Kiczynski, M. et al. Engineering topological states in atom-based semiconductor quantum dots. Nature 606, 694–699 (2022).
Sompet, P. et al. Realizing the symmetry-protected Haldane part in Fermi–Hubbard ladders. Nature 606, 484–488 (2022).
Mishra, S. et al. Remark of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021).
Wang, H. et al. Development of topological quantum magnets from atomic spins on surfaces. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01775-2 (2024).
Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
Trebst, S. & Hickey, C. Kitaev supplies. Phys. Rep. 950, 1–37 (2022).
Dzero, M., Solar, Okay., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Savary, L. & Balents, L. Quantum spin liquids: a evaluate. Rep. Prog. Phys. 80, 016502 (2016).
Zhou, Y., Kanoda, Okay. & Ng, T.-Okay. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Grohol, D. et al. Spin chirality on a two-dimensional annoyed lattice. Nat. Mater. 4, 323–328 (2005).
Su, W., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Hida, Okay. Crossover between the Haldane-gap part and the dimer part within the spin-1/2 alternating Heisenberg chain. Phys. Rev. B 45, 2207–2212 (1992).
Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin programs. Phys. Rev. B 83, 035107 (2011).
Nakamura, M. & Todo, S. Order parameter to characterize valence-bond-solid states in quantum spin chains. Phys. Rev. Lett. 89, 077204 (2002).
Balents, L. Spin liquids in annoyed magnets. Nature 464, 199–208 (2010).
Drost, R., Kezilebieke, S., Lado, J. L. & Liljeroth, P. Actual-space imaging of triplon excitations in engineered quantum magnets. Phys. Rev. Lett. 131, 086701 (2023).
Diederix, Okay., Blöte, H., Groen, J., Klaassen, T. & Poulis, N. Theoretical and experimental examine of the magnetic properties of the singlet-ground-state system Cu(NO3)2·2.5H2O: an alternating linear Heisenberg antiferromagnet. Phys. Rev. B 19, 420–431 (1979).
Bonner, J. C., Friedberg, S. A., Kobayashi, H., Meier, D. L. & Blöte, H. W. Alternating linear-chain antiferromagnetism in copper nitrate Cu(NO3)2·2.5H2O. Phys. Rev. B 27, 248–260 (1983).
Garrett, A., Nagler, S., Tennant, D., Gross sales, B. & Barnes, T. Magnetic excitations within the S = 1/2 alternating chain compound (VO)2P2O7. Phys. Rev. Lett. 79, 745–748 (1997).
Forsyth, J., Wilkinson, C. & Zvyagin, A. The antiferromagnetic construction of copper tungstate, CuWO4. J. Phys. Condens. Matter 3, 8433 (1991).
Lake, B., Cowley, R. & Tennant, D. A dimer principle of the magnetic excitations within the ordered part of the alternating-chain compound. J. Phys. Condens. Matter 9, 10951 (1997).
Waki, T. et al. Remark of Bose–Einstein condensation of triplons in quasi 1D spin-gap system Pb2V3O9. J. Phys. Soc. Jpn 73, 3435–3438 (2004).
Valentine, J., Silverstein, A. & Soos, Z. Interdimer change in linear chain copper acetate-pyrazine. J. Am. Chem. Soc. 96, 97–103 (1974).
Bray, J. et al. Remark of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Phys. Rev. Lett. 35, 744–747 (1975).
Jacobs, I. et al. Spin-Peierls transitions in magnetic donor–acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metallic complexes. Phys. Rev. B 14, 3036–3051 (1976).
Castilla, G., Chakravarty, S. & Emery, V. Quantum magnetism of CuGeO3. Phys. Rev. Lett. 75, 1823–1826 (1995).
Riera, J. & Dobry, A. Magnetic susceptibility within the spin-Peierls system CuGeO3. Phys. Rev. B 51, 16098–16102 (1995).
Hase, M., Terasaki, I. & Uchinokura, Okay. Remark of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. Phys. Rev.Lett. 70, 3651–3654 (1993).
Cai, J. et al. Atomically exact bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).
Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).
Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).
Ortiz, R. et al. Change guidelines for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).
Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).
Mishra, S. et al. Massive magnetic change coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021).
Cheng, S. et al. On-surface synthesis of triangulene trimers through dehydration response. Nat. Commun. 13, 1705 (2022).
Wang, T. et al. Aza-triangulene: on-surface synthesis and digital and magnetic properties. J. Am. Chem. Soc. 144, 4522–4529 (2022).
Madhavan, V., Chen, W., Jamneala, T., Crommie, M. & Wingreen, N. Tunneling right into a single magnetic atom: spectroscopic proof of the Kondo resonance. Science 280, 567–569 (1998).
Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic constructions. Science 312, 1021–1024 (2006).
Zhao, C. et al. Tailoring magnetism of graphene nanoflakes through tip-controlled dehydrogenation. Phys. Rev. Lett. 132, 046201 (2024).
Krane, N. et al. Change interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano Lett. 23, 9353–9359 (2023).
Lado, J. L. & Fernández-Rossier, J. Magnetic edge anisotropy in graphenelike honeycomb crystals. Phys. Rev. Lett. 113, 027203 (2014).
Fernández-Rossier, J. Concept of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).
Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New J. Phys. 17, 063016 (2015).
White, S. R. Density matrix formulation for quantum renormalization teams. Phys. Rev. Lett. 69, 2863 (1992).
Wang, H. T., Li, B. & Cho, S. Y. Topological quantum part transition in bond-alternating spin-1/2 Heisenberg chains. Phys. Rev. B 87, 054402 (2013).
Collins, A., Hamer, C. J. & Weihong, Z. Modified triplet-wave enlargement technique utilized to the alternating Heisenberg chain. Phys. Rev. B 74, 144414 (2006).
Ochsenbein, S. et al. Standing spin waves in an antiferromagnetic molecular Cr6 horseshoe. Europhys. Lett. 79, 17003 (2007).
Shannon, C. Communication within the presence of noise. Proc. IRE 37, 10–21 (1949).
Salace, G., Petit, C. & Vuillaume, D. Inelastic electron tunneling spectroscopy: capabilities and limitations in metallic–oxide–semiconductor gadgets. J. Appl. Phys. 91, 5896–5901 (2002).
Kennedy, T. Precise diagonalisations of open spin-1 chains. J. Phys. Condens. Matter 2, 5737 (1990).
Barnes, T., Riera, J. & Tennant, D. S=1/2 alternating chain utilizing multiprecision strategies. Phys. Rev. B 59, 11384–11397 (1999).
Baumann, S. et al. Electron paramagnetic resonance of particular person atoms on a floor. Science 350, 417–420 (2015).
Jacob, D. & Fernández-Rossier, J. Concept of intermolecular change in coupled spin-1/2 nanographenes. Phys. Rev. B 106, 205405 (2022).
Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software program library for tensor community calculations. SciPost Phys. Codebases 10.21468/SciPostPhysCodeb.4 (2022).
Appelbaum, J. A. Change mannequin of zero-bias tunneling anomalies. Phys. Rev. 154, 633–643 (1967).
Weinberg, P. & Bukov, M. QuSpin: a Python bundle for dynamics and precise diagonalisation of quantum many physique programs half I: spin chains. SciPost Phys. 2, 003 (2017).
Zhao, C. et al. Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains. Supplies Cloud Archive https://doi.org/10.24435/materialscloud:x8-7y (2024).