Hinton, G. E. Studying a number of layers of illustration. Developments Cogn. Sci. 11, 428–434 (2007).
Indiveri, G. et al. Neuromorphic silicon neuron circuits. Entrance. Neurosci. 5, 1–23 (2011).
Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006).
Bartolozzi, C. & Indiveri, G. Synaptic dynamics in analog VLSI. Neural Comput. 19, 2581–2603 (2007).
Zidan, M. A., Strachan, J. P. & Lu, W. D. The way forward for electronics primarily based on memristive methods. Nat. Electron. 1, 22–29 (2018).
Kendall, J. D. & Kumar, S. The constructing blocks of a brain-inspired pc. Appl. Phys. Rev. 7, 011305 (2020).
Tang, J. et al. Bridging organic and synthetic neural networks with rising neuromorphic gadgets: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019).
Im, I. H., Kim, S. J. & Jang, H. W. Memristive gadgets for brand new computing paradigms. Adv. Intell. Syst. 2, 2000105 (2020).
Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
Wang, Z. et al. Resistive switching supplies for info processing. Nat. Rev. Mater. 5, 173–195 (2020).
Xi, Y. et al. In-memory studying with analog resistive switching reminiscence: a evaluation and perspective. Proc. IEEE 109, 14–42 (2021).
Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).
Kim, S. J., Kim, S. B. & Jang, H. W. Competing memristors for brain-inspired computing. iScience 24, 101889 (2021).
Zhao, M., Gao, B., Tang, J., Qian, H. & Wu, H. Reliability of analog resistive switching reminiscence for neuromorphic computing. Appl. Phys. Rev. 7, 011301 (2020).
Jacobs-Gedrim, R. B. et al. Impression of linearity and write noise of analog resistive reminiscence gadgets in a neural algorithm accelerator. In 2017 IEEE Int. Conf. Rebooting Comput. (ICRC) 1–10 (IEEE, 2017).
Han, H., Yu, H., Wei, H., Gong, J. & Xu, W. Current progress in three‐terminal synthetic synapses: from gadget to system. Small 15, 1900695 (2019).
Fuller, E. J. et al. Parallel programming of an ionic floating-gate reminiscence array for scalable neuromorphic computing. Science 364, 570–574 (2019).
Woo, J. et al. Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic methods. IEEE Trans. Electron Gadgets 63, 5064–5067 (2016).
Jang, J. W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y. H. Optimization of conductance change in Pr1−xCaxMnO3-based synaptic gadgets for neuromorphic methods. IEEE Electron Machine Lett. 36, 457–459 (2015).
Chen, P. Y. et al. Mitigating results of non-ideal synaptic gadget traits for on-chip studying. In 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015 194–199 (2016).
Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its position in perovskite photo voltaic cell operation. Power Environ. Sci. 8, 2118–2127 (2015).
Haruyama, J., Sodeyama, Ok., Han, L. & Tateyama, Y. First-principles research of ion diffusion in perovskite photo voltaic cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).
Choi, J. et al. Organolead halide perovskites for low working voltage multilevel resistive switching. Adv. Mater. 28, 6562–6567 (2016).
Choi, J. et al. Enhanced endurance organolead halide perovskite resistive switching reminiscences operable below a particularly low bending radius. ACS Appl. Mater. Interfaces 9, 30764–30771 (2017).
Choi, J., Han, J. S., Hong, Ok., Kim, S. Y. & Jang, H. W. Natural–inorganic hybrid halide perovskites for reminiscences, transistors, and synthetic synapses. Adv. Mater. 30, 1–21 (2018).
Kim, S. G., Han, J. S., Kim, H., Kim, S. Y. & Jang, H. W. Current advances in memristive supplies for synthetic synapses. Adv. Mater. Technol. 3, 1–30 (2018).
Kwak, Ok. J., Lee, D. E., Kim, S. J. & Jang, H. W. Halide perovskites for memristive knowledge storage and synthetic synapses. J. Phys. Chem. Lett. 12, 8999–9010 (2021).
Han, J. S. et al. Lead‐free twin‐part halide perovskites for preconditioned conducting‐bridge reminiscence. Small 16, 2003225 (2020).
Im, I. H. et al. Controlling threshold and resistive change functionalities in Ag‐integrated organometallic halide perovskites for memristive crossbar array. Adv. Funct. Mater. 33, 2211358 (2023).
Lee, Y. J. et al. Excessive gap mobility inorganic halide perovskite subject‐impact transistors with enhanced part stability and interfacial defect tolerance. Adv. Electron. Mater. 8, 2100624 (2022).
Hong, Ok. et al. Sturdy Fermi-level pinning at steel contacts to halide perovskites. J. Mater. Chem. C 9, 15212–15220 (2021).
Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences all the things from the construction to optoelectronic gadget effectivity. Chem. Rev. 121, 2230–2291 (2021).
Zhang, F. et al. Advances in two-dimensional organic-inorganic hybrid perovskites. Power Environ. Sci. 13, 1154–1186 (2020).
Shi, Z., Ni, Z. & Huang, J. Direct statement of quick carriers transport alongside out-of-plane course in a Dion–Jacobson layered perovskite. ACS Power Lett. 7, 984–987 (2022).
Kim, S. J. et al. Vertically aligned two-dimensional halide perovskites for reliably operable synthetic synapses. Mater. At the moment 52, 19–30 (2022).
Niu, T. et al. Decreased-dimensional perovskite enabled by natural diamine for environment friendly photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019).
Guo, W., Yang, Z., Dang, J. & Wang, M. Progress and perspective in Dion–Jacobson part 2D layered perovskite optoelectronic purposes. Nano Power 86, 106129 (2021).
Niu, T., Xue, Q. & Yip, H. L. Advances in Dion–Jacobson part two-dimensional steel halide perovskite photo voltaic cells. Nanophotonics 10, 2069–2102 (2021).
Ahmad, S. et al. Dion–Jacobson part 2D layered perovskites for photo voltaic cells with ultrahigh stability. Joule 3, 794–806 (2019).
Kang, Ok. et al. Excessive-performance solution-processed organo-metal halide perovskite unipolar resistive reminiscence gadgets in a cross-bar array construction. Adv. Mater. 31, 1804841 (2019).
John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).
Walker, B., Kim, G. H. & Kim, J. Y. Pseudohalides in lead-based perovskite semiconductors. Adv. Mater. 31, 1–7 (2019).
Li, X. et al. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 140, 12226–12238 (2018).
Zhang, T. et al. Interfacial crosslinked quasi-2D perovskite with boosted provider transport and enhanced stability. J. Phys. D 51, 404001 (2018).
Li, Y. et al. Bifunctional natural spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite photo voltaic cells. Nano Lett. 19, 150–157 (2019).
Yu, H. et al. Thermal and humidity stability of combined spacer cations 2D perovskite photo voltaic cells. Adv. Sci. 8, 1–10 (2021).
Zhang, F. & Zhu, Ok. Additive engineering for environment friendly and steady perovskite photo voltaic cells. Adv. Power Mater. 10, 1–26 (2020).
Zhang, X. et al. Vertically oriented 2D layered perovskite photo voltaic cells with enhanced effectivity and good stability. Small 13, 2–9 (2017).
Zhang, X. et al. Orientation regulation of phenylethylammonium cation primarily based 2D perovskite photo voltaic cell with effectivity larger than 11%. Adv. Power Mater. 8, 1–9 (2018).
Han, J. S. et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching towards environment-friendly and temperature-tolerant nonvolatile reminiscences. ACS Appl. Mater. Interfaces 11, 8155–8163 (2019).
Kwak, Ok. J. et al. Ambient steady all inorganic CsCu2I3 synthetic synapses for neurocomputing. Nano Lett. 22, 6010–6017 (2022).
Zucker, R. S. & Regehr, W. G. Brief-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).
Hebb, D. O. The Group of Habits: a Neuropsychological Principle (Psychology Press, 2002).
Shi, J. et al. Direct statement of quick carriers transport alongside out-of-plane course in a Dion–Jacobson layered perovskite. ACS Power Lett. 7, 984–987 (2022).
Bagdzevicius, S. et al. Interface-type resistive switching in perovskite supplies. J. Electroceram. 39, 157–184 (2017).
Lyashenko, D., Perez, A. & Zakhidov, A. Excessive‐decision patterning of organohalide lead perovskite pixels for photodetectors utilizing orthogonal photolithography. Phys. Standing Solidi a 214, 1600302 (2017).
Liu, Y. et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned purposes by utilizing inkjet printing. ACS Nano 13, 2042–2049 (2019).
Pourdavoud, N. et al. Photonic nanostructures patterned by thermal nanoimprint straight into organo‐steel halide perovskites. Adv. Mater. 29, 1605003 (2017).
Zou, C. et al. Photolithographic patterning of perovskite skinny movies for multicolor show purposes. Nano Lett. 20, 3710–3717 (2020).
Harwell, J. et al. Patterning multicolor hybrid perovskite movies through top-down lithography. ACS Nano 13, 3823–3829 (2019).