Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature 254, 109–114 (1975).
Ungricht, R. & Kutay, U. Mechanisms and features of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 18, 229–245 (2017).
Mekhail, Okay. & Moazed, D. The nuclear envelope in genome group, expression and stability. Nat. Rev. Mol. Cell Biol. 11, 317–328 (2010).
Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the final 200 nanometers. Cell 92, 327–336 (1998).
Fahrenkrog, B. & Aebi, U. The nuclear pore complicated: nucleocytoplasmic transport and past. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).
Terry, L. J., Reveals, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).
Wente, S. R. & Rout, M. P. The nuclear pore complicated and nuclear transport. CSH Perspect. Biol. 2, a000562 (2010).
Mudumbi, Okay. C. et al. Nucleoplasmic indicators promote directed transmembrane protein import concurrently through a number of channels of nuclear pores. Nat. Commun. 11, 2184 (2020).
Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).
Kahms, M., Lehrich, P., Hüve, J., Sanetra, N. & Peters, R. Binding web site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Visitors 10, 1228–1242 (2009).
Nakielny, S. & Dreyfuss, G. Transport of proteins and RNAs out and in of the nucleus. Cell 99, 677–690 (1999).
Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).
Dalbey, D. & von Heijne, G. (eds) Protein Concentrating on, Transport, and Translocation (Elsevier, 2002).
Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003).
Beck, M. et al. Nuclear pore complicated construction and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).
Lim, R. Y. et al. Versatile phenylalanine–glycine nucleoporins as entropic boundaries to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).
Panté, N. & Kann, M. Nuclear pore complicated is ready to transport macromolecules with diameters of ~39 nm. Mol. Biol. Cell 13, 425–434 (2002).
Kosako, H. & Imamoto, N. Phosphorylation of nucleoporins: sign transduction-mediated regulation of their interplay with nuclear transport receptors. Nucleus 1, 1026–1035 (2010).
Komeili, A. & O’Shea, E. Okay. Roles of phosphorylation websites in regulating exercise of the transcription issue Pho4. Science 284, 977–980 (1999).
De Souza, C. P. & Osmani, S. A. Mitosis, not simply open or closed. Eukaryot. Cell 6, 1521–1527 (2007).
Xu, Z., Hueckel, T., Irvine, W. T. M. & Sacanna, S. Transmembrane transport in inorganic colloidal cell-mimics. Nature 597, 220–224 (2021).
Zhu, S. et al. Voltage-mediated water dynamics permits on-demand transport of sugar molecules in two-dimensional channels. Angew. Chem. Int. Ed. Engl. 62, e202309024 (2023).
Shen, J., Liu, G., Han, Y. & Jin, W. Synthetic channels for confined mass transport on the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Møller, N. Ketone physique, 3-hydroxybutyrate: minor metabolite–main medical manifestations. J. Clin. Endocrinol. Metab. 105, dgaa370 (2020).
Malaisse, W. J. et al. Ketone our bodies and islet perform: 45Ca dealing with, insulin synthesis, and launch. Am. J. Physiol. 259, E117–E122 (1990).
Hirobata, T. et al. Serum ketone physique measurement in sufferers with diabetic ketoacidosis. Diabetol. Int. 13, 624–630 (2022).
Laracuente, M.-L., Yu, M. H. & McHugh, Okay. J. Zero-order drug supply: cutting-edge and future prospects. J. Management. Launch 327, 834–856 (2020).
Li, W. et al. Scientific translation of long-acting drug supply formulations. Nat. Rev. Mater. 7, 406–420 (2022).
Teng, R. et al. Comparability of protocols to scale back diabetic ketoacidosis in sufferers with sort 1 diabetes prescribed a sodium–glucose cotransporter 2 inhibitor. Diabetes Spectr. 34, 42–51 (2021).
Wang, J. et al. Cost-switchable polymeric complicated for glucose-responsive insulin supply in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).
Ayala, J. E. et al. Normal working procedures for describing and performing metabolic checks of glucose homeostasis in mice. Dis. Fashions Mech. 3, 525–534 (2010).
Lee, J. Y. et al. Persicarin remoted from Oenanthe javanica protects towards diabetes-induced oxidative stress and irritation within the liver of streptozotocin-induced sort 1 diabetic mice. Exp. Ther. Med. 13, 1194–1202 (2017).
Krause, M. P. et al. Diabetic myopathy differs between Ins2Akita+/− and streptozotocin-induced sort 1 diabetic fashions. J. Appl. Physiol. 106, 1650–1659 (2009).
Yeo, H. J. et al. Protecting results of Tat-DJ-1 protein towards streptozotocin-induced diabetes in a mice mannequin. BMB Rep. 51, 362–367 (2018).
Mo, J. et al. Blood metabolic and physiological profiles of Bama miniature pigs at totally different progress phases. Porcine Well being Manag. 8, 35 (2022).