6.7 C
United States of America
Sunday, March 9, 2025

SynBioNanoDesign: pioneering focused drug supply with engineered nanomaterials | Journal of Nanobiotechnology


  • Far BF, Maleki-Baladi R, Fathi-Karkan S, Babaei M, Sargazi S. Biomedical purposes of cerium vanadate nanoparticles: a evaluation. J Mater Chem B. 2024;12:609–36.

    Article 

    Google Scholar
     

  • Zhang F, Zhuang J, Li Z, Gong H, de Ávila BE-F, Duan Y, Zhang Q, Zhou J. Yin LKarshalev E. Nanoparticle-modified microrobots for in vivo antibiotic supply to deal with acute bacterial pneumonia. Nat Mater. 2022;21:1324–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakhshi S, Shoari A, Alibolandi P, Ganji M, Ghazy E, Rahdar A, Fathi-karkan S, Pandey S. Rising improvements in vincristine-encapsulated nanoparticles: pioneering a brand new period in oncological therapeutics. J Drug Deliv Sci Tec. 2024;91:105270.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Yang M, Chen Z. Floor functionalized nanomaterial techniques for focused remedy of endocrine associated tumors: a evaluation of current developments. Drug Deliv. 2024;31:2390022.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostiainen MA, Priimagi A, Timonen JV, Ras RH, Sammalkorpi M, Penttilä M, Ikkala O, Linder MB. Supplies impressed by residing features. Adv Funct Mater. 2024;34:2402097.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Fussenegger M. Structural supplies Meet artificial biology in biomedical purposes. Mater At present. 2024;72:163–82.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Li JY, Guo HJ, Fang C, Yang QL, Qin W, Wang H, Xian Y, Yan XB, Yin BX, Zhang Ok. Nanomaterials for stroke prognosis and therapy. Iscience. 2024;27:111112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene modifying and artificial biology for optimizing the therapy of pulmonary illnesses. J Nanobiotechnol. 2024;22:343.

    Article 

    Google Scholar
     

  • Cameron DE, Bashor CJ, Collins JJ. A short historical past of artificial biology. Nat Rev Microbiol. 2014;12:381–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng F, Ellis T. The second decade of artificial biology: 2010–2020. Nat Commun. 2020;11:5174.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao L, Lou Y, Tang X, Deng Z, Gao J. Mental property and funding: fueling Chinese language Synbio. Traits Biotechnol. 2023;42:258–60.

    Article 
    PubMed 

    Google Scholar
     

  • Chu L, Luo X, Zhu T, Cao Y, Zhang L, Deng Z, Gao J. Harnessing phosphonate antibiotics Argolaphos biosynthesis allows an artificial biology-based inexperienced synthesis of glyphosate. Nat Commun. 2022;13:1736.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Y, Cheng S, Bian G, Yan P, Ma Z, Dai W, Chen R, Fu S, Huang H, Chi H. Environment friendly exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nat Catal. 2022;5:277–87.

    Article 
    CAS 

    Google Scholar
     

  • Noireaux V, Liu AP. The brand new age of cell-free biology. Annu Rev Biomed Eng. 2020;22:51–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Praveschotinunt P, Duraj-Thatte A, Gelfat I, Bahl F, Chou D, Joshi NS. Engineered e.coli Nissle 1917 for the supply of matrix-tethered therapeutic domains to the intestine. Nat Commun. 2019;10:5580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badrloo MA, Pourmadadi M, Abdouss M, Rahdar A, Pandey SFathi-Karkan S. Ameliorating Quercetin supply in most cancers remedy with Polyvinyl alcohol/halloysite/starch nanocomposite. Indu Crop Prod. 2024;218:118939.

    Article 
    CAS 

    Google Scholar
     

  • Brophy JA, Voigt CA. Rules of genetic circuit design. Nat Strategies. 2014;11:508–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu PD, Lander ES, Zhang F. Growth and purposes of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwok R. 5 onerous truths for artificial biology. Nature. 2010;463:7279.

    Article 

    Google Scholar
     

  • Tang T-C, An B, Huang Y, Vasikaran S, Wang Y, Jiang X, Lu TK, Zhong C. Supplies design by artificial biology. Nat Rev Mater. 2021;6:332–50.

    Article 
    CAS 

    Google Scholar
     

  • Parveen S, Sahoo SK. Polymeric nanoparticles for most cancers remedy. J Drug Goal. 2008;16:108–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundel R, Thakur T, Chatterjee M. Rising makes use of of PLA-PEG copolymer in most cancers drug supply. 3 Biotech. 2022;12:41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida M, Lahann J. Good nanomaterials. ACS Nano. 2008;2:1101–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Habibzadeh F, Sadraei SM, Mansoori R, Chauhan NPS, Sargazi G. Nanomaterials supported by polymers for tissue engineering purposes: A evaluation. Heliyon. 2022;8:e12193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X-E. Nanobiology-Symphony of bioscience and nanoscience. Sci China Life Sci. 2020;63:1099–102.

    Article 
    PubMed 

    Google Scholar
     

  • Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Software of artificial biology in bladder most cancers. Chin Med J. 2022;135:2178–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolar Ok, Knobloch C, Stork H, Žnidarič M, Weber W. OptoBase: an online platform for molecular optogenetics. ACS Synth Biol. 2018;7:1825–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma J, Singh NK, Bansal KK. Current patents in polymer–lipid hybrid nanoparticles expertise. Ther Deliv. 2024;15:489–93.

    Article 
    PubMed 

    Google Scholar
     

  • Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mostly mRNA remedy: challenges and promise for scientific transformation. Small. 2024;20:2310531.

    Article 
    CAS 

    Google Scholar
     

  • Ma Y, Tiwade PB, VanKeulen-Miller R, Narasipura EA, Fenton OS. Polyphenolic nanoparticle platforms (PARCELs) for in vitro and in vivo mRNA supply. Nano Lett. 2024;24:6092–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar H, Zhan M, Karpus A, Zou Y, Li J, Mignani S, Majoral JP, Shi X, Shen M. Bioactive phosphorus dendrimers as a common protein supply system for enhanced anti-inflammation remedy. ACS Nano. 2024;18:2195–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Xie Y, Music J, Liu R, Chen J, Weitz DA, Sheng J, Liang T, Chen D. Self-Meeting of biocompatible Core-Shell nanocapsules with tunable floor performance by microfluidics for enhanced drug supply. Adv Funct Mater. 2024;34:2407112.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature’s carriers: leveraging extracellular vesicles for focused drug supply. Drug Deliv. 2024;31:2361165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Karp JM, Langer R, Joshi N. The way forward for drug supply. Chem Mater. 2023;35:359–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel drug supply techniques: an vital course for drug innovation analysis and improvement. Pharmaceutics. 2024;16:674.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jewett MCPatolsky F. Nanobiotechnology: artificial biology Meets supplies science. Curr Opin Biotech. 2013;24:551–4.

    Article 

    Google Scholar
     

  • Ulbrich Ok, Holá Ok, Subr V, Bakandritsos A, Tucek J, Zboril R. Focused drug supply with polymers and magnetic nanoparticles: covalent and noncovalent approaches, launch management, and scientific research. Chem Rev. 2016;116:5338–431.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arap W, Pasqualini R, Ruoslahti E. Most cancers therapy by focused drug supply to tumor vasculature in a mouse mannequin. Science. 1998;279:377–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abousalman-Rezvani Z, Refaat A, Dehghankelishadi P, Roghani-Mamaqani H. Esser LVoelcker NH. Insights into focused and Stimulus-Responsive nanocarriers for mind Most cancers therapy. Adv Healthc Mater. 2024;13:2302902.

    Article 
    CAS 

    Google Scholar
     

  • Rawal SU, Patel BM, Patel MM. New drug supply techniques developed for mind focusing on. Medicine. 2022;82:749–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quader S, Kataoka Ok, Cabral H. Nanomedicine for mind most cancers. Adv Drug Supply Rev. 2022;182:114115.

    Article 
    CAS 

    Google Scholar
     

  • Hu DR, Li R, Li YC, Wang M, Wang L, Wang SQ, Cheng HX, Zhang Q, Fu CY, Qian ZY, Wei Q. Irritation-Focused nanomedicines alleviate oxidative stress and reprogram macrophages polarization for myocardial infarction therapy. Adv Sci. 2024;11.

  • Li XT, Peng XJ, Zoulikha M, Boafo GF, Magar KT. Ju YMHe W. Multifunctional nanoparticle-mediated combining remedy for human illnesses. Sign Transduct Goal Ther. 2024;9:2308910.


    Google Scholar
     

  • Da Silva C, Rueda F, Löwik C, Ossendorp F, Cruz LJ. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials. 2016;83:308–20.

    Article 
    PubMed 

    Google Scholar
     

  • Shim G, Kim MG, Kim D, Park JY, Oh YK. Nanoformulation-based sequential mixture most cancers remedy. Adv Drug Supply Rev. 2017;115:57–81.

    Article 
    CAS 

    Google Scholar
     

  • Lammers T. Nanomedicine tumor focusing on. Adv Mater. 2024;36:2312169.

    Article 
    CAS 

    Google Scholar
     

  • Solar YX, Zhang W, Gu JN, Xia LY, Cao YH, Zhu XH, Wen H, Ouyang SW, Liu RQ, Li JL, Jiang ZX, Cheng DL, Lv YL, Han XT, Qiu W, Cai KL, Music EM, Cao QL, Li L. Magnetically pushed capsules with multimodal response and multifunctionality for biomedical purposes. Nat Commun. 2024;15:8172.


    Google Scholar
     

  • Safarkhani M, Ahmadi S, Ipakchi H, Saeb MR, Makvandi P, Warkiani ME, Rabiee N, Huh Y. Developments in Aptamer-Pushed DNA nanostructures for precision drug supply. Adv Sci. 2024;11:2401617.

    Article 
    CAS 

    Google Scholar
     

  • Shrestha B, Tang L, Romero G. Nanoparticles-mediated mixture therapies for most cancers therapy. Adv Ther. 2019;2:1900076.

    Article 

    Google Scholar
     

  • Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug supply: methods specializing in inflammatory bowel illness and colon most cancers. Nanomedicine. 2024;1–22.

  • Park H, Otte A, Park Ok. Evolution of drug supply techniques: from 1950 to 2020 and past. J Managed Launch. 2022;342:53–65.

    Article 
    CAS 

    Google Scholar
     

  • Moghadam NB, Avatefi M, Karimi M, Mahmoudifard M. Graphene household in most cancers remedy: current progress in most cancers gene/drug supply purposes. J Mater Chem B. 2023;11:2568–613.

    Article 

    Google Scholar
     

  • Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug supply techniques for most cancers immunotherapy. Acta Biomater. 2019;85:1–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology primarily based drug supply system: present methods and rising therapeutic potential for medical science. J Drug Supply Sci Technol. 2021;63:102487.

    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Hsu JC, Xu L, Chen W, Cai W, Wang Ok. Nanomedicine-based adjuvant remedy: a promising answer for lung most cancers. J Nanobiotechnol. 2023;21:211.

    Article 

    Google Scholar
     

  • Lin G, Revia RA, Zhang M. Inorganic nanomaterial-mediated gene remedy together with different antitumor therapy modalities. Adv Funct Mater. 2021;31:2007096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afsharzadeh M, Hashemi M, Babaei M, Abnous Ok, Ramezani M. PEG-PLA nanoparticles embellished with small‐molecule PSMA ligand for focused supply of Galbanic acid and docetaxel to prostate most cancers cells. J Cell Physiol. 2020;235:4618–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Most cancers nanomedicine: progress, challenges and alternatives. Nat Rev Most cancers. 2017;17:20–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Past Nanoparticle-Based mostly intracellular drug supply: Cytosol/Organelle‐Focused drug launch and therapeutic synergism. Macromol Biosci. 2024;24:2300590.

    Article 
    CAS 

    Google Scholar
     

  • Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-based nanoparticles of focused drug supply system in breast most cancers therapy. Polymers. 2021;13:1717.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei Q, Zhao Y, Liu S, Xiao Y, Yang F, Guo W, Gu N. Nanomaterials increase the biomedical software of artificial biology. Sci China Mater. 2024;67:2051–66.

    Article 
    CAS 

    Google Scholar
     

  • Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric nanocarriers of drug supply techniques in most cancers remedy. Pharmaceutics. 2020;12:298.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forest V, Pourchez J. Nano-delivery to the lung-by inhalation or different routes and why nano when micro is basically ample? Adv. Drug Supply Rev. 2022;183:114173.

    Article 
    CAS 

    Google Scholar
     

  • Shi J. Biocompatibility of artificial nanomaterials and their purposes in gene supply. Karolinska Institutet (Sweden), ProQuest Dissertations & Theses, 2012;28423905.

  • Witwer KW, Wolfram J. Extracellular vesicles versus artificial nanoparticles for drug supply. Nat Rev Mater. 2021;6:103–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peer D, Karp JM, Hong S, FaroKhzad OC. Margalit RLanger R. Nanocarriers as an rising platform for most cancers remedy. Nat Nanotechnol. 2007;2:751–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, MacMillan P, Zhang Y, Rajesh NU, Hoang T. The entry of nanoparticles into strong tumours. Nat Mater. 2020;19:566–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dykman L, Khlebtsov BKhlebtsov N. Drug supply utilizing gold nanoparticles. Adv Drug Supply Rev. 2025;216:115481.

    Article 
    CAS 

    Google Scholar
     

  • Singh R, Lillard JW. Nanoparticle-based focused drug supply. Exp Mol Pathol. 2009;86:215–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie X, Solar T, Xue J, Miao Z, Yan X, Fang W, Li Q, Tang R, Lu Y, Tang L. Ag nanoparticles cluster with Ph-triggered reassembly in focusing on antimicrobial purposes. Adv Funct Mater. 2020;30:2000511.

    Article 
    CAS 

    Google Scholar
     

  • Ding C, Huang Y, Shen Z, Chen X. Synthesis and bioapplications of Ag2S quantum Dots with near-infrared fluorescence. Adv Mater. 2021;33:2007768.

    Article 
    CAS 

    Google Scholar
     

  • Zhu MS, Liu QQ, Chen ZB, Liu JM, Zhang ZX, Tian JW, Wang XY, Yang X, Chen Q, Huang XL, Zhuang J. Rational design of Twin-Focused nanomedicines for enhanced vascular permeability in Low-Permeability tumors. ACS Nano. 2025. https://doi.org/10.1021/acsnano.4c12808.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chauhan VP, Jain RK. Methods for advancing most cancers nanomedicine. Nat Mater. 2013;12:958–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang YX, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang HM, Khademhosseini A, Jucaud V. Pearson RMNajafabadi AH. Simvastatin-Loaded polymeric nanoparticles: focusing on inflammatory macrophages for native adipose tissue Browning in weight problems therapy. ACS Nano. 2024;18:27764–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leong EW, Ge R. Lipid nanoparticles as supply autos for inhaled therapeutics. Biomedicines. 2022;10:2179.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han H, Chen J, Li J, Correia A, Bártolo R, Shahbazi MA, Teesalu T, Wang S, Cui W, Santos HA. Enhancing apoptosome meeting by way of Mito-Biomimetic lipid nanocarrier for Most cancers remedy. Adv Funct Mater. 2023;33:2305316.

    Article 
    CAS 

    Google Scholar
     

  • Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for most cancers theranostics. Chem Soc Rev. 2023;52:2031–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida SF, Fonseca A, Sereno J, Ferreira HR, Lapo-Pais M, Martins‐Marques T, Rodrigues T, Oliveira RC. Miranda CAlmeida LP. Osteosarcoma‐Derived exosomes as potential PET imaging nanocarriers for lung metastasis. Small. 2022;18:2203999.

    Article 
    CAS 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA, Grillo R. Swamy MKSharma S. Nano primarily based drug supply techniques: current developments and future prospects. J Nanobiotechnol. 2018;16:1–33.

    Article 

    Google Scholar
     

  • Poon W, Kingston BR, Ouyang B, Ngo W, Chan WC. A framework for designing supply techniques. Nat Nanotechnol. 2020;15:819–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Pan J, Han B, Hou W, Li B, Wang J, Wang G, He Y, Ma M, Zhou J, Yu C, Solar SK. Ultrahigh-resolution visualization of vascular heterogeneity in mind tumors by way of magnetic nanoparticles-enhanced susceptibility-weighted imaging. ACS Nano. 2024;18:21112–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang L, Yin Y, Liu H, Zhu M, Cao Y, Feng J, Fu C, Li Z, Shu W, Gao J, Liang XJ, Wang W. Blood–Mind Barrier-Penetrating and Lesion‐Concentrating on nanoplatforms impressed by the pathophysiological options for synergistic ischemic stroke remedy. Adv Mater. 2024;2312897.

  • Hou L, Tian C, Yan Y, Zhang L, Zhang H, Zhang Z. Manganese-based nanoactivator optimizes most cancers immunotherapy by way of enhancing innate immunity. ACS Nano. 2020;14:3927–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahajan Ok, Bhattacharya S. The development and Obstacles in bettering the soundness of nanocarriers for precision drug supply within the area of nanomedicine. Curr Prime Med Chem. 2024;24:686–721.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Hu Y, Zhang XC, Shi XY, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor supply. Nat Commun. 2024;15:8172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WC. Evaluation of nanoparticle supply to tumours. Nat Rev Mater. 2016;1:1–12.

    Article 

    Google Scholar
     

  • Ausländer S, Fussenegger M. Engineering gene circuits for mammalian cell–primarily based purposes. Chilly Spring Harbor Perspect Biol. 2016;8:a023895.

    Article 

    Google Scholar
     

  • Wu MR, Jusiak B, Lu TK. Engineering superior most cancers therapies with artificial biology. Nat Rev Most cancers. 2019;19:187–95.

    PubMed 

    Google Scholar
     

  • Kojima R, Fussenegger M. Artificial biology: engineering mammalian cells to manage cell-to‐cell communication at will. ChemBioChem. 2019;20:994–1002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, Cress BF, Knott GJ, Jacobsen SE, Banfield JF, Doudna JA. CRISPR-CasΦ from big phages is a hypercompact genome editor. Science. 2020;369:333–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katti A, Diaz BJ, Caragine CM, Sanjana NEDow LE. CRISPR in most cancers biology and remedy. Nat Rev Most cancers. 2022;22:259–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein advanced mediates particular DNA cleavage for adaptive immunity in micro organism. Proc Natl Acad Sci U S A. 2012;109:2579–86.

    Article 

    Google Scholar
     

  • LaFountaine JS, Fathe KSmyth HD. Supply and therapeutic purposes of gene modifying applied sciences ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm. 2015;494:180–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome modifying specificity. Cell. 2013;154:1380–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiani S, Chavez A, Tuttle M, Corridor RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S. Cas9 gRNA engineering for genome modifying, activation and repression. Nat Strategies. 2015;12:1051–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aratboni HA, Rafiei N, Khorashad LK, Lerma-Escalera AI, Balderas-Cisneros FJ, Liu Z, Alemzadeh A, Shaji S, Morones-Ramírez JR. LED management of gene expression in a nanobiosystem composed of metallic nanoparticles and a genetically modified E. coli pressure. J Nanobiotechnol. 2021;19:190.

    Article 
    CAS 

    Google Scholar
     

  • Pourmadadi M, Abdouss H, Memarzadeh A, Abdouss M, Fathi-karkan S, Rahdar A, Díez-Pascual AM. Progressive chitosan-polyacrylic acid-MoS2 nanocomposite for enhanced and pH-responsive Quercetin supply. Mater At present Commun. 2024;39:108724.

    Article 
    CAS 

    Google Scholar
     

  • Chen AY, Zhong CLu TK. Engineering residing practical supplies. Acs Synth Biol. 2015;4:8–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert CEllis T. Organic engineered residing supplies: rising practical supplies with genetically programmable properties. ACS Synth Biol. 2018;8:1–15.

    Article 

    Google Scholar
     

  • Hörner M, Raute Ok, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gübeli RJ, Engesser R. Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater. 2019;31:1806727.

    Article 

    Google Scholar
     

  • De Almeida P, Jaspers M, Vaessen S, Tagit O, Portale G, Rowan AE, Kouwer PH. Cytoskeletal stiffening in artificial hydrogels. Nat Commun. 2019;10:609.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing J, Yin T, Li S, Xu T, Ma A, Chen Z, Luo Y, Lai Z, Lv Y, Pan H. Sequential magneto-actuated and optics‐triggered biomicrorobots for focused most cancers remedy. Adv Funct Mater. 2021;31:2008262.

    Article 
    CAS 

    Google Scholar
     

  • Deng X, Yang W, Shao Z, Zhao Y. Genetically modified micro organism for focused phototherapy of tumor. Biomaterials. 2021;272:120809.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, Cao Z, Li J, Fu Z, Lin S, Wang L, Liu J. Integrating micro organism with a ternary mixture of photosensitizers for monochromatic irradiation-mediated photoacoustic imaging-guided synergistic photothermal remedy. ACS Nano. 2023;17:5059–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Liang X, Li Y, Feng Q, Cheng Ok, Ma N, Zhu F, Guo X, Yue Y, Liu G. Modular-designed engineered micro organism for precision tumor immunotherapy by way of Spatiotemporal manipulation by magnetic area. Nat Commun. 2023;14:1606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akolpoglu MB, Alapan Y, Dogan NO, Baltaci SF, Yasa O, Aybar Tural G, Sitti M. Magnetically steerable bacterial microrobots transferring in 3D organic matrices for stimuli-responsive cargo supply. Sci Adv. 2022;8:eabo6163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eftekhari A, Kryschi C, Pamies D, Gulec S, Ahmadian E, Janas D. Davaran SKhalilov R. Pure and artificial nanovectors for most cancers remedy. Nanotheranostics. 2023;7:236.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Kumar J, Tripathy S, Senecal KJ, Samuelson L. Enzymatically synthesized conducting polyaniline. J Am Chem Soc. 1999;121:71–8.

    Article 
    CAS 

    Google Scholar
     

  • Stavrinidou E, Gabrielsson R, Nilsson KPR, Singh SK, Franco-Gonzalez JF, Volkov AV, Jonsson MP, Grimoldi A, Elgland M, Zozoulenko IV. In vivo polymerization and manufacturing of wires and supercapacitors in crops. Proc. Natl. Acad. Sci. U.S.A. 2017;114:2807–2812.

  • Jiang Z, Jin X, Li Y, Liu S, Liu XM, Wang YY, Zhao P, Cai X, Liu Y, Tang Y. Genetically encoded tags for direct synthesis of EM-visible gold nanoparticles in cells. Nat Strategies. 2020;17:937–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medication, biotechnology, and vitality. Chem Soc Rev. 2016;45:4074–126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar X, Cui Z. Virus-like particles as theranostic platforms. Adv Ther. 2020;3:1900194.

    Article 

    Google Scholar
     

  • Gao P, Solar S, Wang Y, Wei Y, Jiang Y. Biodegradable T2-phage-like Janus nanoparticles for actively-targeted and chemo-photothermal synergistic remedy. Chem Eng J. 2022;428:131284.

    Article 
    CAS 

    Google Scholar
     

  • Lim ZW, Varma VB, Ramanujan RV, Miserez A. Magnetically responsive peptide coacervates for twin hyperthermia and chemotherapy remedies of liver most cancers. Acta Biomater. 2020;110:221–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim ZW, Ping YMiserez A. Glucose-responsive peptide coacervates with excessive encapsulation effectivity for managed launch of insulin. Bioconjug Chem. 2018;29:2176–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Wang J, Solar W, Archibong E, Kahkoska AR, Zhang X, Lu Y, Ligler FS, Buse JB, Gu Z. Artificial beta cells for fusion-mediated dynamic insulin secretion. Nat Chem Biol. 2018;14:86–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Ok, Chen J, Lin L, Yan N, Yang W, Cai Ok, Tian H, Chen X. Anion receptor-mediated multicomponent synergistic self-assembly of porphyrin for environment friendly phototherapy to elicit tumor immunotherapy. Nano At present. 2022;46:101579.

    Article 
    CAS 

    Google Scholar
     

  • Huang C-X, Lv S-Y, Li C, Peng B, Li G, Yang L-M. Single-atom catalysts primarily based on two-dimensional metalloporphyrin monolayers for ammonia synthesis beneath ambient situations. Nano Res. 2022;15:4039–47.

    Article 
    CAS 

    Google Scholar
     

  • Peres C, Matos AI, Carreira B, Moura LI, Kleiner R, Vaskovich-Koubi D, Reshef Ok, Dulberg S, Verdial M, Conniot J. Multifunctional nanovaccine sensitizes breast Most cancers to immune checkpoint remedy. Adv Funct Mater. 2024;34:2401749.

    Article 
    CAS 

    Google Scholar
     

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells however don’t trigger acute cytotoxicity. Small. 2005;1:325–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Chen J, Talavage T, Irudayaraj J. Gold nanorod/Fe3O4 nanoparticle nano-pearl‐necklaces for simultaneous focusing on, twin‐mode imaging, and photothermal ablation of most cancers cells. Angew Chem. 2009;121:2797–801.

    Article 

    Google Scholar
     

  • Taheri-Ledari R, Zhang W, Radmanesh M, Mirmohammadi SS, Maleki A, Cathcart N, Kitaev V. Multi‐stimuli nanocomposite therapeutic: docetaxel focused supply and synergies in therapy of human breast most cancers tumor. Small. 2020;16:2002733.

    Article 
    CAS 

    Google Scholar
     

  • Yildiz I, Shukla S, Steinmetz NF. Purposes of viral nanoparticles in medication. Curr Opin Biotechnol. 2011;22:901–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: Subsequent‐technology nanoparticles for focused therapeutic supply. Bioeng Transl Med. 2017;2:43–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Tian J, Liu J, Zhu M, Gao Z, Hu X, Midgley AC, Wu J, Wang X, Kong D. Modular meeting of tumor-penetrating and oligomeric nanozyme primarily based on intrinsically self‐assembling protein nanocages. Adv Mater. 2021;33:2103128.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S. Fabrication of novel biomaterials via molecular self-assembly. Nat Biotechnol. 2003;21:1171–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, Bai Y, Chembazhi UV, Peng S, Yum Ok, Luu LM, Hagler LD, Serrano JF, Chan HE, Kalsotra A. Intrinsically cell-penetrating multivalent and multitargeting ligands for myotonic dystrophy kind 1. Proc Natl Acad Sci U S A. 2019;116:8709–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka M, Roberts JM, Search engine optimization HS, Souza A, Paulk J, Scott TG, DeAngelo SL, Dhe-Paganon S, Bradner JE. Design and characterization of bivalent BET inhibitors. Nat Chem Biol. 2016;12:1089–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Wang C, Zhu M, Liu J, Duan Q, Midgley AC, Liu R, Jiang B, Kong D, Chen Q. Self-Meeting of heterogeneous ferritin nanocages for tumor uptake and penetration. Adv Sci. 2024;11:2309271.

    Article 
    CAS 

    Google Scholar
     

  • Wu D, Sinha N, Lee J, Sutherland BP, Halaszynski NI, Tian Y, Caplan J, Zhang HV, Saven JG, Kloxin CJ. Polymers with managed meeting and rigidity made with click-functional peptide bundles. Nature. 2019;574:658–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2017;3:1–23.

    Article 

    Google Scholar
     

  • Buchberger A, Simmons CR, Fahmi NE, Freeman R, Stephanopoulos N. Hierarchical meeting of nucleic acid/coiled-coil peptide nanostructures. J Am Chem Soc. 2019;142:1406–16.

    Article 

    Google Scholar
     

  • Cui R, Liu HH, Xie HY, Zhang ZL, Yang YR, Pang DW, Xie ZX, Chen BB, Hu B, Shen P. Dwelling yeast cells as a controllable biosynthesizer for fluorescent quantum Dots. Adv Funct Mater. 2009;19:2359–64.

    Article 
    CAS 

    Google Scholar
     

  • Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X. Enabling expertise and core concept of artificial biology. Sci China Life Sci. 2023;66:1742–85.

    Article 
    PubMed 

    Google Scholar
     

  • Roos W, Bruinsma R, Wuite G. Bodily virology. Nat Phys. 2010;6:733–43.

    Article 
    CAS 

    Google Scholar
     

  • Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The rising pattern of bio-engineering approaches for microbial nanomaterial synthesis and its purposes. Entrance Microbiol. 2021;12:638003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar X, Lian Y, Tian T, Cui Z. Developments in practical nanomaterials impressed by viral particles. Small. 2024;20:2402980.

    Article 
    CAS 

    Google Scholar
     

  • Choi Y, Lee SY. Biosynthesis of inorganic nanomaterials utilizing microbial cells and bacteriophages. Nat Rev Chem. 2020;4:638–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Current progress in Phage-Based mostly nanoplatforms for tumor remedy. Small. 2024;20:2307111.

    Article 
    CAS 

    Google Scholar
     

  • Search engine optimization JM, Kim EB, Hyun MS, Kim BB, Park TJ. Self-assembly of biogenic gold nanoparticles and their use to boost drug supply into cells. Colloids Surf B. 2015;135:27–34.

    Article 
    CAS 

    Google Scholar
     

  • Chang C, Guo W, Yu X, Guo C, Zhou N, Guo X, Huang RL, Li Q, Zhu Y. Engineered M13 phage as a novel therapeutic bionanomaterial for scientific purposes: from tissue regeneration to most cancers remedy. Mater At present Bio. 2023;20:100612.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh MH, Yu JH, Kim I, Nam YS. Genetically programmed clusters of gold nanoparticles for most cancers cell-targeted photothermal remedy. ACS Appl Mater Interfaces. 2015;7:22578–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang X, Yi H, Ham M-H, Qi J, Yun DS, Ladewski R, Strano MS, Hammond PT, Belcher AM. Virus-templated self-assembled single-walled carbon nanotubes for extremely environment friendly electron assortment in photovoltaic gadgets. Nat Nanotechnol. 2011;6:377–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali J, Ali N, Wang L, Waseem H, Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metallic nanoparticles. J Microbiol Strategies. 2019;159:18–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iravani S, Varma RS. Biofactories: engineered nanoparticles by way of genetically engineered organisms. Inexperienced Chem. 2019;21:4583–603.

    Article 
    CAS 

    Google Scholar
     

  • Blakemore R. Magnetotactic micro organism. Science. 1975;190:377–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park TJ, Lee SY, Heo NS, Search engine optimization TS. In vivo synthesis of various metallic nanoparticles by Recombinant Escherichia coli. Angew Chem Int Ed. 2010;49:7019–24.

    Article 
    CAS 

    Google Scholar
     

  • Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK. Enhancing T cell remedy via TCR-signaling-responsive nanoparticle drug supply. Nat Biotechnol. 2018;36:707–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie W, Wei W, Zuo L, Lv C, Zhang F, Lu GH, Li F, Wu G, Huang LL, Xi X. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell remedy for strong tumors. ACS Nano. 2019;13:1469–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Q, Li H, Archibong E, Chen Q, Ruan H, Ahn S, Dukhovlinova E, Kang Y, Wen D, Dotti G. Inhibition of post-surgery tumour recurrence by way of a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng. 2021;5:1038–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourdeau RW, Lee-Gosselin A, Lakshmanan A, Farhadi A, Kumar SR, Nety SP, Shapiro MG. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature. 2018;553:86–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan JX, Peng MY, Wang H, Zheng HR, Liu ZL, Li CX, Wang XN, Liu XH, Cheng SX, Zhang XZ. Engineered bacterial bioreactor for tumor remedy by way of Fenton-like response with localized H2O2 technology. Adv Mater. 2019;31:1808278.

    Article 

    Google Scholar
     

  • Seashore MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric nanoparticles for drug supply. Chem Rev. 2024;124:5505–616.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Kankala RK, Ma J, Zhou Y, Wang SB, Chen AZ. Hole tobacco mosaic virus coat protein assisted self-assembly of one-dimensional nanoarchitectures. Biomacromolecules. 2020;22:540–5.

    Article 
    PubMed 

    Google Scholar
     

  • Roberts S, Harmon TS, Schaal JL, Miao V, Li Ok, Hunt A, Wen Y, Oas TG, Collier JH, Pappu RV. Injectable tissue integrating networks from Recombinant polypeptides with tunable order. Nat Mater. 2018;17:1154–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapenta F, Aupič J, Strmšek ŽJerala R. Coiled coil protein Origami: from modular design ideas in the direction of biotechnological purposes. Chem Soc Rev. 2018;47:3530–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molino NM, Wang SW. Caged protein nanoparticles for drug supply. Curr Opin Biotechnol. 2014;28:75–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fletcher JM, Harniman RL, Barnes FR, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Sales space PJ, Linden N. Self-assembling cages from coiled-coil peptide modules. Science. 2013;340:595–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ross JF, Bridges A, Fletcher JM, Shoemark D, Alibhai D, Bray HE, Beesley JL, Dawson WM, Hodgson LR, Mantell J. Adorning self-assembled peptide cages with proteins. ACS Nano. 2017;11:7901–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ljubetič A, Lapenta F, Gradišar H, Drobnak I, Aupič J, Strmšek Ž, Lainšček D, Hafner-Bratkovič I, Majerle A, Krivec N. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat Biotechnol. 2017;35:1094–101.

    Article 
    PubMed 

    Google Scholar
     

  • Wang D, Capehart SL, Pal S, Liu M, Zhang L, Schuck PJ, Liu Y, Yan H, Francis MB, De Yoreo JJ. Hierarchical meeting of plasmonic nanostructures utilizing virus capsid scaffolds on DNA Origami templates. ACS Nano. 2014;8:7896–904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zhang X, Yu M, Li S, Zhang J. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds. Small. 2012;8:310–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephanopoulos N, Liu M, Tong GJ, Li Z, Liu Y, Yan H, Francis MB. Immobilization and one-dimensional association of virus capsids with nanoscale precision utilizing DNA Origami. Nano Lett. 2010;10:2714–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lujan H, Griffin WC, Taube JH, Sayes CM. Synthesis and characterization of nanometer-sized liposomes for encapsulation and MicroRNA switch to breast most cancers cells. Int J Nanomed. 2019;14:5159–73.

    Article 
    CAS 

    Google Scholar
     

  • Music X, Ju R, Xiao Y, Wang X, Liu S, Fu M, Liu J, Gu L, Li X, Cheng L. Software of multifunctional focusing on epirubicin liposomes within the therapy of non-small-cell lung most cancers. Int J Nanomed. 2017;7433–51.

  • Gao X, Tao Y, Lamas V, Huang M, Yeh W-H, Pan B, Hu YJ, Hu JH, Thompson DB, Shu Y. Remedy of autosomal dominant listening to loss by in vivo supply of genome modifying brokers. Nature. 2018;553:217–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Chang J, Jiang Y, Meng X, Solar T, Mao L, Xu Q, Wang M. Quick and environment friendly CRISPR/Cas9 genome modifying in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019;31:1902575.

    Article 

    Google Scholar
     

  • Wang M, Zuris JA, Meng F, Rees H, Solar S, Deng P, Han Y, Gao X, Pouli D, Wu Q. Environment friendly supply of genome-editing proteins utilizing bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2016;113:2868–2873.

  • Shahbazi R, Sghia-Hughes G, Reid JL, Kubek S, Haworth KG, Humbert O, Kiem HP, Adair JE. Focused homology-directed restore in blood stem and progenitor cells with CRISPR nanoformulations. Nat Mater. 2019;18:1124–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanna V, Pala N, Sechi M. Focused remedy utilizing nanotechnology: deal with most cancers. Int J Nanomed 2014;467–83.

  • Aigner TB, DeSimone E, Scheibel T. Biomedical purposes of Recombinant silk-based supplies. Adv Mater. 2018;30:1704636.

    Article 

    Google Scholar
     

  • Miserez A, Yu J, Mohammadi P. Protein-based organic supplies: molecular design and synthetic manufacturing. Chem Rev. 2023;123:2049–111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rammensee S, Slotta U, Scheibel T, Bausch A. Meeting mechanism of Recombinant spider silk proteins. Proc Natl Acad Sci U S A. 2008;105:6590–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ping Y, Ding D, Ramos RA, Mohanram H, Deepankumar Ok, Gao J, Tang G, Miserez A. Supramolecular β-sheets stabilized protein nanocarriers for drug supply and gene transfection. ACS Nano. 2017;11:4528–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H. Biotechnological mass manufacturing of DNA Origami. Nature. 2017;552:84–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey S, Fan C, Gothelf KV, Li J, Lin C, Liu L, Liu N, Nijenhuis MA, Saccà B, Simmel FC. DNA Origami. Nat Rev Strategies Primers. 2021;1:13.

    Article 

    Google Scholar
     

  • Yao G, Zhang F, Wang F, Peng T, Liu H, Poppleton E, Šulc P, Jiang S, Liu L, Gong C. Meta-DNA constructions. Nat Chem. 2020;12:1067–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Music C, Wang J, Zou Y, Anderson GJ, Han JY. A DNA nanorobot features as a most cancers therapeutic in response to a molecular set off in vivo. Nat Biotechnol. 2018;36:258–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, Liu J, Shang Y, Zhao S, Wu T. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat Mater. 2021;20:421–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice MK, Ruder WC. Creating organic nanomaterials utilizing artificial biology. Sci Technol Adv Mater. 2013;15:014401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love AJ, Makarov VV, Sinitsyna OV, Shaw J, Yaminsky IV, Kalinina NO, Taliansky ME. A genetically modified tobacco mosaic virus that may produce gold nanoparticles from a metallic salt precursor. Entrance Plant Sci. 2015;6:984.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim J-S, Kim S-M, Lee S-Y, Stach EA, Culver JN, Harris MT. Biotemplated aqueous-phase palladium crystallization within the absence of exterior lowering brokers. Nano Lett. 2010;10:3863–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngo-Duc T-T, Alibay Z, Plank JM, Cheeney JE, Haberer ED. Gold-decorated M13 I-forms and S-forms for focused photothermal Lysis of micro organism. ACS Appl Mater Interfaces. 2019;12:126–34.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Y, Yang Ok, Wang J, Cui D, Zhao M. Fabrication and characterization of cds nanowires templated in tobacco mosaic virus with improved photocatalytic potential. Appl Microbiol Biotechnol. 2021;105:8255–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA. Managed phage remedy by photothermal ablation of particular bacterial species utilizing gold nanorods focused by chimeric phages. Proc. Natl. Acad. Sci. U.S.A. 2020;117:1951–1961.

  • Cao H, Molday RS, Hu J. Gene remedy: mild is lastly within the tunnel. Protein Cell. 2011;2:973–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishiyama N, Iriyama A, Jang WD, Miyata Ok, Itaka Ok, Inoue Y, Takahashi H, Yanagi Y, Tamaki Y, Koyama H. Mild-induced gene switch from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater. 2005;4:934–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu YA, Du LX, Wu YX, Qin J, Gu X, Guo ZH, Li Y. Biomembrane-Modified biomimetic nanodrug supply techniques: frontier platforms for heart problems therapy. Biomolecules. 2024;14:960.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang WQ, Xu Z, Lu HY, Liu SW, Li JS, Ding CM, Lu YP. Advances in biomimetic nanomaterial supply techniques: Harnessing Nature’s inspiration for focused drug supply. J Mater Chem B. 2024;12:7001–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal H, Shanmugam V. A evaluation on anti-inflammatory exercise of inexperienced synthesized zinc oxide nanoparticle: Mechanism-based strategy. Bioorg Chem. 2020;94:103423.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Zang G, Li J, Li X, Li Y, Zhao Y. Cell-derived biomimetic nanoparticles as a novel drug supply system for atherosclerosis: predecessors and views. Regener Biomater. 2020;7:349–58.

    Article 
    CAS 

    Google Scholar
     

  • Marinho A, Reis S, Nunes C. On the design of cell membrane-coated nanoparticles to deal with inflammatory situations. Nanoscale Horiz. 2024;10:38–55.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Li YZ, Lu YQ, Li JJ. Biomimetic nanoparticles for the prognosis and remedy of atherosclerosis. Chem Rec. 2024;24:e202400087.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marinho A, Nunes C, Reis S. On the design of cell membrane-coated nanoparticles to deal with inflammatory situations. Nanoscale Horiz. 2024.

  • Chang M, Dai X, Dong C, Huang H, Ding L, Chen Y, Feng W. Two-dimensional persistent luminescence optical battery for autophagy inhibition-augmented photodynamic tumor nanotherapy. Nano At present. 2022;42:101362.

    Article 
    CAS 

    Google Scholar
     

  • Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and purposes in drug supply techniques. Adv Drug Supply Rev. 2018;128:84–100.

    Article 
    CAS 

    Google Scholar
     

  • Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martinez MC. Extracellular vesicles: mechanisms in human well being and illness. Antioxid Redox Sign. 2019;30:813–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Yang A, Solar Y, Liu D, You P, Zeng Y, Quan S, Zhang H, Zhang H, Ma S. Hydroxysafflor yellow A-loaded biomimetic liposomes alleviate HHcy-induced atherosclerosis by regulating methylation associated autophagy. Mater Des. 2023;227:111807.

    Article 
    CAS 

    Google Scholar
     

  • Qiao Q, Li X, Ou X, Liu X, Fu C, Wang Y, Niu B, Kong L, Yang C, Zhang Z. Hybrid biomineralized nanovesicles to boost infected lung biodistribution and cut back aspect impact of glucocorticoid for ARDS remedy. J Managed Launch. 2024;369:746–64.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Xiao C, Xiao Ok. Engineered extracellular vesicles-like biomimetic nanoparticles as an rising platform for focused most cancers remedy. J Nanobiotechnol. 2023;21:287.

    Article 

    Google Scholar
     

  • Han X, Gong C, Yang Q, Zheng Ok, Wang Z, Zhang W. Biomimetic nano-drug supply system: an rising platform for selling tumor therapy. Int J Nanomed. 2024;571–608.

  • Zinger A, Sushnitha M, Naoi T, Baudo G, De Rosa E, Chang J, Tasciotti E, Taraballi F. Enhancing irritation focusing on utilizing tunable leukocyte-based biomimetic nanoparticles. ACS Nano. 2021;15:6326–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Ok, Wang Ok, Yao Y, Zhu Y, Zhu Z, Wang W, Qian R, Deng Z, Zhao J, Shen Y. N-acetyl-L-cysteine-modified macrophage membrane-coated VEGF sustained-release nanoparticles for therapy of myocardial infarction: A biomimetic nano-buffer for neutralization of detrimental components and promotion of mature angiogenesis. Chem Eng J. 2024;489:151438.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Ok, Yang C, Shi Ok, Liu Y, Hu D, He X, Yang Y, Chu B, Peng J, Zhou Z. Activated macrophage membrane-coated nanoparticles relieve osteoarthritis-induced synovitis and joint harm. Biomaterials. 2023;295:122036.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M. Benefits and dangers of nanotechnologies in most cancers sufferers and occupationally uncovered staff. Exper Opin Drug Del. 2014;11:1087–101.

    Article 
    CAS 

    Google Scholar
     

  • Kaur J, Gill GS, Jeet Ok. Purposes of carbon nanotubes in drug supply: A complete evaluation. CBND‌‌. 2019;5:113–35.


    Google Scholar
     

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparability of the skills of ambient and manufactured nanoparticles to induce mobile toxicity in accordance with an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S, Yagüe C, Fernández‐Pacheco R, Ibarra MR, Santamaria J. Assessing strategies for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small. 2008;4:2025–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landgraf M, McGovern JA, Friedl P, Hutmacher DW. Rational design of mouse fashions for most cancers analysis. Traits Biotechnol. 2018;36:242–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu M, Zhuang J, Li Z, Liu Q, Zhao R, Gao Z, Midgley AC, Qi T, Tian J, Zhang Z. Machine-learning-assisted single-vessel evaluation of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol. 2023;18:657–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles within the clinic. Bioeng Transl Med. 2016;1:10–29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in scientific trials and translations. Nano At present. 2020;35:100972.

    Article 
    CAS 

    Google Scholar
     

  • Lammers T, Storm G. Setting requirements to advertise progress in bio–nano science. Nat Nanotechnol. 2019;14:626–626.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabizon AA. Stealth liposomes and tumor focusing on: one step additional within the quest for the magic bullet. Clin most cancers Res. 2001;7:223–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M. Figueiredo MHorhota A. Preclinical improvement and scientific translation of a PSMA-targeted docetaxel nanoparticle with a differentiated Pharmacological profile. Sci Transl Med. 2012;4:ra12839–12839.

    Article 

    Google Scholar
     

  • Anselmo ACMitragotri S. Nanoparticles within the clinic: an replace. Bioeng Transl Med. 2019;4:e10143.

    Article 

    Google Scholar
     

  • Sim T, Kim JE, Hoang NH, Kang JK, Lim C, Kim DS, Lee ES, Youn YS, Choi HG, Han HK. Growth of a docetaxel micellar formulation utilizing Poly (ethylene glycol)–polylactide–poly (ethylene glycol)(PEG–PLA–PEG) with profitable reconstitution for tumor focused drug supply. Drug Deliv. 2018;25:1362–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alyafee YA, Alaamery M, Bawazeer S, Almutairi MS, Alghamdi B, Alomran N, Sheereen A, Daghestani M, Massadeh S. Preparation of anastrozole loaded PEG-PLA nanoparticles: analysis of apoptotic response of breast most cancers cell traces. Int J Nanomed. 2018;13:199–208.

    Article 
    CAS 

    Google Scholar
     

  • Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, Turjeman Ok, Barenholz Y, Crommelin DJ, Dobrovolskaia MA. Making use of classes discovered from nanomedicines to grasp uncommon hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat Nanotechnol. 2022;17:337–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia SN, Chen X, Dobrovolskaia MA, Lammers T. Most cancers nanomedicine. Nat Rev Most cancers. 2022;22:550–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham AL. Naturalizing mouse fashions for immunology. Nat Immunol. 2021;22:111–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metallic-based nanoparticle in most cancers therapy: classes discovered and challenges. Entrance Bioeng Biotechnol. 2024;12:1436297.

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhao Z, Ukidve A, Krishnan VMitragotri S. Impact of physicochemical and floor properties on in vivo destiny of drug nanocarriers. Adv Drug Supply Rev. 2019;143:3–21.

    Article 
    CAS 

    Google Scholar
     

  • Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC. In vivo quantum-dot toxicity evaluation. Small. 2010;6:138–44.

    Article 
    CAS 

    Google Scholar
     

  • Yong KT, Legislation WC, Hu R, Ye L, Liu L, Swihart MTPrasad PN. Nanotoxicity evaluation of quantum Dots: from mobile to primate research. Chem Soc Rev. 2013;42:1236–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T. Charrise KNdungo EM. Mechanisms and optimization of in vivo supply of lipophilic SiRNAs. Nat Biotechnol. 2007;25:1149–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ. Construction-based programming of lymph-node focusing on in molecular vaccines. Nature. 2014;507:519–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang LM, Wang YT, Yang WX. Engineered nanomaterials induce alterations in organic obstacles: deal with paracellular permeability. Nanomedicine. 2021;16:2725–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang ZZ, Zheng CX, Zhao XZ, Zheng YD, Liu Q, Liu Y, Shi LQ. Multistage adaptive nanoparticle overcomes organic obstacles for efficient chemotherapy. Small. 2021;17:2100578.

    Article 
    CAS 

    Google Scholar
     

  • Wu JR, Zhu ZJ, Liu WJ, Zhang YL, Kang YY, Liu J, Hu C, Wang RL, Zhang MJ, Chen LL, Shao LQ. How nanoparticles open the paracellular route of organic obstacles: mechanisms, purposes, and prospects. ACS Nano. 2022;16:15627–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat Nanotechnol. 2020;15:313–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi Ok, Zarrabi A, Voelcker NH, Aref AR. Hyaluronic acid-based nanoplatforms for doxorubicin: A evaluation of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym. 2021;272:118491.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Kim J, Yoon J, Chen X. Most cancers-associated, stimuli‐pushed, activate theranostics for multimodality imaging and remedy. Adv Mater. 2017;29:1606857.

    Article 

    Google Scholar
     

  • Huang SG, Yang X, Gao YJ, Huang HY, Li TW, Li M, Wu F, Yang HC, Li CY. Multifunctional nano co-delivery system for effectively eliminating neuroblastoma by overcoming most cancers heterogeneity. Biomed Mater. 2024;19:065033.

    Article 
    CAS 

    Google Scholar
     

  • Solar HX, Zou Y, Chen ZT, He Y, Ye Ok, Liu H, Qiu LH, Zhang YF, Mai YX, Chen XH, Mao ZW. Wang WYi CG. Nanodrug-Engineered exosomes obtain a collectively Twin-Pathway Inhibition on Cuproptosis. Adv Sci. 2024;2413408:1.


    Google Scholar
     

  • Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ. Mechanisms of drug mixtures: interplay and community views. Nat Rev Drug Discovery. 2009;8:111–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Xia Z, Mary HB, Joseph J, Luo JN, Joshi N. Overcoming obstacles for intra-articular supply of disease-modifying osteoarthritis medication. Traits Pharmacol Sci. 2022;43:171–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoulikha M, Chen ZJ, Wu J, He W. Permitted supply methods for biopharmaceuticals. Chin Chem Lett. 2025;36:110225.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Zhang L, Cao Z, Cheong S, Boyer C, Wang Z, Yun SLJ, Amal R, Gu Z. Two-dimensional extremely‐skinny nanosheets with terribly excessive drug loading and lengthy blood circulation for most cancers remedy. Small. 2022;18:2200299.

    Article 
    CAS 

    Google Scholar
     

  • Huang S, Kou X, Shen J, Chen G, Ouyang G. Armor-Plating enzymes with metallic–natural frameworks (MOFs). Angew Chem Int Ed. 2020;59:8786–98.

    Article 
    CAS 

    Google Scholar
     

  • Shi T, Hou X, Guo S, Zhang L, Wei C, Peng T, Hu X. Nanohole-boosted electron transport between nanomaterials and micro organism as an idea for nano–bio interactions. Nat Commun. 2021;12:493.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian S, Fu Q, Chen W, Feng Q, Chen Z, Zhang J, Cheong WC, Yu R, Gu L, Dong J. Carbon nitride supported Fe2 cluster catalysts with superior efficiency for alkene epoxidation. Nat Commun. 2018;9:2353.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu G, Liu W, Zhao Y, Gao J, Xia T, Shi J, Hu L, Zhou W, Gao J, Wang H. Improved biocompatibility of black phosphorus nanosheets by chemical modification. Angew Chem. 2017;129:14680–5.

    Article 

    Google Scholar
     

  • Hu T, Shen W, Meng F, Yang S, Yu S, Li H, Zhang Q, Gu L, Tan C, Liang R. Boosting the sonodynamic most cancers remedy efficiency of 2D layered double hydroxide nanosheet-based sonosensitizers by way of crystalline‐to‐amorphous section transformation. Adv Mater. 2023;35:2209692.

    Article 
    CAS 

    Google Scholar
     

  • Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for most cancers remedy: chemistry, design, organic and therapeutic behaviors. Chem Soc Rev. 2024;54:827–97.

    Article 

    Google Scholar
     

  • Fan X, Yang F, Huang J, Yang Y, Nie C, Zhao W, Ma L, Cheng C, Zhao C, Haag R. Metallic–organic-framework-derived 2D carbon nanosheets for localized a number of bacterial eradication and augmented anti-infective remedy. Nano Lett. 2019;19:5885–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Organic results of black phosphorus nanomaterials on mammalian cells and animals. Angew Chem Int Ed. 2023;62:e202213336.

    Article 
    CAS 

    Google Scholar
     

  • Bai X, Yang Y, Zheng W, Huang Y, Xu F, Bao Z. Synergistic photothermal antibacterial remedy enabled by multifunctional nanomaterials: progress and views. Mater Chem Entrance. 2023;7:355–80.

    Article 
    CAS 

    Google Scholar
     

  • VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021;372:1581.

    Article 

    Google Scholar
     

  • Zhang L, Dong J, Ding F. Methods, standing, and challenges in wafer scale single crystalline two-dimensional supplies synthesis. Chem Rev. 2021;121:6321–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of rising 2D supplies and their roles in therapeutic and diagnostic Nano-Bio‐Platforms. Adv Sci. 2023;10:2207759.

    Article 
    CAS 

    Google Scholar
     

  • Xiang X, Feng X, Lu S, Jiang B, Hao D, Pei Q, Xie Z, Jing X. Indocyanine inexperienced potentiated Paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration. 2022;2:20220008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He L, Chen Q, Lu Q, Yang M, Xie B, Chen T, Wang X. Autophagy-Inducing MoO3-x nanowires increase Photothermal-Triggered Most cancers immunotherapy. Angew Chem. 2024;136:e202404822.

    Article 

    Google Scholar
     

  • Chen W, Li Y, Liu C, Kang Y, Qin D, Chen S, Zhou J, Liu HJ, Ferdows BE, Patel DN. In situ engineering of Tumor-Related macrophages by way of a Nanodrug‐Delivering‐Drug (β‐Elemene@ Stanene) technique for enhanced Most cancers Chemo‐Immunotherapy. Angew Chem Int Ed. 2023;62:e202308413.

    Article 
    CAS 

    Google Scholar
     

  • Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable structured 2D nanobiocatalysts: synthesis, catalytic properties and new horizons in biomedical purposes. Small. 2024;20:2311584.

    Article 
    CAS 

    Google Scholar
     

  • Sarmadi M, Ta C, VanLonkhuyzen AM, De Fiesta DC, Kanelli M, Sadeghi I, Behrens AM, Ingalls B, Menon N, Daristotle JL. Experimental and computational Understanding of pulsatile launch mechanism from biodegradable core-shell microparticles. Sci Adv. 2022;8:eabn5315.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran KT, Gavitt TD, Farrell NJ, Curry EJ, Mara AB, Patel A, Brown L, Kilpatrick S, Piotrowska R, Mishra N. Transdermal microneedles for the programmable burst launch of a number of vaccine payloads. Nat Biomed Eng. 2021;5:998–1007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lou Y, Tang X, Liao L, Deng Z, Gao J. Biosafety and biosecurity: treading China’s Synbio tightrope. Traits Biotechnol. 2023;42:389–92.

    Article 
    PubMed 

    Google Scholar
     

  • Olie RH, van der Meijden PE, Ten Cate H. The coagulation system in atherothrombosis: implications for brand spanking new therapeutic methods. Res Pract Thromb Haemost. 2018;2:188–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan SU, Yedlapati SH, Lone AN, Hao Q, Guyatt G, Delvaux N, Geertruida E, Vandvik PO, Riaz IB, Li S. PCSK9 inhibitors and Ezetimibe with or with out Statin remedy for cardiovascular danger discount: a scientific evaluation and community meta-analysis. BMJ. 2022;377:069116.


    Google Scholar
     

  • Sousa M, Bruges-Armas J. Monogenic diabetes: genetics and relevance on diabetes mellitus customized medication. Curr Diabetes Rev. 2020;16:807–19.

    Article 
    PubMed 

    Google Scholar
     

  • van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJ, Lammers T. Good most cancers nanomedicine. Nat Nanotechnol. 2019;14:1007–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang W, Zhang Z, Dai Y, Chen X. Current advances in nanomaterial-based synergistic mixture most cancers immunotherapy. Chem Soc Rev. 2019;48:3771–810.

    Article 
    PubMed 

    Google Scholar
     

  • Li F, Wang Y, Chen W, Wang DD, Zhou YJ, You BG, Liu Y, Qu CX, Chen MT, Zhang XN. Co-delivery of VEGF SiRNA and Etoposide for enhanced anti-angiogenesis and anti-proliferation impact by way of multi-functional nanoparticles for orthotopic non-small cell lung most cancers therapy. Theranostics. 2019;9:5886.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkhaus M, Pannecoucke E, van der Kooi EJ, Bentlage AE, Derksen NI, Andries J, Balbino B, Sips M, Ulrichts P, Verheesen P. The fab area of IgG impairs the internalization pathway of FcRn upon Fc engagement. Nat Commun. 2022;13:6073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng H, Qing W, Hongjun L, Zhen G. Integration of artificial biology and nanobiotechnology for biomedical purposes. Synth Biology J. 2022;3:279.

    CAS 

    Google Scholar
     

  • Qingqing F, Zhang T, Xiao Z, Guang JN. Artificial nanobiology-fusion of artificial biology and nanobiology. Synth Biology J. 2022;3:260.


    Google Scholar
     

  • Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine studying for molecular and supplies science. Nature. 2018;559:547–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stokes JM, Yang Ok, Swanson Ok, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackermann Z. A deep studying strategy to antibiotic discovery. Cell. 2020;180:688–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santana R, Zuluaga R, Gañán P, Arrasate S, Onieva E, González-Díaz H. Designing nanoparticle launch techniques for drug–vitamin most cancers co-therapy with multiplicative perturbation-theory machine studying (PTML) fashions. Nanoscale. 2019;11:21811–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santana R, Zuluaga R, Gañán P, Arrasate S, Onieva E, Montemore MM, González-Díaz H. PTML mannequin for choice of nanoparticles, anticancer medication, and nutritional vitamins within the design of drug–vitamin nanoparticle launch techniques for most cancers cotherapy. Mol Pharm. 2020;17:2612–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Subsequent-generation machine studying for organic networks. Cell. 2018;173:1581–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassanzadeh P, Atyabi F, Dinarvand R. The importance of synthetic intelligence in drug supply system design. Adv Drug Supply Rev. 2019;151:169–90.

    Article 

    Google Scholar
     

  • Lee Y, Khemka A, Acharya G, Giri N, Lee CH. A cascade pc mannequin for mocrobicide diffusivity from mucoadhesive formulations. BMC Bioinf. 2015;16:1–12.

    Article 

    Google Scholar
     

  • Yu Y, O’Rourke A, Lin YH, Singh H, Eguez RV, Beyhan S, Nelson KE. Predictive signatures of 19 antibiotic-induced Escherichia coli proteomes. ACS Infect Dis. 2020;6:2120–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diéguez-Santana Ok, González-Díaz H. In direction of machine studying discovery of twin antibacterial drug–nanoparticle techniques. Nanoscale. 2021;13:17854–70.

    Article 
    PubMed 

    Google Scholar
     

  • Duncan GA, Bevan MA. Computational design of nanoparticle drug supply techniques for selective focusing on. Nanoscale. 2015;7:15332–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urista DV, Carrué DB, Otero I, Arrasate S, Quevedo-Tumailli VF, Gestal M, González-Díaz H, Munteanu CR. Prediction of antimalarial drug-decorated nanoparticle supply techniques with random forest fashions. Biology. 2020;9:198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iavicoli I, Leso V, Schulte PA. Biomarkers of susceptibility: state of the Artwork and implications for occupational publicity to engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:112–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cancino J, Nobre TM, Oliveira ON Jr, Machado SA, Zucolotto V. A brand new technique to research the toxicity of nanomaterials utilizing Langmuir monolayers as membrane fashions. Nanotoxicology. 2013;7:61–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sessler C, Huang Z, Wang X, Liu J. Purposeful nanomaterial-enabled artificial biology. Nano Futures. 2021;5:022001.

    Article 
    CAS 

    Google Scholar
     

  • Arcuri ASA, Grossi MGL, Pinto VRS, Rinaldi A, Pinto A, Martins P, Maia P. Creating methods in Brazil to handle the rising nanotechnology and its related dangers. Nanomaterials: dangers and advantages. Springer Neth, 2009: 299–307.

  • Abdouss H, Gholami A, Pourmadadi M, Zahedi P, Abdouss M, Rahdar A, Pandey S. Melphalan supply and co-delivery nanoformulations for most cancers remedy: A complete evaluation. Eur J Med Chem. 2024;12:100171.

    CAS 

    Google Scholar
     

  • Tong JR, Wang ZW, Zhang JH, Gao R, Liu XF, Liao YH, Guo XP, Wei YM. Superior purposes of nanomaterials in atherosclerosis prognosis and therapy: challenges and future prospects. ACS Appl Mater Interfaces. 2024;16:58072–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles