan H, Li J. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for contaminated bone defect restore. J Mater Chem B. 2022;10:282–92.
Guan X, Wu S, Ouyang S, Ren S, Cui N, Wu X, Xiang D, Chen W, et al. Reworking microenvironment for implant-associated osteomyelitis by twin metallic peroxide. Adv Healthc Mater. 2024;13: e2303529.
Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW. Gelatin-methacryloyl hydrogels: in the direction of biofabrication-based tissue restore. Traits Biotechnol. 2016;34:394–407.
Lv B, Lu L, Hu L, Cheng P, Hu Y, Xie X, Dai G, Mi B, et al. Latest advances in GelMA hydrogel transplantation for musculoskeletal issues and associated illness remedy. Theranostics. 2023;13:2015–39.
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for superior tissue therapeutics. Bioact Mater. 2022;8:267–95.
Mahmoud AH, Han Y, Dal-Fabbro R, Daghrery A, Xu J, Kaigler D, Bhaduri SB, Malda J, et al. Nanoscale beta-TCP-laden GelMA/PCL composite membrane for guided bone regeneration. ACS Appl Mater Interfaces. 2023;15:32121–35.
Li H, Li J, Jiang J, Lv F, Chang J, Chen S, Wu C. An osteogenesis/angiogenesis-stimulation synthetic ligament for anterior cruciate ligament reconstruction. Acta Biomater. 2017;54:399–410.
Yang B, Music J, Jiang Y, Li M, Wei J, Qin J, Peng W, Lopez Lasaosa F, et al. Injectable adhesive self therapeutic multicross-linked double-network hydrogel facilitates full-thickness pores and skin wound therapeutic. ACS Appl Mater Interfaces. 2020;12:57782–97.
Wang L, Wang J, Zhou X, Solar J, Zhu B, Duan C, Chen P, Guo X, et al. A brand new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Entrance Bioeng Biotechnol. 2020;8: 564731.
Chen L, Yu C, Xiong Y, Chen Ok, Liu P, Panayi AC, Xiao X, Feng Q, et al. Multifunctional hydrogel enhances bone regeneration by way of sustained launch of stromal cell-derived factor-1alpha and exosomes. Bioact Mater. 2023;25:460–71.
Bai H, Zhao Y, Wang C, Wang Z, Wang J, Liu H, Feng Y, Lin Q, et al. Enhanced osseointegration ofthree-dimensional supramolecular bioactive interface by way of osteoporotic microenvironment regulation. Theranostics. 2020;10:4779–94.
Pariza G, Mavrodin CI, Antoniac I. Dependency between the porosity andpolymeric construction of biomaterials utilized in hernia surgical procedure and continual mesh – an infection. Mater Plast. 2015;1:4.
Zhao Y, Wang Z, Jiang Y, Liu H, Music S, Wang C, Li Z, Yang Z, et al. Biomimetic composite scaffoldsto manipulate stem cells for aiding rheumatoid arthritis administration. Adv Funct Mater. 2019;29:1807860.
Qiao S, Wu D, Li Z, Zhu Y, Zhan F, Lai H, Gu Y. The mix of multi-functional ingredientsloaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect remedy. J Tissue Eng. 2020;11:2041731420965797.
Wang Ok, Li Y, Xie LH, Li X, Li JR. Development and utility of base-stable MOFs: a vital evaluate. Chem Soc Rev. 2022;51:6417–41.
Stanley PM, Haimerl J, Shustova NB, Fischer RA, Warnan J. Merging molecular catalysts and metalorganic frameworks for photocatalytic gas manufacturing. Nat Chem. 2022;14:1342–56.
Zhou HC, Kitagawa S. Steel-organic frameworks (MOFs). Chem Soc Rev. 2014;43:5415–8.
Mallakpour S, Nikkhoo E, Hussain CM. Software of MOF supplies as drug supply programs forcancer remedy and dermal remedy. Coord Chem Rev. 2022;451:214262.
Ma X, Ren X, Guo X, Fu C, Wu Q, Tan L, Li H, Zhang W, et al. Multifunctional iron-based metallic natural framework as biodegradable nanozyme for microwave enhancing dynamic remedy. Biomaterials. 2019;214: 119223.
Zhu ZH, Liu Y, Music C, Hu Y, Feng G, Tang BZ. Porphyrin-based two-dimensional layered metalorganic framework with sono-/photocatalytic exercise for water decontamination. ACS Nano. 2022;16:13461357.
Meng J, Liu X, Niu C, Pang Q, Li J, Liu F, Liu Z, Mai L. Advances in metal-organic framework coatings: versatile synthesis and broad purposes. Chem Soc Rev. 2020;49:3142–86.
Ma L, Cheng Y, Feng X, Zhang X, Lei J, Wang H, Xu Y, Tong B, et al. A janus-ROS therapeutic system selling infectious bone regeneration through sono-epigenetic modulation. Adv Mater. 2024;36: e2307846.
Yan B, Tan J, Zhang H, Liu L, Chen L, Qiao Y, Liu X. Developing fluorine-doped Zr-MOF movies ontitanium for antibacteria, anti-inflammation, and osteogenesis. Biomater Adv. 2022;134: 112699.
Karakecili A, Topuz B, Ersoy FS, Sahin T, Gunyakti A, Demirtas TT. UiO-66 metal-organic frameworkas a double actor in chitosan scaffolds: antibiotic service and osteogenesis promoter. Biomater Adv. 2022;136: 212757.
Yang X, Chai H, Guo L, Jiang Y, Xu L, Huang W, Shen Y, Yu L, et al. In situ preparation of porousmetal-organic frameworks ZIF-8@Ag on poly-ether-ether-ketone with synergistic antibacterial exercise. Colloids Surf B Biointerf. 2021;205: 111920.
Karakecili A, Topuz B, Korpayev S, Erdek M. Steel-organic frameworks for on-demand pH managed supply of vancomycin from chitosan scaffolds. Mater Sci Eng C Mater Biol Appl. 2019;105: 110098.
Fandzloch M, Augustyniak AW, Trzcinska-Wencel J, Golinska P, Roszek Ok. A brand new MOF@bioactiveglass composite bolstered with silver nanoparticles—a brand new method to designing antibacterial biomaterials. Dalton Trans. 2024;53:10928–37.
Tao B, Lin C, He Y, Yuan Z, Chen M, Xu Ok, Li Ok, Guo A, et al. Osteoimmunomodulation mediatingimproved osteointegration by OGP-loaded cobalt-metal natural framework on titanium implants with antibacterial property. Chem Eng J. 2021;423:130176.
Wang B, Chen H, Peng S, Li X, Liu X, Ren H, Yan Y, Zhang Q. Multifunctional magnesium-organicframework doped biodegradable bone cement for antibacterial development, inflammatory regulation and osteogenic differentiation. J Mater Chem B. 2023;11:2872–85.
Kaya S, Cresswell M, Boccaccini AR. Mesoporous silica-based bioactive glasses for antibiotic-free anti bacterial purposes. Mater Sci Eng C Mater Biol Appl. 2018;83:99–107.
Han L, Huang Z, Zhu M, Zhu Y, Li H. Drug-loaded zeolite imidazole framework-8-functionalizedbioglass scaffolds with antibacterial exercise for bone restore. Ceram Int. 2022;48:6890.
Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, Pang Y, Li D, et al. Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for selling bone regeneration. ACS Appl Mater Interf. 2021;13:50836–50.
Shou P, Yu Z, Wu Y, Feng Q, Zhou B, Xing J, Liu C, Tu J, et al. Zn(2+) doped ultrasmall prussianblue nanotheranostic agent for breast most cancers photothermal remedy below MR imaging steerage. Adv Healthc Mater. 2020;9: e1900948.
Li ZH, Chen Y, Solar Y, Zhang XZ. Platinum-doped prussian blue nanozymes for multiwavelength bioimaging guided photothermal remedy of tumor and anti-inflammation. ACS Nano. 2021;15:5189–200.
Han D, Li Y, Liu X, Li B, Han Y, Zheng Y, Yeung KW, Li C, Cui Z, Liang Y, Li Z. Fast micro organism trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for fast tissue restore of bacterial contaminated wounds. Chem Eng J. 2020;396:125194.
Zhao C, Shu C, Yu J, Zhu Y. Steel-organic frameworks functionalized biomaterials for selling bonerepair. Mater Immediately Bio. 2023;21: 100717.
Li J, Music S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, et al. 2D MOF periodontitis photodynamic ion remedy. J Am Chem Soc. 2021;143:15427–39.
Dang W, Ma B, Li B, Huan Z, Ma N, Zhu H, Chang J, Xiao Y, et al. 3D printing of metal-organicframework nanosheets-structured scaffolds with tumor remedy and bone development. Biofabrication. 2020;12: 025005.
Xu W, Jambhulkar S, Zhu Y, Ravichandran D, Music Ok. 3D printing for polymer/particle-basedprocessing: A Overview. Compos Half B Eng. 2021;223:109102.
Ghosh C, Sarkar P, Issa R, Haldar J. Options to traditional antibiotics within the period ofantimicrobial resistance. Traits Microbiol. 2019;27:323–38.
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Present advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8: e1801106.
Mo S, Tang Ok, Liao Q, Xie L, Wu Y, Wang G, Ruan Q, Gao A, et al. Tuning the association oflamellar nanostructures: reaching the twin perform of bodily killing micro organism and selling osteogenesis. Mater Horiz. 2023;10:881–8.
Bogatcheva E, Dubuisson T, Protopopova M, Einck L, Nacy CA, Reddy VM. Chemical modification of capuramycins to reinforce antibacterial exercise. J Antimicrob Chemother. 2011;66:578–87.
Yavari SA, Croes M, Akhavan B, Jahanmard F, Eigenhuis CC, Dadbakhsh S, Vogely HC, Bilek MM, et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Add Manuf. 2020. https://doi.org/10.1016/j.addma.2019.100991.
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells inclinical bone regeneration. Nat Rev Endocrinol. 2015;11:140–50.
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, et al. Development of vascularized tissue engineered bone with nHA-coated BCP bioceramics loaded with peripheral blood-derived MSC and EPC to restore giant segmental femoral bone defect. ACS Appl Mater Interfaces. 2023;15:249–64.
Wang M, Li H, Yang Y, Yuan Ok, Zhou F, Liu H, Zhou Q, Yang S, et al. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial an infection. Bioact Mater. 2021;6:1318–29.
Kuang Z, Dai G, Wan R, Zhang D, Zhao C, Chen C, Li J, Gu H, et al. Osteogenic and antibacterial twin capabilities of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold. Genes Dis. 2021;8:193–202.
Lin Liang Z, Chen L, Quan WY. 3D printed PLGA scaffoldwith nano-hydroxyapatite carrying linezolid for remedy of contaminated bone defects. Biomed Pharmacother. 2024;172:116228.
Qayoom I, Teotia AK, Panjla A, Verma S, Kumar A. Native and sustained supply of rifampicin froma bioactive ceramic service treats bone an infection in rat tibia. ACS Infect Dis. 2020;6:2938–49.
Yuan J, Wang B, Han C, Huang X, Xiao H, Lu X, Lu J, Zhang D, et al. Nanosized-Ag-doped porousbeta-tricalcium phosphate for organic purposes. Mater Sci Eng C Mater Biol Appl. 2020;114: 111037.
Alves APN, Arango-Ospina M, Oliveira R, Ferreira IM, de Moraes EG, Hartmann M, de Oliveira APN, Boccaccini AR, et al. 3D-printed beta-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: coating optimization, in vitro bioactivity and antibacterial properties. J Biomed Mater Res B Appl Biomater. 2023;111:881–94.
Hu X, Chen J, Yang S, Zhang Z, Wu H, He J, Qin L, Cao J, et al. 3D printed multifunctional biomimetic bone scaffold mixed with TP-Mg nanoparticles for the infectious bone defects restore. Small. 2024;20: e2403681.
Ji Y, Yang S, Solar J, Ning C. Realizing each antibacterial exercise and cytocompatibility insilicocarnotite bioceramic through germanium incorporation. J Funct Biomater. 2023;14:154.
Rumian L, Tiainen H, Cibor U, Krok-Borkowicz M, Brzychczy-Wloch M, Haugen HJ, Pamula E. Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and remedy of bone tissue infections. Mater Sci Eng C Mater Biol Appl. 2016;69:856–64.
Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-ladenmesoporous bioglass/PLGA composite scaffolds for bone regeneration in contaminated bone defects. Artif Cells Nanomed Biotechnol. 2018;46:1935–47.
Solar H, Hu C, Zhou C, Wu L, Solar J, Zhou X, Xing F, Lengthy C, et al. 3D printing of calcium phosphate scaffoldswith managed launch of antibacterial capabilities for jaw bone restore. Mater Des. 2020;189:108540.
Kargozar S, Montazerian M, Hamzehlou S, Kim HW, Baino F. Mesoporous bioactive glasses: promising platforms for antibacterial methods. Acta Biomater. 2018;81:1–19.
Ke D, Tarafder S, Vahabzadeh S, Bose S. Results of MgO, ZnO, SrO, and SiO(2) in tricalciumphosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;96:10–9.
Xu Q, Chang M, Zhang Y, Wang E, Xing M, Gao L, Huan Z, Guo F, et al. PDA/Cu bioactive hydrogelwith “scorching ions impact” for inhibition of drug-resistant micro organism and enhancement of infectious pores and skin wound therapeutic. ACS Appl Mater Interfaces. 2020;12:31255–69.
Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C. 3D-printed bioceramic scaffolds withantibacterial and osteogenic exercise. Biofabrication. 2017;9: 025037.
Baino F, Potestio I, Vitale-Brovarone C. Manufacturing and physicochemical characterization of cudoped silicate bioceramic scaffolds. Supplies (Basel). 2018;11:1524.
Sugimoto H, Biggemann J, Fey T, Singh P, Kakimoto KI. Lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3 scaffolds for enhanced antibacterial property. Mater Lett. 2021;297: 129969.
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, et al. 2D supplies for bonetherapy. Adv Drug Deliv Rev. 2021;178: 113970.
Zhao Y, Kang H, Xia Y, Solar L, Li F, Dai H. 3D printed photothermal scaffold sandwiching bacteriainside and out of doors improves the contaminated micro setting and repairs bone defects. Adv Healthc Mater. 2024;13: e2302879.
He Y, Liu X, Lei J, Ma L, Zhang X, Wang H, Lei C, Feng X, et al. Correction: bioactive VS4-basedsonosensitizer for strong chemodynamic, sonodynamic and osteogenic remedy of contaminated bone defects. J Nanobiotechnology. 2024;22:46.
Huang Y, Li J, Yu Z, Li J, Liang Ok, Deng Y. Elaborated bio-heterojunction with strong sterilizationeffect for contaminated tissue regeneration through activating competent cell-like antibacterial tactic. Adv Mater. 2024;36: e2414111.
Zhang L, Zhang H, Zhou H, Tan Y, Zhang Z, Yang W, Zhao L, Zhao Z. A Ti(3)C(2) MXene-integratednear-infrared-responsive multifunctional porous scaffold for contaminated bone defect restore. J Mater Chem B. 2023;12:79–96.
Jing X, Xu C, Su W, Ding Q, Ye B, Su Y, Yu Ok, Zeng L, et al. Photosensitive and conductive hydrogelinduced innerved bone regeneration for contaminated bone defect restore. Adv Healthc Mater. 2023;12: e2201349.
Wu Y, Liao Q, Wu L, Luo Y, Zhang W, Guan M, Pan H, Tong L, et al. ZnL(2)-BPs built-in bone scaffold below sequential photothermal mediation: a win-win technique delivering antibacterial remedy and fostering osteogenesis thereafter. ACS Nano. 2021;15:17854–69.
Li Y, Liu C, Cheng X, Wang J, Pan Y, Liu C, Zhang S, Jian X. PDA-BPs built-in mussel-inspiredmultifunctional hydrogel coating on PPENK implants for anti-tumor remedy, antibacterial an infection and bone regeneration. Bioact Mater. 2023;27:546–59.
Zhu C, He M, Solar D, Huang Y, Huang L, Du M, Wang J, Wang J, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal remedy of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13:47327–40.
Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, Chen B, Fu Q, et al. Sericin/nano-hydroxyapatite hydrogels based mostly on graphene oxide for efficient bone regeneration through immunomodulation and osteoinduction. Int J Nanomedicine. 2023;18:1875–95.
Wu S, Gan T, Xie L, Deng S, Liu Y, Zhang H, Hu X, Lei L. Antibacterial efficiency of grapheneoxide/alginate-based antisense hydrogel for potential therapeutic utility in Staphylococcus aureus an infection. Biomater Adv. 2022;141: 213121.
Jin L, Wu S, Mao C, Wang C, Zhu S, Zheng Y, Zhang Y, Li Z, et al. Fast and efficient remedy ofchronic osteomyelitis by conductive network-like MoS(2)/CNTs by way of a number of reflection and scattering enhanced synergistic remedy. Bioact Mater. 2024;31:284–97.
Parajuli D, Murali N, Cad Ok, Karki B, Samatha Ok, Kim AA, Park M, Pant B. Developments in MXene polymer nanocomposites in power storage and biomedical purposes. Polymers (Basel). 2022;14:3433.
Yin J, Han Q, Zhang J, Liu Y, Gan X, Xie Ok, Xie L, Deng Y. MXene-based hydrogels endow polyetheretherketone with efficient osteogenicity and mixed remedy of osteosarcoma and bacterial an infection. ACS Appl Mater Interfaces. 2020;12:45891–903.
Wu M, Liu H, Zhu Y, Chen F, Chen Z, Guo L, Wu P, Li G, et al. Delicate photothermal-stimulation basedon injectable and photocurable hydrogels orchestrates immunomodulation and osteogenesis for highperformance bone regeneration. Small. 2023;19: e2300111.
Vergara A, Fernandez-Pittol MJ, Munoz-Mahamud E, Morata L, Bosch J, Vila J, Soriano A, CasalsPascual C. Analysis of lipocalin-2 as a biomarker of periprosthetic joint an infection. J Arthroplasty. 2019;34:123–5.