14.1 C
United States of America
Wednesday, March 19, 2025

Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 past 1,000 h


  • Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shin, H., Hansen, Okay. U. & Jiao, F. Techno-economic evaluation of low-temperature carbon dioxide electrolysis. Nat. Maintain. 4, 911–919 (2021).

    Article 

    Google Scholar
     

  • Wang, H. et al. CO2 electrolysis in the direction of acetate: a assessment. Curr. Opin. Electrochem. 39, 101253 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Qian, Q., Zhang, J., Cui, M. & Han, B. Synthesis of acetic acid through methanol hydrocarboxylation with CO2 and H2. Nat. Commun. 7, 11481 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an rising platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds through electrochemical and metabolic engineering. Nat. Catal. 5, 288–396 (2022).

    Article 

    Google Scholar
     

  • Rong, Y. et al. Directing the selectivity of CO electrolysis to acetate by developing metal-organic interfaces. Angew. Chem. Int. Ed. 62, e202309893 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Web site-selective protonation allows environment friendly carbon monoxide electroreduction to acetate. Nat. Commun. 15, 616 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, T. et al. Interfacial synergy between the Cu atomic layer and CeO2 promotes CO electrocoupling to acetate. ACS Nano 17, 8521–8529 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan, X. et al. Synergy of Cu/C3N4 interface and Cu nanoparticles twin catalytic areas in electrolysis of CO to acetic acid. Angew. Chem. Int. Ed. 62, e202301507 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hendrik, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) discount on Cu: selectivity with potential, pH, and nanostructuring. Vitality Environ. Sci. 15, 3978 (2022).

    Article 

    Google Scholar
     

  • Kim, J. Y. T., Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Completely different distributions of multi-carbon merchandise in CO2 and CO electroreduction underneath sensible response situations. Nat. Catal. 6, 1115–1124 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wei, P. et al. Protection-driven selectivity change from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chang, B. et al. Electrochemical discount of carbon dioxide to multicarbon (C2+) merchandise: challenges and views. Vitality Environ. Sci. 16, 4714 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Constraining CO protection on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Niu, W. et al. Pb-rich Cu grain boundary websites for selective CO-to-n-propanol electroconversion. Nat. Commun. 14, 4882 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Music, Y., Zhang, X., Xie, Okay., Wang, G. & Bao, X. Excessive-temperature CO2 electrolysis in stable oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts utilizing energetic machine studying. Nature 581, 178–183 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, C. et al. Extremely energetic and steady stepped Cu floor for enhanced electrochemical CO2 discount to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. Z. et al. Gerhardtite as a precursor to an environment friendly CO-to-acetate electroreduction catalyst. J. Am. Chem. Soc. 145, 24338–24348 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ji, Y. et al. Selective CO-to-acetate electroreduction through intermediate adsorption tuning on ordered Cu–Pd websites. Nat. Catal. 5, 251–258 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jin, J. et al. Constrained C2 adsorbate orientation allows CO-to-acetate electroreduction. Nature 617, 724–729 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, G. et al. A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nat. Commun. 14, 501 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fang, M. et al. Hydrophobic, ultrastable Cuδ+ for sturdy CO2 electroreduction to C2 merchandise at ampere-current ranges. J. Am. Chem. Soc. 145, 11323–11332 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, T. et al. Coordination tailoring of Cu single websites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 12, 6022 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng, T. et al. Copper-catalysed unique CO2 to pure formic acid conversion through single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical discount on copper. Nat. Commun. 12, 3264 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, N. et al. Excessive-performance anion trade membrane water electrolyzers with a present density of seven.68 A cm−2 and a sturdiness of 1000 hours. Vitality Environ. Sci. 14, 6338–6348 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Delmo, E. P. et al. In situ infrared spectroscopic proof of enhanced electrochemical CO2 discount and C–C coupling on oxide-derived copper. J. Am. Chem. Soc. 46, 1935–1945 (2024).

    Article 

    Google Scholar
     

  • Li, J. et al. Selective CO2 electrolysis to CO utilizing remoted antimony alloyed copper. Nat. Commun. 14, 340 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wen, Y. et al. Cu7S4 nanosheets enriched with Cu–S bond for extremely energetic and selective CO2 electroreduction to formate. J. Mater. Chem. A 11, 10823–10827 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, H. et al. Gentle-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with actions approaching the thermodynamic restrict. Nat. Catal. 6, 519–530 (2023).

  • Cai, J. et al. Extremely selective electrochemical discount of CO2 into methane on nanotwinned Cu. J. Am. Chem. Soc. 145, 9136–9143 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhuansun, M. et al. Selling CO2 electroreduction to multi-carbon merchandise by hydrophobicity-induced electro-kinetic retardation. Angew. Chem. Int. Ed. 62, e202309875 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH utilizing O2. Nat. Catal. 5, 45–54 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Section and construction engineering of copper tin heterostructures for environment friendly electrochemical carbon dioxide discount. Nat. Commun. 9, 4933 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, W., Ma, W. & Hu, X. Tailor-made water and hydroxide transport at a quasi-two-phase interface of membrane electrode meeting electrolyzer for CO electroreduction. Joule 7, 2349–2360 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blochl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles