7.6 C
United States of America
Wednesday, March 12, 2025

A bivalent spike-targeting nanobody with anti-sarbecovirus exercise | Journal of Nanobiotechnology


  • Zhong NS, Zheng BJ, Li YM, Poon N, Xie ZH, Chan KH, et al. Epidemiology and reason for extreme acute respiratory syndrome (SARS) in Guangdong Folks’s Republic of China in February, 2003. Lancet. 2003;362(9393):1353–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak related to a brand new coronavirus of possible bat origin. Nature. 2020;579(7798):270–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–74.

    Article 
    CAS 

    Google Scholar
     

  • Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that makes use of the ACE2 receptor. Nature. 2013;503(7477):535–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a practical receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Zhang Y, Wu L, Niu S, Track C, Zhang Z, et al. Structural and practical foundation of SARS-CoV-2 entry by utilizing human ACE2. Cell. 2020;181(4):894-904.e9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science. 2020;367(6483):1260–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR, Rosenthal PB, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 2020;588(7837):327–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almagro JC, Mellado-Sánchez G, Pedraza-Escalona M, Pérez-Tapia SM. Evolution of anti-SARS-CoV-2 therapeutic antibodies. Int J Mol Sci. 2022;23(17):9763.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Choice and identification of single area antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A brand new antigen receptor gene household that undergoes rearrangement and in depth somatic diversification in sharks. Nature. 1995;374(6518):168–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of sunshine chains. Nature. 1993;363(6428):446–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparability of llama VH sequences from standard and heavy chain antibodies. Mol Immunol. 1997;34(16–17):1121–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunz P, Zinner Ok, Mücke N, Bartoschik T, Muyldermans S, Hoheisel JD. The structural foundation of nanobody unfolding reversibility and thermoresistance. Sci Rep. 2018;8(1):7934.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swart IC, Van Gelder W, De Haan CAM, Bosch BJ, Oliveira S. Subsequent technology single-domain antibodies in opposition to respiratory zoonotic RNA viruses. Entrance Mol Biosci. 2024;9:11.


    Google Scholar
     

  • Van Heeke G, Allosery Ok, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A. Nanobodies®††Nanobody is a registered trademark of Ablynx NV as inhaled biotherapeutics for lung ailments. Pharmacol Therapeut. 2017;169:47–56.

    Article 

    Google Scholar
     

  • Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal supply of systemic-acting medicine: Small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88(1):8–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Wu L, Liu B, Xu Ok, Lei W, Deng J, et al. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives successfully stop Omicron infections in mice. Cell Rep Med. 2023;4(2): 100918.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang Y, Huang W, Liu H, Sang Z, Nambulli S, Tubiana J, et al. Superimmunity by pan-sarbecovirus nanobodies. Cell Rep. 2022;39(13): 111004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Ren Y, Aw ZQ, Chen B, Yang Z, Lei Y, et al. Broadly neutralizing and protecting nanobodies in opposition to SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and various sarbecoviruses. Nat Commun. 2022;13(1):7957.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen WH, Hajduczki A, Martinez EJ, Bai H, Matz H, Hill TM, et al. Shark nanobodies with potent SARS-CoV-2 neutralizing exercise and broad sarbecovirus reactivity. Nat Commun. 2023;14(1):580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Duan H, Liu X, Zhang X, Pan S, Zhang F, et al. Broad sarbecovirus neutralizing antibodies obtained by computational design and artificial library screening. J Virol. 2023;97(7):e00610-e623.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollingsworth SA, Noland CL, Vroom Ok, Saha A, Sam M, Gao Q, et al. Discovery and multimerization of cross-reactive single-domain antibodies in opposition to SARS-like viruses to boost efficiency and tackle rising SARS-CoV-2 variants. Sci Rep. 2023;22(13):13668.

    Article 

    Google Scholar
     

  • Hanke L, Das H, Sheward DJ, Perez Vidakovics L, Urgard E, Moliner-Morro A, et al. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat Commun. 2022;10(13):155.

    Article 

    Google Scholar
     

  • Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, et al. Structural foundation for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 2020;181(5):1004-1015.e15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Zhao X, Zhou H, Zhu H, Jiang S, Wang P. Broadly neutralizing antibodies to SARS-CoV-2 and different human coronaviruses. Nat Rev Immunol. 2023;23(3):189–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinto D, Park YJ, Beltramello M, Partitions AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020;583(7815):290–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes CO, Jette CA, Abernathy ME, Dam KMA, Esswein SR, Gristick HB, et al. SARS-CoV-2 neutralizing antibody buildings inform therapeutic methods. Nature. 2020;588(7839):682–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan M, Wu NC, Zhu X, Lee CCD, So RTY, Lv H, et al. A extremely conserved cryptic epitope within the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020;368(6491):630.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Partitions AC, Zatta F, et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature. 2021;597(7874):103–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Partitions AC, Beltramello M, et al. Mapping neutralizing and immunodominant websites on the SARS-CoV-2 spike receptor-binding area by structure-guided high-resolution serology. Cell. 2020;183(4):1024-1042.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou D, Duyvesteyn HME, Chen CP, Huang CG, Chen TH, Shih SR, et al. Structural foundation for the neutralization of SARS-CoV-2 by an antibody from a convalescent affected person. Nat Struct Mol Biol. 2020;27(10):950–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Z, Deng YQ, Ye Q, Cao L, Solar CY, Fan C, et al. Structural foundation for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science. 2020;369(6510):1505–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhan W, Liu J, Wang Y, Zhang X, Zhang M, et al. A broadly neutralizing antibody in opposition to SARS-CoV-2 Omicron variant an infection exhibiting a novel trimer dimer conformation in spike protein binding. Cell Res. 2022;32(9):862–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe. 2020;28(3):445-454.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi Ok, et al. Construction-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. 2020;369(6510):1501–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shang J, Ye G, Shi Ok, Wan Y, Luo C, Aihara H, et al. Structural foundation of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar D, Sang Z, Kim YJ, Xiang Y, Cohen T, Belford AK, et al. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by focusing on various and conserved epitopes. Nat Commun. 2021;12(1):4676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saville JW, Mannar D, Zhu X, Srivastava SS, Berezuk AM, Demers JP, et al. Structural and biochemical rationale for enhanced spike protein health in delta and kappa SARS-CoV-2 variants. Nat Commun. 2022;13(1):742.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo J, Mikolajek H, Le Bas A, Clark JJ, Sharma P, Kipar A, et al. A potent SARS-CoV-2 neutralising nanobody reveals therapeutic efficacy within the Syrian golden hamster mannequin of COVID-19. Nat Commun. 2021;12(1):5469.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Xu Ok, Jung S, Conte A, Lieberman J, Muecksch F, et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature. 2021;595(7866):278–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor Ok, Rees R, et al. Neutralization of SARS-CoV-2 by extremely potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 2021;40(19): e107985.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grey TE, Guzman Ok, Davis CW, Abdullah LH, Nettesheim P. Mucociliary differentiation of serially passaged regular human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996;14(1):104–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dvorak A, Tilley AE, Shaykhiev R, Wang R, Crystal RG. Do airway epithelium air-liquid cultures signify the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol. 2011;44(4):465–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Titong A, Gallolu Kankanamalage S, Dong J, Huang B, Spadoni N, Wang B, et al. First-in-class trispecific VHH-Fc based mostly antibody with potent prophylactic and therapeutic efficacy in opposition to SARS-CoV-2 and variants. Sci Rep. 2022;12(1):4163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma H, Zhang X, Zeng W, Zhou J, Chi X, Chen S, et al. A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and provides substantial safety in opposition to Omicron through low-dose intranasal administration. Cell Discov. 2022;8(1):1–14.

    Article 

    Google Scholar
     

  • Wu X, Cheng L, Fu M, Huang B, Zhu L, Xu S, et al. A potent bispecific nanobody protects hACE2 mice in opposition to SARS-CoV-2 an infection through intranasal administration. Cell Rep. 2021;37(3): 109869.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Synowiec A, Jedrysik M, Branicki W, Klajmon A, Lei J, Owczarek Ok, et al. Identification of mobile components required for SARS-CoV-2 replication. Cells. 2021;10(11):3159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milewska A, Kula-Pacurar A, Wadas J, Suder A, Szczepanski A, Dabrowska A, et al. Replication of extreme acute respiratory syndrome coronavirus 2 in human respiratory epithelium. J Virol. 2020;94(15):e00957-e1020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barreto-Duran E, Szczepański A, Gałuszka-Bulaga A, Surmiak M, Siedlar M, Sanak M, et al. The interaction between the airway epithelium and tissue macrophages in the course of the SARS-CoV-2 an infection. Entrance Immunol. 2022;6(13): 991991.

    Article 

    Google Scholar
     

  • Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, et al. A human monoclonal antibody blocking SARS-CoV-2 an infection. Nat Commun. 2020;11(1):2251.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dedication of fifty% endpoint titer utilizing a easy components – PMC [Internet]. [cited 2024 Mar 1]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861875/

  • Fedry J, Hurdiss DL, Wang C, Li W, Obal G, Drulyte I, et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci Adv. 2021;7(23):eabf5632.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction willpower. Nat Strategies. 2017;14(3):290–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani A, Zhang H, Fleet DJ. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Strategies. 2020;17(12):1214–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen EF, Goddard TD, Huang CC, Sofa GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory analysis and evaluation. J Comput Chem. 2004;25(13):1605–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley P, Cowtan Ok. Coot: model-building instruments for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–32.

    Article 
    PubMed 

    Google Scholar
     

  • Du W, Hurdiss DL, Drabek D, Mykytyn AZ, Kaiser FK, González-Hernández M, et al. An ACE2-blocking antibody confers broad neutralization and safety in opposition to Omicron and different SARS-CoV-2 variants of concern. Sci Immunol. 2022;7(73):eabp9312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tunyasuvunakool Ok, Adler J, Wu Z, Inexperienced T, Zielinski M, Žídek A, et al. Extremely correct protein construction prediction for the human proteome. Nature. 2021;596(7873):590–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita M, Schütze Ok, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Strategies. 2022;19(6):679–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley P, Crispin M. Structural evaluation of glycoproteins: constructing N-linked glycans with Coot. Acta Crystallogr D Struct Biol. 2018;74(Pt 4):256–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kidmose RT, Juhl J, Nissen P, Boesen T, Karlsen JL, Pedersen BP. Namdinator – computerized molecular dynamics versatile becoming of structural fashions into cryo-EM and crystallography experimental maps. IUCrJ. 2019;6(Pt 4):526–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, et al. Use of knowledge-based restraints in phenix refine to enhance macromolecular refinement at low decision. Acta Crystallogr D Biol Crystallogr. 2012;68(4):381–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):12–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barad BA, Echols N, Wang RYR, Cheng Y, DiMaio F, Adams PD, et al. EMRinger: facet chain-directed mannequin and map validation for 3D cryo-electron microscopy. Nat Strategies. 2015;12(10):943–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agirre J, Davies G, Wilson Ok, Cowtan Ok. Carbohydrate anomalies within the PDB. Nat Chem Biol. 2015;11(5):303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS, Cowtan KD. Privateer: software program for the conformational validation of carbohydrate buildings. Nat Struct Mol Biol. 2015;22(11):833–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krissinel E, Henrick Ok. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laskowski RA, Swindells MB. LigPlot+: a number of ligand-protein interplay diagrams for drug discovery. J Chem Inf Mannequin. 2011;51(10):2778–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen EF, Goddard TD, Huang CC, Meng EC, Sofa GS, Croll TI, et al. UCSF ChimeraX: Construction visualization for researchers, educators, and builders. Protein Sci. 2021;30(1):70–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morin A, Eisenbraun B, Key J, Sanschagrin PC, Timony MA, Ottaviano M, et al. Collaboration will get essentially the most out of software program. Elife. 2013;10(2): e01456.

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles