Zhong NS, Zheng BJ, Li YM, Poon N, Xie ZH, Chan KH, et al. Epidemiology and reason for extreme acute respiratory syndrome (SARS) in Guangdong Folks’s Republic of China in February, 2003. Lancet. 2003;362(9393):1353–8.
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak related to a brand new coronavirus of possible bat origin. Nature. 2020;579(7798):270–3.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–74.
Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that makes use of the ACE2 receptor. Nature. 2013;503(7477):535–8.
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a practical receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.
Wang Q, Zhang Y, Wu L, Niu S, Track C, Zhang Z, et al. Structural and practical foundation of SARS-CoV-2 entry by utilizing human ACE2. Cell. 2020;181(4):894-904.e9.
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science. 2020;367(6483):1260–3.
Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR, Rosenthal PB, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 2020;588(7837):327–30.
Almagro JC, Mellado-Sánchez G, Pedraza-Escalona M, Pérez-Tapia SM. Evolution of anti-SARS-CoV-2 therapeutic antibodies. Int J Mol Sci. 2022;23(17):9763.
Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Choice and identification of single area antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–6.
Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A brand new antigen receptor gene household that undergoes rearrangement and in depth somatic diversification in sharks. Nature. 1995;374(6518):168–73.
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of sunshine chains. Nature. 1993;363(6428):446–8.
Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparability of llama VH sequences from standard and heavy chain antibodies. Mol Immunol. 1997;34(16–17):1121–31.
Kunz P, Zinner Ok, Mücke N, Bartoschik T, Muyldermans S, Hoheisel JD. The structural foundation of nanobody unfolding reversibility and thermoresistance. Sci Rep. 2018;8(1):7934.
Swart IC, Van Gelder W, De Haan CAM, Bosch BJ, Oliveira S. Subsequent technology single-domain antibodies in opposition to respiratory zoonotic RNA viruses. Entrance Mol Biosci. 2024;9:11.
Van Heeke G, Allosery Ok, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A. Nanobodies®††Nanobody is a registered trademark of Ablynx NV as inhaled biotherapeutics for lung ailments. Pharmacol Therapeut. 2017;169:47–56.
Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal supply of systemic-acting medicine: Small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88(1):8–27.
Liu H, Wu L, Liu B, Xu Ok, Lei W, Deng J, et al. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives successfully stop Omicron infections in mice. Cell Rep Med. 2023;4(2): 100918.
Xiang Y, Huang W, Liu H, Sang Z, Nambulli S, Tubiana J, et al. Superimmunity by pan-sarbecovirus nanobodies. Cell Rep. 2022;39(13): 111004.
Li M, Ren Y, Aw ZQ, Chen B, Yang Z, Lei Y, et al. Broadly neutralizing and protecting nanobodies in opposition to SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and various sarbecoviruses. Nat Commun. 2022;13(1):7957.
Chen WH, Hajduczki A, Martinez EJ, Bai H, Matz H, Hill TM, et al. Shark nanobodies with potent SARS-CoV-2 neutralizing exercise and broad sarbecovirus reactivity. Nat Commun. 2023;14(1):580.
Yang X, Duan H, Liu X, Zhang X, Pan S, Zhang F, et al. Broad sarbecovirus neutralizing antibodies obtained by computational design and artificial library screening. J Virol. 2023;97(7):e00610-e623.
Hollingsworth SA, Noland CL, Vroom Ok, Saha A, Sam M, Gao Q, et al. Discovery and multimerization of cross-reactive single-domain antibodies in opposition to SARS-like viruses to boost efficiency and tackle rising SARS-CoV-2 variants. Sci Rep. 2023;22(13):13668.
Hanke L, Das H, Sheward DJ, Perez Vidakovics L, Urgard E, Moliner-Morro A, et al. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat Commun. 2022;10(13):155.
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, et al. Structural foundation for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 2020;181(5):1004-1015.e15.
Chen Y, Zhao X, Zhou H, Zhu H, Jiang S, Wang P. Broadly neutralizing antibodies to SARS-CoV-2 and different human coronaviruses. Nat Rev Immunol. 2023;23(3):189–99.
Pinto D, Park YJ, Beltramello M, Partitions AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020;583(7815):290–5.
Barnes CO, Jette CA, Abernathy ME, Dam KMA, Esswein SR, Gristick HB, et al. SARS-CoV-2 neutralizing antibody buildings inform therapeutic methods. Nature. 2020;588(7839):682–7.
Yuan M, Wu NC, Zhu X, Lee CCD, So RTY, Lv H, et al. A extremely conserved cryptic epitope within the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020;368(6491):630.
Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Partitions AC, Zatta F, et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature. 2021;597(7874):103–8.
Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Partitions AC, Beltramello M, et al. Mapping neutralizing and immunodominant websites on the SARS-CoV-2 spike receptor-binding area by structure-guided high-resolution serology. Cell. 2020;183(4):1024-1042.e21.
Zhou D, Duyvesteyn HME, Chen CP, Huang CG, Chen TH, Shih SR, et al. Structural foundation for the neutralization of SARS-CoV-2 by an antibody from a convalescent affected person. Nat Struct Mol Biol. 2020;27(10):950–8.
Lv Z, Deng YQ, Ye Q, Cao L, Solar CY, Fan C, et al. Structural foundation for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science. 2020;369(6510):1505–9.
Wang Y, Zhan W, Liu J, Wang Y, Zhang X, Zhang M, et al. A broadly neutralizing antibody in opposition to SARS-CoV-2 Omicron variant an infection exhibiting a novel trimer dimer conformation in spike protein binding. Cell Res. 2022;32(9):862–5.
Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe. 2020;28(3):445-454.e6.
Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi Ok, et al. Construction-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. 2020;369(6510):1501–5.
Shang J, Ye G, Shi Ok, Wan Y, Luo C, Aihara H, et al. Structural foundation of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.
Solar D, Sang Z, Kim YJ, Xiang Y, Cohen T, Belford AK, et al. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by focusing on various and conserved epitopes. Nat Commun. 2021;12(1):4676.
Saville JW, Mannar D, Zhu X, Srivastava SS, Berezuk AM, Demers JP, et al. Structural and biochemical rationale for enhanced spike protein health in delta and kappa SARS-CoV-2 variants. Nat Commun. 2022;13(1):742.
Huo J, Mikolajek H, Le Bas A, Clark JJ, Sharma P, Kipar A, et al. A potent SARS-CoV-2 neutralising nanobody reveals therapeutic efficacy within the Syrian golden hamster mannequin of COVID-19. Nat Commun. 2021;12(1):5469.
Xu J, Xu Ok, Jung S, Conte A, Lieberman J, Muecksch F, et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature. 2021;595(7866):278–82.
Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor Ok, Rees R, et al. Neutralization of SARS-CoV-2 by extremely potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 2021;40(19): e107985.
Grey TE, Guzman Ok, Davis CW, Abdullah LH, Nettesheim P. Mucociliary differentiation of serially passaged regular human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996;14(1):104–12.
Dvorak A, Tilley AE, Shaykhiev R, Wang R, Crystal RG. Do airway epithelium air-liquid cultures signify the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol. 2011;44(4):465–73.
Titong A, Gallolu Kankanamalage S, Dong J, Huang B, Spadoni N, Wang B, et al. First-in-class trispecific VHH-Fc based mostly antibody with potent prophylactic and therapeutic efficacy in opposition to SARS-CoV-2 and variants. Sci Rep. 2022;12(1):4163.
Ma H, Zhang X, Zeng W, Zhou J, Chi X, Chen S, et al. A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and provides substantial safety in opposition to Omicron through low-dose intranasal administration. Cell Discov. 2022;8(1):1–14.
Wu X, Cheng L, Fu M, Huang B, Zhu L, Xu S, et al. A potent bispecific nanobody protects hACE2 mice in opposition to SARS-CoV-2 an infection through intranasal administration. Cell Rep. 2021;37(3): 109869.
Synowiec A, Jedrysik M, Branicki W, Klajmon A, Lei J, Owczarek Ok, et al. Identification of mobile components required for SARS-CoV-2 replication. Cells. 2021;10(11):3159.
Milewska A, Kula-Pacurar A, Wadas J, Suder A, Szczepanski A, Dabrowska A, et al. Replication of extreme acute respiratory syndrome coronavirus 2 in human respiratory epithelium. J Virol. 2020;94(15):e00957-e1020.
Barreto-Duran E, Szczepański A, Gałuszka-Bulaga A, Surmiak M, Siedlar M, Sanak M, et al. The interaction between the airway epithelium and tissue macrophages in the course of the SARS-CoV-2 an infection. Entrance Immunol. 2022;6(13): 991991.
Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, et al. A human monoclonal antibody blocking SARS-CoV-2 an infection. Nat Commun. 2020;11(1):2251.
Dedication of fifty% endpoint titer utilizing a easy components – PMC [Internet]. [cited 2024 Mar 1]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861875/
Fedry J, Hurdiss DL, Wang C, Li W, Obal G, Drulyte I, et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci Adv. 2021;7(23):eabf5632.
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction willpower. Nat Strategies. 2017;14(3):290–6.
Punjani A, Zhang H, Fleet DJ. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Strategies. 2020;17(12):1214–21.
Pettersen EF, Goddard TD, Huang CC, Sofa GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory analysis and evaluation. J Comput Chem. 2004;25(13):1605–12.
Emsley P, Cowtan Ok. Coot: model-building instruments for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–32.
Du W, Hurdiss DL, Drabek D, Mykytyn AZ, Kaiser FK, González-Hernández M, et al. An ACE2-blocking antibody confers broad neutralization and safety in opposition to Omicron and different SARS-CoV-2 variants of concern. Sci Immunol. 2022;7(73):eabp9312.
Tunyasuvunakool Ok, Adler J, Wu Z, Inexperienced T, Zielinski M, Žídek A, et al. Extremely correct protein construction prediction for the human proteome. Nature. 2021;596(7873):590–6.
Mirdita M, Schütze Ok, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Strategies. 2022;19(6):679–82.
Emsley P, Crispin M. Structural evaluation of glycoproteins: constructing N-linked glycans with Coot. Acta Crystallogr D Struct Biol. 2018;74(Pt 4):256–63.
Kidmose RT, Juhl J, Nissen P, Boesen T, Karlsen JL, Pedersen BP. Namdinator – computerized molecular dynamics versatile becoming of structural fashions into cryo-EM and crystallography experimental maps. IUCrJ. 2019;6(Pt 4):526–31.
Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, et al. Use of knowledge-based restraints in phenix refine to enhance macromolecular refinement at low decision. Acta Crystallogr D Biol Crystallogr. 2012;68(4):381–90.
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):12–21.
Barad BA, Echols N, Wang RYR, Cheng Y, DiMaio F, Adams PD, et al. EMRinger: facet chain-directed mannequin and map validation for 3D cryo-electron microscopy. Nat Strategies. 2015;12(10):943–6.
Agirre J, Davies G, Wilson Ok, Cowtan Ok. Carbohydrate anomalies within the PDB. Nat Chem Biol. 2015;11(5):303.
Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS, Cowtan KD. Privateer: software program for the conformational validation of carbohydrate buildings. Nat Struct Mol Biol. 2015;22(11):833–4.
Krissinel E, Henrick Ok. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97.
Laskowski RA, Swindells MB. LigPlot+: a number of ligand-protein interplay diagrams for drug discovery. J Chem Inf Mannequin. 2011;51(10):2778–86.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Sofa GS, Croll TI, et al. UCSF ChimeraX: Construction visualization for researchers, educators, and builders. Protein Sci. 2021;30(1):70–82.
Morin A, Eisenbraun B, Key J, Sanschagrin PC, Timony MA, Ottaviano M, et al. Collaboration will get essentially the most out of software program. Elife. 2013;10(2): e01456.