-2.1 C
United States of America
Wednesday, January 22, 2025

A novel pan-epitope primarily based nanovaccine self-assembled with CpG enhances immune responses towards flavivirus | Journal of Nanobiotechnology


  • Sirohi D, Kuhn RJ. Zika Virus construction, maturation, and receptors. J Infect Dis. 2017;216:S935–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yen L-C, Chen H-W, Ho C-L, Lin C-C, Lin Y-L, Yang Q-W, et al. Neutralizing antibodies focusing on a novel epitope on envelope protein exhibited broad safety towards flavivirus with out threat of illness enhancement. J Biomed Sci. 2023;30:41.

  • Sharma A, Zhang X, Dejnirattisai W, Dai X, Gong D, Wongwiwat W, Duquerroy S, Rouvinski A, Vaney MC, Guardado-Calvo P, et al. The epitope association on flavivirus particles contributes to Mab C10’s extraordinary neutralization breadth throughout Zika and dengue viruses. Cell. 2021;184:6052–e60666018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins MH, Metz SW. Progress and Works in Progress: replace on Flavivirus Vaccine Growth. Clin Ther. 2017;39:1519–36.

    Article 
    PubMed 

    Google Scholar
     

  • Ngono AE, Shresta S. Immune Response to Dengue and Zika. Annu Rev Immunol. 2018;36:279–308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kariyawasam R, Lachman M, Mansuri S, Chakrabarti S, Boggild AK. A dengue vaccine whirlwind replace. Ther Adv Infect Dis. 2023;10:20499361231167274.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X-F, Cui Z, Fan H, Chen Q, Cao L, Qiu H-Y, et al. A extremely immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 an infection and transmission in hamsters. Innovation (Camb). 2022;3(2):100221.

  • Tlaxca JL, Ellis S, Remmele RLJADDR. Dwell attenuated and inactivated viral vaccine formulation and nasal supply: potential and challenges. Adv Drug Deliv Rev. 2015;93:56–78.

  • Huang Z, Zhang Y, Li H, Zhu J, Tune W, Chen Ok, Zhang Y, Lou Y. Vaccine improvement for mosquito-borne viral ailments. Entrance Immunol. 2023;14:1161149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froimchuk E, Carey ST, Edwards C, Jewell CM. Self-assembly as a Molecular Technique to Enhance Immunotherapy. Acc Chem Res. 2020;53:2534–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang N, Shang J, Jiang S, Du L. Subunit vaccines towards rising pathogenic human coronaviruses. Entrance Microbiol. 2020;11:298.

  • Shalash AO, Hussein WM, Skwarczynski M, Toth I. Key concerns for the event of secure and efficient SARS-CoV-2 Subunit Vaccine: a peptide-based Vaccine Various. Adv Sci (Weinh). 2021;8:e2100985.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based most cancers immunotherapy. J Management Launch. 2018;292:256–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez DR, Metz SW, Baric RS. Dengue vaccines: the Promise and pitfalls of antibody-mediated Safety. Cell Host Microbe. 2021;29:13–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune J, Wang M, Zhou L, Tian P, Solar Z, Solar J, et al. A candidate nanoparticle vaccine comprised of a number of epitopes of the African swine fever virus elicits a sturdy immune response. J Nanobiotechnol. 2023;21:424.

  • Liu Z-H, Deng Z-F, Lu Y, Fang W-H, He F. A modular and self-adjuvanted multivalent vaccine platform primarily based on porcine Circovirus virus-like nanoparticles. J Nanobiotechnol. 2022;20:493.

  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Professional Rev Vaccines. 2014;10:499–511.

    Article 

    Google Scholar
     

  • Cooper CL, Davis HL, Morris ML, Efler SM, Krieg AM, Li Y, et al. Security and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004;22:3136–43.

  • Nanishi E, Borriello F, O’Meara TR, Mcgrath ME, Dowling DJJSTM. An aluminum hydroxide:CpG adjuvant enhances safety elicited by a SARS-CoV-2 receptor binding area vaccine in aged mice. Sci Transl Med. 2021;14(629):eabj5305.

  • Jin J-O, Park H, Zhang W, de Vries JW, Gruszka A, Lee MW, Ahn D-R, Herrmann A, Kwak M. Modular supply of CpG-incorporated lipid-DNA nanoparticles for spleen DC activation. Biomaterials. 2017;115:81–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H, Zhang W, Hwang J, An E-Ok, Choi YK, Moon E, et al. Service-free micellar CpG interacting with cell membrane for enhanced immunological therapy of HIV-1. Biomaterials. 2021;277:121081.

  • Liu D, Liu J, Ma B, Deng B, Leng X, Kong D, Liu L. A easy self-adjuvanting biomimetic nanovaccine self-assembled with the conjugate of phospholipids and nucleotides can induce a robust most cancers immunotherapeutic impact. Biomaterials Sci. 2021;9:84–92.

    Article 
    CAS 

    Google Scholar
     

  • Du JJ, Wang CW, Xu WB, Zhang L, Tang YK, Zhou SH, Gao XF, Yang GF, Guo J. Multifunctional Protein Conjugates with Constructed-in Adjuvant (Adjuvant-Protein-Antigen) as Most cancers Vaccines Increase Potent Immune Responses. iScience 2020, 23:100935.

  • Mellman IJC. Dendritic cells: specialised and controlled antigen processing machines. 2001, 106.

  • Zaneti AB, Yamamoto MM, Sulczewski FB, Almeida BDS, Souza HFS, Ferreira NS, Maeda D, Gross sales NS, Rosa DS, Ferreira LCS, Boscardin SB. Dendritic cell focusing on utilizing a DNA vaccine induces particular antibodies and CD4(+) T cells to the Dengue Virus envelope protein area III. Entrance Immunol. 2019;10:59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valerio-Bolas A, Meunier M, Palma-Marques J, Rodrigues A, Santos AM, Nunes T, et al. Exploiting Leishmania-primed dendritic cells as potential immunomodulators of Canine Immune Response. Cells. 2024;13:445.

  • Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: present Progress and Future challenges. Chem Rev. 2019;120:3210–29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie J, Wang Q, Jin S, Yao X, Xu L, Chang Y, Ding F, Li Z, Solar L, Shi Y, Shan Y. Self-assembled multiepitope nanovaccine primarily based on NoV P particles induces efficient and lasting safety towards H3N2 influenza virus. Nano Res. 2023;16:7337–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv. 2017;35:575–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Jiang M, Du G, Zhong X, He C, Qin M, Hou Y, Liu R, Solar X. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity towards most cancers. Acta Pharm Sinica B. 2023;13:3518–34.

    Article 
    CAS 

    Google Scholar
     

  • Tune H, Su Q, Shi W, Huang P, Zhang C, Zhang C, Liu Q, Wang W. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for customized immunotherapy. Acta Biomater. 2022;141:398–407.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin J-O, Kim H, Huh YH, Herrmann A, Kwak M. Smooth matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids allow immunological therapy of most cancers. J Managed Launch. 2019;315:76–84.

    Article 
    CAS 

    Google Scholar
     

  • He C, Yang J, Hong W, Chen Z, Peng D, Lei H, et al. A self-assembled trimeric protein vaccine induces protecting immunity towards Omicron variant. Nat Commun. 2022;13:5459.

  • Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, Fang WH, He F. Self-assembling Nanovaccine enhances protecting efficacy towards CSFV in pigs. Entrance Immunol. 2021;12:689187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Zhang Y, Zou P, Wang M, Fu W, She J, Tune Z, Xu J, Huang J, Wu F. Self-assembly M2e-Primarily based peptide nanovaccine confers Broad Safety towards Influenza viruses. Entrance Microbiol. 2020;11:1961.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan Y, Jazayeri SD, Ramanathan B, Poh CL. Enhancement of Tetravalent Immune responses to extremely conserved epitopes of a dengue peptide vaccine conjugated to polystyrene nanoparticles. Vaccines (Basel). 2020;8:417.

  • van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence. 2021;12:2814–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Messer, William B, Gubler, Duane J. Harris, Eva, Sivananthan, ailments KJEI: emergence and world unfold of a Dengue serotype 3. Subtype III Virus; 2003.

  • Sulczewski FB, Liszbinski RB, Romão PRT, Rodrigues Junior LC. Nanoparticle vaccines towards viral infections. Arch Virol. 2018;163:2313–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal D, Nasrolahi Shirazi A, Parang Ok. Self-assembly of peptides to nanostructures. Org Biomol Chem. 2014;12:3544–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Twin-targeting and microenvironment-responsive micelles as a gene supply system to enhance the sensitivity of glioma to radiotherapy. Acta Pharm Sinica B. 2019;9:381–96.

    Article 

    Google Scholar
     

  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M. Pathogen recognition and improvement of particulate vaccines: does dimension matter? Strategies. 2006;40:1–9.

  • Zeng Q, Li H, Jiang H, Yu J, Wang Y, Ke H, Gong T, Zhang Z, Solar X. Tailoring polymeric hybrid micelles with lymph node focusing on means to enhance the efficiency of most cancers vaccines. Biomaterials. 2017;122:105–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reginald Ok, Chan Y, Plebanski M, Poh CL. Growth of peptide vaccines in Dengue. Curr Pharm Des. 2018;24:1157–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Hua L, Yang M, Li W, Ren Z, Zheng X, et al. Polymerized porin as a novel supply platform for coronavirus vaccine. J Nanobiotechnol. 2022;20:260.

  • Lu Z, Zhang Y, Wang Y, Tan G-H, Huang F-Y, Cao R, He N, Zhang L. A biotin-avidin-system-based virus-mimicking nanovaccine for tumor immunotherapy. J Managed Launch. 2021;332:245–59.

    Article 
    CAS 

    Google Scholar
     

  • Huang YW, Lee CT, Wang TC, Kao YC, Yang CH, Lin YM, Huang KS. The event of peptide-based Antimicrobial brokers towards Dengue Virus. Curr Protein Pept Sci. 2018;19:998–1010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biner DW, Grosch JS, Ortoleva PJ. B-cell epitope discovery: the primary protein flexibility-based algorithm-Zika virus conserved epitope demonstration. PLoS ONE. 2023;18:e0262321.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aberle JH, Koblischke M, Stiasny Ok. CD4 T cell responses to flaviviruses. J Clin Virol. 2018;108:126–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muthusamy Ok, Gopinath Ok, Nandhini DJTIJMR. Computational prediction of immunodominant antigenic areas & potential protecting epitopes for dengue vaccination. Indian J Med Res. 2016;144:587–91.

  • Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Cribbs DH, Agadjanyan MG. The MultiTEP platform-based Alzheimer’s illness epitope vaccine prompts a broad repertoire of T helper cells in nonhuman primates. Alzheimers Dement. 2014;10:271–83.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles