1.1 C
United States of America
Thursday, March 6, 2025

Multidimensional functions of prussian blue-based nanoparticles in most cancers immunotherapy | Journal of Nanobiotechnology


  • Mellman I, Coukos G, Dranoff G. Most cancers immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in most cancers. Nat Rev Most cancers. 2021;21(6):345–59.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cogdill AP, Andrews MC, Wargo JA. Hallmarks of response to immune checkpoint blockade. Br J Most cancers. 2017;117(1):1–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309–37.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pardoll DM. Immunology beats most cancers: a blueprint for profitable translation. Nat Immunol. 2012;13(12):1129–32.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human most cancers. Science. 2018;359(6382):1361–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • June C, Rosenberg SA, Sadelain M, Weber JS. T-cell remedy on the threshold. Nat Biotechnol. 2012;30(7):611–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, Brody JD. Most cancers vaccines: the following immunotherapy frontier. Nat Most cancers. 2022;3(8):911–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hegde PS, Chen DS. Prime 10 challenges in Most cancers Immunotherapy. Immunity. 2020;52(1):17–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • de Miguel M, Calvo E. Scientific challenges of Immune Checkpoint inhibitors. Most cancers Cell. 2020;38(3):326–33.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang Z. The historical past and advances in most cancers immunotherapy: understanding the traits of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ma G-L, Lin W-F. Immune checkpoint inhibition mediated with liposomal nanomedicine for most cancers remedy. Mil Med Res. 2023;10(1):20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding B, Yue J, Zheng P, Ma Pa, Lin J. Manganese oxide nanoparticles increase most cancers immunotherapy. J Mater Chem B. 2021;9(35):7117–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chiang C-S, Lin Y-J, Lee R, Lai Y-H, Cheng H-W, Hsieh C-H, Shyu W-C, Chen S-Y. Mixture of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumor-localized immunotherapy. Nat Nanotechnol. 2018;13(8):746–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • O’Donnell JS, Teng MWL, Smyth MJ. Most cancers immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–67.

    Article 
    PubMed 

    Google Scholar
     

  • Cao J, Yan Q, Epigenetics C. Tumor immunity, and Immunotherapy. Developments Most cancers. 2020;6(7):580–92.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen DS, Mellman I. Oncology meets immunology: the Most cancers-Immunity cycle. Immunity. 2013;39(1):1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Rui R, Zhou L, He S. Most cancers immunotherapies: advances and bottlenecks. Entrance Immunol. 2023;14:1212476.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li Y, Liu X, Zhang X, Pan W, Li N, Tang B. Immune cycle-based methods for Most cancers Immunotherapy. Adv Funct Mater. 2021;31(50):2107540.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Most cancers vaccines as promising immuno-therapeutics: platforms and present progress. J Hematol Oncol. 2022;15(1):28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferlay S, Mallah T, Ouahès R, Veillet P, Verdaguer M. A room-temperature organometallic magnet primarily based on prussian blue. Nature. 1995;378(6558):701–3.

    Article 
    CAS 

    Google Scholar
     

  • Kong B, Tang J, Wu Z, Wei J, Wu H, Wang Y, Zheng G, Zhao D. Ultralight Mesoporous magnetic frameworks by Interfacial Meeting of Prussian Blue Nanocubes. Angew Chem Int Ed. 2014;53(11):2888–92.

    Article 
    CAS 

    Google Scholar
     

  • Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell dying allows and potentiates Most cancers Immunotherapy. Angew Chem Int Ed. 2019;58(3):670–80.

    Article 
    CAS 

    Google Scholar
     

  • Shukla A, Cano-Mejia J, Andricovich J, Burga RA, Sweeney EE, Fernandes R. An Engineered prussian blue nanoparticles-based Nanoimmunotherapy elicits strong and chronic immunological reminiscence in a TH-MYCN Neuroblastoma Mannequin. Adv Nanobiomed Res. 2021;1(8):2100021.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang W, Hu S, Yin J-J, He W, Lu W, Ma M, Gu N, Zhang Y. Prussian blue nanoparticles as Multienzyme Mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zou H, Wang H, Zhong Y, Zhang Z, Wang Z, Shang T. Prussian blue nanoparticles coated with tumor cell membranes for exact photothermal remedy and subsequent irritation discount. Biochem Biophys Res Commun. 2024;723:150173.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Z-H, Chen Y, Solar Y, Zhang X-Z. Platinum-doped prussian blue nanozymes for Multiwavelength Bioimaging guided Photothermal Remedy of Tumor and Anti-inflammation. ACS Nano. 2021;15(3):5189–200.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-membrane-decorated prussian Blue for Efficient Most cancers Immunotherapy through Tumor-Related macrophages polarization and Hypoxia Reduction. Adv Mater. 2022;34(14):2200389.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Ok, Wu J, Zhao X, Qin J, Xue Y, Zheng W, Wang L, Wang H, Shen H, Niu T, Luo Y, Tang R, Wang B. Prussian Blue/Calcium Peroxide Nanocomposites-Mediated Tumor Cell Iron Mineralization for therapy of experimental lung adenocarcinoma. ACS Nano. 2021;15(12):19838–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng Y, Solar L, Guo J, Ma J. The crosstalk between ferroptosis and anti-tumor immunity within the tumor microenvironment: molecular mechanisms and therapeutic controversy. Most cancers Commun. 2023;43(10):1071–96.

    Article 

    Google Scholar
     

  • Xu S, Min J, Wang F. Ferroptosis: an rising participant in immune cells. Sci Bull. 2021;66(22):2257–60.

    Article 
    CAS 

    Google Scholar
     

  • Hegner FS, Galán-Mascarós JR, López N. A database of the Structural and Digital Properties of Prussian Blue, prussian White, and Berlin Inexperienced compounds by means of Density Practical Principle. Inorg Chem. 2016;55(24):12851–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y. Synthesis of prussian blue nanoparticles with a Hole Inside by Managed Chemical etching. Angew Chem Int Ed. 2012;51(4):984–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW. Formation of Fe2O3 microboxes with hierarchical Shell constructions from Steel–Natural frameworks and their Lithium Storage properties. J Am Chem Soc. 2012;134(42):17388–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Busquets MA, Estelrich J. Prussian blue nanoparticles: synthesis, floor modification, and biomedical functions. Drug Discov Immediately. 2020;25(8):1431–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dacarro G, Angelo T, Piersandro P. Prussian blue nanoparticles as a flexible Photothermal Instrument. Molecules. 2018;23:1414.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guari Y, Cahu M, Félix G, Sene S, Lengthy J, Chopineau J, Devoisselle J-M, Larionova J. Nanoheterostructures primarily based on nanosized prussian blue and its analogues: design, properties and functions. Coord Chem Rev. 2022;461:214497.

    Article 
    CAS 

    Google Scholar
     

  • Azhar A, Li Y, Cai Z, Zakaria MB, Masud MK, Hossain MSA, Kim J, Zhang W, Na J, Yamauchi Y, Hu M. Nanoarchitectonics: a New supplies Horizon for prussian Blue and its analogues. Bull Chem Soc Jpn. 2019;92(4):875–904.

    Article 
    CAS 

    Google Scholar
     

  • Zakaria MB, Chikyow T. Latest advances in prussian blue and prussian blue analogues: synthesis and thermal therapies. Coord Chem Rev. 2017;352:328–45.

    Article 
    CAS 

    Google Scholar
     

  • Gu D, Liu Z, Wu H, An P, Zhi X, Yin Y, Liu W, Solar B. Twin catalytic cascaded nanoplatform for photograph/chemodynamic/hunger synergistic remedy. Colloids Surf B. 2021;199:111538.

    Article 
    CAS 

    Google Scholar
     

  • Tao Q, He G, Ye S, Zhang D, Zhang Z, Qi L, Liu R. Mn doped prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton response enhanced delicate temperature photothermal remedy of tumor. J Nanobiotechnol. 2022;20(1):18.

    Article 
    CAS 

    Google Scholar
     

  • Hao Y, Mao L, Zhang R, Liao X, Yuan M, Liao W. Multifunctional biodegradable prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Remedy and Intrinsic Tumor Metastasis Inhibition, ACS Appl. Bio Mater. 2021;4(9):7081–93.

    CAS 

    Google Scholar
     

  • He L, Ding G, You S, Lu S, Huang X, Li L, Yu X. Building of Cu/ZIF-67/Prussian Blue nanostructures with Photothermal-enhanced Multizyme Exercise for Most cancers Remedy, ACS Appl. Nano Mater. 2023;6(12):10779–90.

    CAS 

    Google Scholar
     

  • Shou P, Yu Z, Wu Y, Feng Q, Zhou B, Xing J, Liu C, Tu J, Akakuru OU, Ye Z, Zhang X, Lu Z, Zhang L, Wu A. Zn2 + Doped Ultrasmall prussian Blue Nanotheranostic Agent for breast Most cancers Photothermal Remedy beneath MR Imaging Steerage. Adv Healthc Mater. 2020;9(1):1900948.

    Article 
    CAS 

    Google Scholar
     

  • Cai X, Gao W, Zhang L, Ma M, Liu T, Du W, Zheng Y, Chen H, Shi J. Enabling prussian blue with tunable localized floor Plasmon resonances: concurrently enhanced Twin-Mode Imaging and Tumor Photothermal Remedy. ACS Nano. 2016;10(12):11115–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang W-X, Li W-Y, Shu Y, Wang J-H. Manganese-enriched prussian blue nanohybrids with smaller electrode potential and decrease cost switch resistance to boost mixture remedy. Colloids Surf B. 2024;241:114045.

    Article 
    CAS 

    Google Scholar
     

  • Li W-P, Su C-H, Tsao L-C, Chang C-T, Hsu Y-P, Yeh C-S. Controllable CO launch following Close to-Infrared Mild-Induced cleavage of Iron carbonyl derivatized prussian blue nanoparticles for CO-Assisted synergistic therapy. ACS Nano. 2016;10(12):11027–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li S-R, Huo F-Y, Wang H-Q, Wang J, Xu C, Liu B, Bu L-L. Latest advances in porous nanomaterials-based drug supply programs for most cancers immunotherapy. J Nanobiotechnol. 2022;20(1):277.

    Article 

    Google Scholar
     

  • Chen J, Xue F, Du W, Yu H, Yang Z, Du Q, Chen H. An endogenous H2S-Activated nanoplatform for Triple Synergistic Remedy of Colorectal Most cancers. Nano Lett. 2022;22(15):6156–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jia Q, Su F, Li Z, Huang X, He L, Wang M, Zhang Z, Fang S, Zhou N. Tunable Hhollow bimetallic MnFePrussian blue analogue because the focused pH-responsive supply system for anticancer medication. ACS Appl Bio Mater. 2019;2(5):2143–54.

  • He H, Han Q, Wang S, Lengthy M, Zhang M, Li Y, Zhang Y, Gu N. Design of a multifunctional nanozyme for resolving the Proinflammatory Plaque Microenvironment and attenuating atherosclerosis. ACS Nano. 2023;17(15):14555–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jing L, Shao S, Wang Y, Yang Y, Yue X, Dai Z. Hyaluronic acid modified hole prussian blue nanoparticles loading 10-hydroxycamptothecin for Concentrating on Thermochemotherapy of Most cancers. Theranostics. 2016;6(1):40–53.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zeng Q, Jiang X, Chen M, Deng C, Li D, Wu H. Twin chemodynamic/photothermal therapeutic nanoplatform primarily based on DNA-functionalized prussian blue. Bioorg Chem. 2024;143:106981.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hill ML, Chung S-J, Woo H-J, Park CR, Hadrick Ok, Nafiujjaman M, Kumar PPP, Mwangi L, Parikh R, Kim T. Exosome-coated prussian blue nanoparticles for particular concentrating on and therapy of Glioblastoma. ACS Appl Mater Interfaces. 2024;16(16):20286–301.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gellé A, Jin T, de la Garza L, Worth GD, Besteiro LV, Moores A. Purposes of Plasmon-enhanced nanocatalysis to Natural transformations. Chem Rev. 2020;120(2):986–1041.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The current progress on metallic–natural frameworks for phototherapy. Chem Soc Rev. 2021;50(8):5086–125.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ng KK, Zheng G. Molecular interactions in Natural nanoparticles for Phototheranostic Purposes. Chem Rev. 2015;115(19):11012–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding Z, Gu Y, Zheng C, Gu Y, Yang J, Li D, Xu Y, Wang P. Natural small molecule-based photothermal brokers for most cancers remedy: design methods from single-molecule optimization to synergistic enhancement. Coord Chem Rev. 2022;464:214564.

    Article 
    CAS 

    Google Scholar
     

  • Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Natural molecule-based photothermal brokers: an increasing photothermal remedy universe. Chem Soc Rev. 2018;47(7):2280–97.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fu G, Liu W, Feng S, Yue X. Prussian blue nanoparticles function as a brand new technology of photothermal ablation brokers for most cancers remedy. Chem Commun. 2012;48(94):11567–9.

    Article 
    CAS 

    Google Scholar
     

  • Xu JX, Siriwardana Ok, Zhou Y, Zou S, Zhang D. Quantification of Gold Nanoparticle Ultraviolet–seen extinction, absorption, and scattering Cross-section Spectra and scattering depolarization Spectra: the consequences of Nanoparticle geometry, Solvent composition, Ligand Functionalization, and nanoparticle aggregation. Anal Chem. 2018;90(1):785–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Z, Lei H, Kan A, Xie H, Yu W. Photothermal functions primarily based on graphene and its derivatives: a state-of-the-art overview. Vitality. 2021;216:119262.

    Article 
    CAS 

    Google Scholar
     

  • Liao C, Li Y, Tjong SC. Graphene nanomaterials: synthesis, Biocompatibility, and cytotoxicity. Int J Mol Sci. 2018;19:11.

    Article 

    Google Scholar
     

  • Cheung CCL, Ma G, Karatasos Ok, Seitsonen J, Ruokolainen J, Koffi CR, Hassan H, Al-Jamal WT. Liposome-Templated Indocyanine Inexperienced J- aggregates for in vivo Close to-Infrared imaging and steady Photothermal Heating. Nanotheranostics. 2020;4(2):91–106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmut Z, Zhang C, Ruan F, Shi N, Zhang X, Wang Y, Zheng X, Tang Z, Dong B, Gao D, Solar J. Medical Purposes and Development of Close to Infrared Photosensitive Indocyanine Inexperienced molecules. Molecules. 2023;28(16):6085.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu W, Yu L, Pu Y, Yao H, Chen Y, Shi J. Copper-enriched prussian blue nanomedicine for in situ Disulfiram Toxification and Photothermal Antitumor amplification. Adv Mater. 2020;32(17):2000542.

    Article 
    CAS 

    Google Scholar
     

  • Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine inexperienced supply programs for tumour detection and coverings. Biotechnol Adv. 2016;34(5):768–89.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen X, Wu G, Tang J, Zhou L, Wei S. Ytterbium– Doped prussian blue: fabrication, photothermal efficiency and antibacterial exercise. Inorg Chem Commun. 2020;114:107821.

    Article 
    CAS 

    Google Scholar
     

  • Solar Z, Wen H, Zhang Z, Xu W, Bao M, Mo H, Hua X, Niu J, Tune J, Kang M, Wang D, Tang BZ. Acceptor engineering-facilitated versatile AIEgen for mitochondria-targeted multimodal imaging-guided most cancers photoimmunotherapy. Biomaterials. 2023;301:122276.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He H, Lengthy M, Duan Y, Gu N. Prussian blue nanozymes: progress, challenges, and alternatives. Nanoscale. 2023;15(31):12818–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Thompson CB, Vousden KH, Johnson RS, Koppenol WH, Sies H, Lu Z, Finley LWS, Frezza C, Kim J, Hu Z, Bartman CR. A century of the Warburg impact. Nat Metab. 2023;5(11):1840–3.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Shen Y, Chen L, Li Ok, Shi Y, Xu Z, Li D, Chen H, Wang W, Gao L. Enhancing catalase-like exercise of prussian blue nanozyme by gadolinium-doping for imaging-guided antitumor amplification through photodynamic remedy and chemotherapy. Mater Immediately Nano. 2023;22:100326.

    Article 
    CAS 

    Google Scholar
     

  • Lian H, Guan P, Tan H, Zhang X, Meng Z. Close to-infrared gentle triggered multi-hit therapeutic nanosystem for tumor particular photothermal impact amplified sign pathway regulation and ferroptosis. Bioact Mater. 2022;9:63–76.

    PubMed 
    CAS 

    Google Scholar
     

  • Galy B, Conrad M, Muckenthaler M. Mechanisms controlling mobile and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Scott J, Dixon KM, Lemberg MR, Lamprecht R, Skouta EM, Zaitsev CE, Gleason DN, Patel AJ, Bauer, Alexandra M, Cantley WS, Yang B, Morrison BR. Stockwell, Ferroptosis: An Iron-Dependent type of nonapoptotic cell dying. Cell. 2012;149(5):1060–72.

    Article 

    Google Scholar
     

  • Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis Nanomedicine: Scientific challenges and alternatives for modulating Tumor Metabolic and Immunological Panorama. ACS Nano. 2023;17(16):15328–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang D, Minikes AM, Jiang X. Ferroptosis on the intersection of lipid metabolism and mobile signaling. Mol Cell. 2022;82(12):2215–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic concentrating on of iron metabolism and lipid peroxidation within the kidney. Nat Rev Nephrol. 2023;19(5):315–36.

    Article 
    PubMed 

    Google Scholar
     

  • Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, Ma A, Xia F, Guo QY, Xu CC, Zhang JZ, Qiu C, Wang JG. Latest developments in preparation and biomedical functions of iron oxide nanoparticles. J Nanobiotechnol. 2024;22(1):24.

    Article 

    Google Scholar
     

  • Fan Ok, Yan X. Chap. 6 – Bioengineered Ferritin Nanoprobes for Most cancers Theranostics. In Handbook of Nanomaterials for Most cancers Theranostics, Conde, J., Ed. Elsevier: 2018; pp 143–175.

  • Cao S, Ma D, Ji S, Zhou M, Zhu S. Self-assembled ferritin nanoparticles for supply of antigens and Improvement of vaccines: from construction and property to functions. Molecules. 2024;29:17.

    Article 

    Google Scholar
     

  • Hoang MD, Lee HJ, Lee HJ, Jung SH, Choi NR, Vo MC, Nguyen-Pham T-N, Park IK, Kim HJ, Lee JJ. Branched polyethylenimine-superparamagnetic Iron oxide nanoparticles (bPEI-SPIONs) enhance immunogenicity of Myeloma Tumor Antigen to boost Th1 polarization of dendritic cells. Blood. 2014;124(21):5763.

    Article 

    Google Scholar
     

  • Easo SL, Mohanan PV. In vitro hematological and in vivo immunotoxicity evaluation of dextran stabilized iron oxide nanoparticles. Colloids Surf B. 2015;134:122–30.

    Article 
    CAS 

    Google Scholar
     

  • Liang H, Wu X, Zhao G, Feng Ok, Ni Ok, Solar X. Renal clearable Ultrasmall single-crystal Fe nanoparticles for extremely selective and efficient ferroptosis remedy and immunotherapy. J Am Chem Soc. 2021;143(38):15812–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J, Wang F. The function of iron homeostasis in reworking immune perform and regulating inflammatory illness. Sci Bull. 2021;66(17):1806–16.

    Article 
    CAS 

    Google Scholar
     

  • Wang W, Inexperienced M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Promote A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A. Zou, CD8 + T cells regulate tumor ferroptosis throughout most cancers immunotherapy. Nature. 2019;569(7755):270–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang Y, Wang Y, Guo L, Gao W, Tang T-L, Yan M. Interplay between macrophages and ferroptosis. Cell Dying Dis. 2022;13(4):355.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Doveri L, Dacarro G, Fernandez YAD, Razzetti M, Taglietti A, Chirico G, Collini M, Sorzabal-Bellido I, Esparza M, Ortiz-de-Solorzano C, Urteaga XM, Milanese C, Pallavicini P. Prussian blue nanoparticles: an FDA-approved substance which will shortly degrade at physiological pH. Colloids Surf B. 2023;227:113373.

    Article 
    CAS 

    Google Scholar
     

  • Cai R, Chen C. The Crown and the Scepter: roles of the protein Corona in Nanomedicine. Adv Mater. 2019;31(45):1805740.

    Article 
    CAS 

    Google Scholar
     

  • Colombi C, Dacarro G, Diaz Fernandez YA, Taglietti A, Pallavicini P, Doveri L, Human serum albumin protein corona in Prussian blue nanoparticles. Nanomaterials (Basel, Switzerland). 2024;14(16).

  • Stockwell BR. Ferroptosis turns 10: rising mechanisms, physiological capabilities, and therapeutic functions. Cell. 2022;185(14):2401–21.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Z. Hydroxyl radical generations type the physiologically related Fenton-like reactions. Free Radical Biol Med. 2023;208:510–5.

    Article 
    CAS 

    Google Scholar
     

  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and dying. Nat Immunol. 2022;23(4):487–500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell dying in most cancers and infectious illness. Nat Rev Immunol. 2017;17(2):97–111.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kepp O, Zitvogel L, Kroemer G. Lurbinectedin: an FDA-approved inducer of immunogenic cell dying for the therapy of small-cell lung most cancers, Oncoimmunology, 2020, p. 1795995.

  • Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological influence of cell dying signaling pushed by radiation on the tumor microenvironment. Nat Immunol. 2020;21(2):120–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell dying in most cancers remedy: Current and rising inducers. J Cell Mol Med. 2019;23(8):4854–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorenzo G, Ilio V, Sarah W, Sandy A, Patrizia A, Aitziber Buqué M, Timothy AC, George C, Sandra D, Eric D, Dobrin D, Richard LE, Silvia CF, Jitka F, Lucia G, Udo SG, Sofia RG, Abhishek DG, Encouse G, Jian H, Kevin JH, Akseli H, James WH, Dewan Md Sakib H, Tim I, Michael Ok, Howard LK, Oliver Ok, Guido Ok, Juan Jose L, Sherene L, Michael TL, Gwenola M, Taha M, Alan AM, Karen LM, Felipe P, Øystein R, Maria R, Chiara R, Antonella S, Mark JS, Radek S, John S, Bryan ES, Daolin T, Kazuki T, Stefaan WvG, Peter V, Takahiro Y, Dmitriy Z, Laurence Z, Alessandra C, Francesco MM. Consensus pointers for the definition, detection and interpretation of immunogenic cell dying. J ImmunoTher Most cancers. 2020;8(1):e000337.

    Article 

    Google Scholar
     

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell dying and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmed A, Tait SWG. Concentrating on immunogenic cell dying in most cancers. Mol Oncol. 2020;14(12):2994–3006.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qin J, Yang T, Li J, Zhan G, Li X, Wei Z, Chen Z, Zheng W, Chen H, Yang X, Gan L. Bacterial outer membrane vesicle-templated biomimetic nanoparticles for synergistic photothermo-immunotherapy. Nano Immediately. 2022;46:101591.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Concentrating on photodynamic and photothermal remedy to the endoplasmic reticulum enhances immunogenic most cancers cell dying. Nat Commun. 2019;10(1):3349.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Zhang Y, Li X, Zhao Y, Li M, Jiang W, Tang X, Dou J, Lu L, Wang F, Wang Y. Close to-Infrared II Phototherapy induces deep tissue immunogenic cell dying and Potentiates Most cancers Immunotherapy. ACS Nano. 2019;13(10):11967–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sweeney EE, Cano-Mejia J, Fernandes R. Photothermal Remedy generates a thermal window of immunogenic cell dying in Neuroblastoma. Small. 2018;14(20):1800678.

    Article 

    Google Scholar
     

  • Pulendran B, Arunachalam PS, O’Hagan DT. Rising ideas within the science of vaccine adjuvants. Nat Rev Drug Discovery. 2021;20(6):454–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Sig Transduct Goal Ther. 2023;8(1):283.

    Article 
    CAS 

    Google Scholar
     

  • Kawai T, Akira S. The function of pattern-recognition receptors in innate immunity: replace on toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving power behind next-generation vaccine adjuvants and most cancers therapeutics. Curr Opin Chem Biol. 2022;70:102172.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: placing Innate immunity to work. Immunity. 2010;33(4):492–503.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Akira S, Uematsu S, Takeuchi O. Pathogen Recognit Innate Immun Cell. 2006;124(4):783–801.

  • Turley JL, Lavelle EC. Resolving adjuvant mode of motion to boost vaccine efficacy. Curr Opin Immunol. 2022;77:102229.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants concentrating on most cancers and infectious illnesses. Pharmaceutics. 2021;13(2):142.

  • Huang L, Ge X, Liu Y, Li H, Zhang Z. The function of toll-like receptor agonists and their nanomedicines for Tumor Immunotherapy. Pharmaceutics. 2022;14(6):1228.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in most cancers biotherapy. Mol Most cancers. 2020;19(1):136.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li X, Wang H, Chen Y, Li Z, Liu S, Guan W, Lin Y, Cao C, Zheng W, Wu J. Novel rising nano-assisted anti-cancer methods primarily based on the STING pathway. Acta Materia Med. 2023;2:323.


    Google Scholar
     

  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Knowledgeable Rev Vaccines. 2011;10(4):499–511.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krieg AM. Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discovery. 2006;5(6):471–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kou M, Wang L. Floor toll-like receptor 9 on immune cells and its immunomodulatory impact. Entrance Immunol. 2023;14:1259989.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chuang YC, Tseng JC, Huang LR, Huang CM, Huang CF, Chuang TH. Adjuvant impact of toll-like receptor 9 activation on Most cancers Immunotherapy utilizing checkpoint blockade. Entrance Immunol. 2020;11:1075.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou L, Chen L, Hu X, Lu Y, Liu W, Solar Y, Yao T, Dong C, Shi S. A Cu9S5 nanoparticle-based CpG supply system for synergistic photothermal-, photodynamic- and immunotherapy. Commun Biol. 2020;3(1):343.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yu G, Dong F, Ge W, Solar L, Zhang L, Yuan L, Li N, Dai H, Shi L, Wang Y. Self-assembled nanospheres mediate phototherapy and ship CpG oligodeoxynucleotides to boost most cancers immunotherapy of breast most cancers and melanoma. Nano Immediately. 2022;44:101498.

    Article 
    CAS 

    Google Scholar
     

  • Chen L, Zhou L, Wang C, Han Y, Lu Y, Liu J, Hu X, Yao T, Lin Y, Liang S, Shi S, Dong C. Tumor-targeted drug and CpG supply system for Phototherapy and Docetaxel-enhanced immunotherapy with polarization towards M1-Sort macrophages on Triple adverse breast cancers. Adv Mater. 2019;31(52):1904997.

    Article 
    CAS 

    Google Scholar
     

  • Cano-Mejia J, Bookstaver ML, Sweeney EE, Jewell CM, Fernandes R. Prussian blue nanoparticle-based antigenicity and adjuvanticity set off strong antitumor immune responses towards neuroblastoma. Biomater Sci. 2019;7(5):1875–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yin C, Xing Y, Zhao P, Yin Y, Yao H, Xue J, Gu W. Tetradecanol-wrapped, CpG-loaded porous prussian blue nanoimmunomodulator for photothermal-responsive in situ anti-tumor vaccine-like immunotherapy. Biomater Adv. 2024;164:213996.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Solar L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that prompts the kind I Interferon Pathway. Science. 2013;339(6121):786–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, Kagan JC. Phosphoinositide interactions place cGAS on the plasma membrane to make sure environment friendly distinction between self- and viral DNA. Cell. 2019;176(6):1432–e144611.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted capabilities of STING in human well being and illness: from molecular mechanism to focused technique. Sign Transduct Goal Ther. 2022;7(1):394.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Bai X-c, Chen ZJ. Constructions and mechanisms within the cGAS-STING innate immunity pathway. Immunity. 2020;53(1):43–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y, Su X, Huang X, Jiang Z. Manganese will increase the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the Host Protection towards DNA viruses. Immunity. 2018;48(4):675–e6877.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang R, Wang C, Guan Y, Wei X, Sha M, Yi M, Jing M, Lv M, Guo W, Xu J, Wan Y, Jia X-M, Jiang Z. Manganese salts perform as potent adjuvants. Cell Mol Immunol. 2021;18(5):1222–34.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, Wei X, Guan Y, Liu J, Feng Ok, Jing M, Wang X, Liu Y-C, Mei Q, Han W, Jiang Z. Manganese is crucial for antitumor immune responses through cGAS-STING and improves the efficacy of scientific immunotherapy. Cell Res. 2020;30(11):966–79.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng S-J, Yang M, Luo J-Q, Liu R, Tune J, Chen Y. Du, Manganese-based Immunostimulatory Steel–Natural Framework prompts the cGAS-STING pathway for Most cancers Metalloimmunotherapy. ACS Nano. 2023;17(16):15905–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao M, Xie Y-Q, Lei Ok, Zhao Y, Kurum A, Van Herck S, Guo Y, Hu X, Tang L. A manganese phosphate Nanocluster prompts the cGAS-STING pathway for enhanced Most cancers Immunotherapy. Adv Ther. 2021;4(8):2100065.

    Article 
    CAS 

    Google Scholar
     

  • Zhang T, Hu C, Zhang W, Ruan Y, Ma Y, Chen D, Huang Y, Fan S, Lin W, Huang Y, Liao Ok, Lu H, Xu J-F, Pi J, Guo X. Advances of MnO2 nanoparticles as novel agonists for the event of cGAS-STING-mediated therapeutics. Entrance Immunol. 2023;14:1156239.

  • He Q, Zheng R, Ma J, Zhao L, Shi Y, Qiu J. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy. Biomater Res. 2023;27(1):29.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cai L, Wang Y, Chen Y, Chen H, Yang T, Zhang S, Guo Z, Wang X. Manganese(ii) complexes stimulate antitumor immunity through aggravating DNA injury and activating the cGAS-STING pathway. Chem Sci. 2023;14(16):4375–89.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du G, Pang H. Latest developments in prussian blue analogues: Preparation and utility in batteries. Vitality Storage Mater. 2021;36:387–408.

    Article 

    Google Scholar
     

  • Zheng Y, Chen J, Tune X-R, Chang M-Q, Feng W, Huang H, Jia C-X, Ding L, Chen Y, Wu R. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy through activating cGAS-STING pathway. Biomaterials. 2023;293:121988.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cui M, Tang D, Wang B, Zhang H, Liang G, Xiao H. Bioorthogonal guided activation of cGAS-STING by AIE Photosensitizer nanoparticles for focused tumor remedy and imaging. Adv Mater. 2023;35(52):2305668.

    Article 
    CAS 

    Google Scholar
     

  • Xia J, Wang L, Shen T, Li P, Zhu P, Xie S, Chen Z, Zhou F, Zhang J, Ling J, Liu X, Yu H, Solar J. Built-in manganese (III)-doped nanosystem for optimizing photothermal ablation: amplifying hyperthermia-induced STING pathway and enhancing antitumor immunity. Acta Biomater. 2023;155:601–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boussiotis VA. Molecular and biochemical features of the PD-1 checkpoint pathway, N. Engl. J Med. 2016;375(18):1767–78.

    CAS 

    Google Scholar
     

  • Leach DR, Krummel MF, Allison JP. Enhancement of Antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Walker LSK, Sansom DM. The rising function of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ribas A, Wolchok JD. Most cancers immunotherapy utilizing checkpoint blockade. Science. 2018;359(6382):1350–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to information immune checkpoint blockade in most cancers remedy. Nat Rev Most cancers. 2016;16(5):275–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discovery. 2022;21(7):509–28.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G. Biologic exercise of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in beforehand vaccinated metastatic melanoma and ovarian carcinoma sufferers. Natl Acad Sci U S A. 2003;100(8):4712–7.

    Article 
    CAS 

    Google Scholar
     

  • Agrawal S, Feng Y, Roy A, Kollia G, Lestini B. Nivolumab dose choice: challenges, alternatives and classes realized for most cancers immunotherapy. J ImmunoTher Most cancers. 2015;3(2):P141.

    Article 
    PubMed Central 

    Google Scholar
     

  • Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, Lanoy E, Texier M, Libenciuc C, Eggermont AMM, Soria J-C, Mateus C, Robert C. Security profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and together. Nat Rev Clin Oncol. 2016;13(8):473–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kalbasi A, Ribas A. Tumor-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20(1):25–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong H, Strome SE, Salomao DR, TAMsura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, TAMsada Ok, Lennon VA, Celis E, Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a possible mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells within the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ge R, Liu C, Zhang X, Wang W, Li B, Liu J, Liu Y, Solar H, Zhang D, Hou Y, Zhang H, Yang B. Photothermal-activatable Fe3O4 superparticle Nanodrug Carriers with PD-L1 Immune Checkpoint Blockade for Anti-metastatic Most cancers Immunotherapy. ACS Appl Mater Interfaces. 2018;10(24):20342–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu X, Wang D, Zhang P, Li Y. Latest advances in nanosized drug supply programs for overcoming the limitations to anti-PD immunotherapy of most cancers. Nano Immediately. 2019;29:100801.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Zhou Z, Gao Z, Li X, Wang X, Zheng Z, Deng J, Liu D, Peng T, Hou Z. Delicate photothermal therapy sensitized immune checkpoint blockade remedy primarily based on ATP-exhausted nanozymes. Chem Eng J. 2023;474:145677.

    Article 
    CAS 

    Google Scholar
     

  • Lima-Sousa R, Melo BL, Alves CG, Moreira AF, Mendonça AG, de Correia IJ. Melo-Diogo, combining photothermal-photodynamic remedy mediated by nanoparticles with Immune Checkpoint Blockade for Metastatic Most cancers Remedy and Creation of Immune Reminiscence. Adv Funct Mater. 2021;31(29):2010777.

    Article 
    CAS 

    Google Scholar
     

  • Wang D, Liu J, Wang C, Zhang W, Yang G, Chen Y, Zhang X, Wu Y, Gu L, Chen H, Yuan W, Chen X, Liu G, Gao B, Chen Q, Zhao Y. Microbial synthesis of prussian blue for potentiating checkpoint blockade immunotherapy. Nat Commun. 2023;14(1):2943.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Adachi T, Nakamura Y. Aptamers: a overview of their chemical properties and modifications for therapeutic utility. Molecules. 2019;24(23):4229.

  • Yang C, Jiang Y, Hao SH, Yan XY, Hong DF, Naranmandura H. ApTAMsers: an rising navigation software of therapeutic brokers for focused most cancers remedy. J Mater Chem B. 2022;10(1):20–33.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Improvement of Therapeutic ApTAMsers In opposition to Most cancers cells, Entrance. Cell Dev Biol. 2021;9:662791.


    Google Scholar
     

  • Zhang J, Li W, Qi Y, Wang G, Li L, Jin Z, Tian J, Du Y. PD-L1 ApTAMser-Functionalized metallic–Natural Framework nanoparticles for Strong Picture-Immunotherapy towards Most cancers with enhanced security. Angew Chem Int Ed. 2023;62(5):e202214750.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Li F, Li T, Zhang W, Li B, Liu Ok, Lun X, Guo Y. Self-actuated biomimetic nanocomposites for photothermal remedy and PD-L1 immunosuppression. Entrance Chem. 2023;11:1167586.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cano-Mejia J, Burga RA, Sweeney EE, Fisher JP, Bollard CM, Sandler AD, Cruz CRY, Fernandes R. Prussian blue nanoparticle-based photothermal remedy mixed with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomed-nanotechnol. 2017;13(2):771–81.

    Article 
    CAS 

    Google Scholar
     

  • Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 most cancers immunotherapy. Eur J Most cancers. 2016;54:112–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu G, Luo P. Concentrating on CD137 (4-1BB) in the direction of improved security and efficacy for most cancers immunotherapy. Entrance Immunol. 2023;14:1208788.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Medina JA, Ledezma DK, Ghofrani J, Chen J, Chin SJ, Balakrishnan PB, Lee NH, Sweeney EE, Fernandes R. Photothermal remedy co-localized with CD137 agonism improves survival in an SM1 melanoma mannequin with out hepatotoxicity. Nanomedicine (London, England). 2024;1–16.

  • Hao Y, Zhou X, Li Y, Li B, Cheng L. The CD47-SIRPα axis is a promising goal for most cancers immunotherapies. Int Immunopharmacol. 2023;120:110255.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα Immune Checkpoint. Immunity. 2020;52(5):742–52.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu J, Meng Z, Xu T, Kuerban Ok, Wang S, Zhang X, Fan J, Ju D, Tian W, Huang X, Huang X, Pan D, Chen H, Zhao W, Ye L. A SIRPαFc Fusion protein conjugated with the collagen-binding area for focused immunotherapy of Non-small Cell Lung Most cancers. Entrance Immunol. 2022;13:845217.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Weiskopf Ok, Ring AM, Ho CC, Volkmer JP, Levin AM, Volkmer AK, Ozkan E, Fernhoff NB, van de Rijn M, Weissman IL, Garcia KC. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science. 2013;341(6141):88–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang Y, Liu Q, Wang M, Li L, Yu Y, Pan M, Hu D, Chu B, Qu Y, Qian Z. Genetically programmable cell membrane-camouflaged nanoparticles for focused mixture remedy of colorectal most cancers. Sign Transduct Goal Ther. 2024;9(1):158.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cappell KM, Kochenderfer JN. Lengthy-term outcomes following CAR T cell remedy: what we all know to date. Nat Rev Clin Oncol. 2023;20(6):359–71.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sadelain M, Brentjens R, Rivière I. The fundamental ideas of chimeric antigen receptor design. Most cancers Discov. 2013;3(4):388–98.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T cell remedy for stable tumors: Brilliant Future or Darkish actuality? Mol Ther. 2020;28(11):2320–39.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in stable tumors by concentrating on the tumor microenvironment. Cell Mol Immunol. 2021;18(5):1085–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sterner RC, Sterner RM. CAR-T cell remedy: present limitations and potential methods. Blood Most cancers J. 2021;11(4):69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun. 2020;11(1):6080.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Q, Hu Q, Dukhovlinova E, Chen G, Ahn S, Wang C, Ogunnaike EA, Ligler FS, Dotti G, Gu Z. Photothermal Remedy promotes Tumor Infiltration and Antitumor Exercise of CAR T cells. Adv Mater. 2019;31(23):1900192.

    Article 

    Google Scholar
     

  • Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles that reshape the Tumor Milieu create a therapeutic window for efficient T-cell remedy in stable malignancies. Most cancers Res. 2018;78(13):3718–30.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Siriwon N, Kim YJ, Siegler E, Chen X, Rohrs JA, Liu Y, Wang P. Cells Floor-Engineered with Drug-Encapsulated nanoparticles can ameliorate Intratumoral T-cell hypofunction. Most cancers Immunol Res. 2018;6(7):812–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim H, Baek Y, Ha T, Choi D, Lee WJ, Cho Y, Park J, Kim S, Doh J. Gold nanoparticle-carrying T cells for the mixed Immuno-Photothermal Remedy. Small. 2023;19(47):2301377.

    Article 
    CAS 

    Google Scholar
     

  • Miller IC, Zamat A, Solar L-Ok, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoral exercise of CAR T cells engineered to supply immunomodulators beneath photothermal management. Nat Biomed Eng. 2021;5(11):1348–59.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sweeney EE, Sekhri P, Telaraja D, Chen J, Chin SJ, Chiappinelli KB, Sanchez CE, Bollard CM, Cruz CRY, Fernandes R. Engineered tumor-specific T cells utilizing immunostimulatory photothermal nanoparticles. Cytotherapy. 2023;25(7):718–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg impact: the metabolic necessities of cell proliferation. Science. 2009;324(5930):1029–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jain RK. Normalization of Tumor vasculature: an rising Idea in Antiangiogenic Remedy. Science. 2005;307(5706):58–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moulder JE, Rockwell S. Hypoxic fractions of stable tumors: experimental methods, strategies of research, and a survey of current knowledge. Int J Radiat Oncol Biol Phys. 1984;10(5):695–712.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo Z, Tian M, Yang G, Tan Q, Chen Y, Li G, Zhang Q, Li Y, Wan P, Wu J. Hypoxia signaling in human well being and illnesses: implications and prospects for therapeutics. Sign Transduct Goal Ther. 2022;7(1):218.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He Z, Zhang S. Tumor-associated macrophages and their useful transformation within the hypoxic tumor microenvironment. Entrance Immunol. 2021;12:741305.

  • Wu Ok, Lin Ok, Li X, Yuan X, Xu P, Ni P, Xu D. Redefining Tumor-Related macrophage subpopulations and capabilities within the Tumor Microenvironment. Entrance Immunol. 2020;11:1731.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu D, Wu L, Yao H, Zhao L. Catalase-like Nanozymes: classification, Catalytic mechanisms, and their functions. Small. 2022;18(37):2203400.

    Article 
    CAS 

    Google Scholar
     

  • Estelrich J, Busquets MA. Prussian Blue: a nanozyme with versatile Catalytic properties. Int J Mol Sci. 2021;22(11):5993.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Najafi A, Keykhaee M, Khorramdelazad H, Karimi MY, Nejatbakhsh Samimi L, Aghamohamadi N, Karimi M, Falak R, Khoobi M. Catalase utility in most cancers remedy: simultaneous specializing in hypoxia attenuation and macrophage reprogramming. Biomed Pharmacother. 2022;153:113483.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu Y, Chen L, Liu M, Ma Z, Zhou C, Yao Z, Zhang S, Tune C, Wang Z, Zhu X, Miao M, Duan S, Huang S. Multifunctional immunotherapeutic gel prevented postoperative recurrence of hepatocellular carcinoma. Chem Eng J. 2023;457:141124.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Zhang X, Ren Y, Cao F, Hou L, Zhang Z. An in situ microenvironmental nano-regulator to inhibit the proliferation and metastasis of 4T1 tumor. Theranostics. 2019;9(12):3580–94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xie Y, Zhang C, Zhao Y, Li T, Shen W, Hu L, Yang Ok, Pei P, Liu T. Simultaneous modulation of Hypoxia and Metabolism in Glioblastoma for enhanced radio-immunotherapy. Adv Funct Mater. 2024;34(12):2312197.

    Article 
    CAS 

    Google Scholar
     

  • Feng Q, Bennett Z, Grichuk A, Pantoja R, Huang T, Faubert B, Huang G, Chen M, DeBerardinis RJ, Sumer BD, Gao J. Severely polarized extracellular acidity round tumor cells. Nat Biomed Eng. 2024;8(6):787–99.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL. Metabolic competitors within the Tumor Microenvironment is a driver of Most cancers Development. Cell. 2015;162(6):1229–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bohn T, Rapp S, Luther N, Klein M, Bruehl TJ, Kojima N, Aranda Lopez P, Hahlbrock J, Muth S, Endo S, Pektor S, Model A, Renner Ok, Popp V, Gerlach Ok, Vogel D, Lueckel C, Arnold-Schild D, Pouyssegur J, Kreutz M, Huber M, Koenig J, Weigmann B, Probst HC, von Stebut E, Becker C, Schild H, Schmitt E, Bopp T. Tumor immunoevasion through acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol. 2018;19(12):1319–29.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tang Y, Chang Q, Chen G, Zhao X, Huang G, Wang T, Jia C, Lu L, Jin T, Yang S, Cao L, Zhang X. Tumor immunosuppression aid through acidity modulation mixed PD-L1 siRNA for enhanced immunotherapy. Bio Adv. 2023;150:213425.

    CAS 

    Google Scholar
     

  • Zhou T, Liang X, Wang P, Hu Y, Qi Y, Jin Y, Du Y, Fang C, Tian J. A Hepatocellular Carcinoma Concentrating on Nanostrategy with Hypoxia-Ameliorating and Photothermal skills that, mixed with immunotherapy, inhibits metastasis and recurrence. ACS Nano. 2020;14(10):12679–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tune J, Liu T, Yin Y, Zhao W, Lin Z, Yin Y, Lu D, You F. The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Rep. 2021;22(2):e51162.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bonadonna M, AlTAMsura S, Tybl E, Palais G, Qatato M, Polycarpou-Schwarz M, Schneider M, Kalk C, Rüdiger W, Ertl A, Anstee N, Bogeska R, Helm D, Milsom MD, Galy B. Iron regulatory protein (IRP)-mediated iron homeostasis is crucial for neutrophil improvement and differentiation within the bone marrow. Sci Adv. 2022;8(40):eabq4469.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang S, Zhu L, Li T, Lin X, Zheng Y, Xu D, Guo Y, Zhang Z, Fu Y, Wang H, Wang X, Zou T, Shen X, Zhang L, Lai N, Lu L, Qin L, Dong Q. Disruption of MerTK will increase the efficacy of checkpoint inhibitor by enhancing ferroptosis and immune response in hepatocellular carcinoma. Cell Rep Med. 2024;5(2):101415.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ginzburg YZ. Hepcidin-Ferroportin axis in well being and illness. ViTAMs Horm. 2019;110:17–45.

    Article 
    CAS 

    Google Scholar
     

  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and function in illness. Nat Rev Mol Cell Biol. 2021;22(4):266–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the function of ferroptosis in most cancers. Nat Rev Clin Oncol. 2021;18(5):280–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen X, Zhang L, He Y, Huang S, Chen S, Zhao W, Yu D. Regulation of m6A modification on ferroptosis and its potential significance in radio sensitization. Cell Dying Discov. 2023;9(1):343.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, Chen A, Zhang Z, Zheng S. N6-methyladenosine modification regulates ferroptosis by means of autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021;47:102151.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu R, Yang J, Qian Y, Deng H, Wang Z, Ma S, Wei Y, Yang N, Shen Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer remedy achieved by transferrin embellished nanoMOF. Nanoscale Horiz. 2021;6(4):348–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu J, Zhan J, Zhang Y, Huang L, Yang J, Feng J, Ding L, Shen Z, Chen X. Ultrathin clay nanoparticles-mediated mutual reinforcement of ferroptosis and Most cancers immunotherapy. Adv Mater. 2024;36(9):2309562.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Tune Y, Cao Ok, Du Y, Han M, Shi Z, Yan F, Feng S. Hepcidin-based nanocomposites for enhanced Most cancers immunotherapy by modulating Iron Export-mediated N6-Methyladenosine RNA transcript. Adv Funct Mater. 2022;32(2):2107195.

    Article 
    CAS 

    Google Scholar
     

  • Liang W, Ferrara N. Iron Metabolism within the Tumor Microenvironment: contributions of Innate Immune cells. Entrance Immunol. 2020;11:626812.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X, Yu M. Ironing out the small print: how Iron orchestrates macrophage polarization. Entrance Immunol. 2021;12:669566.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ding H, Zhang Y, Mao Y, Li Y, Shen Y, Sheng J, Gu N. Modulation of macrophage polarization by iron-based nanoparticles. Med Rev. 2021;2023(3 2):105–22.


    Google Scholar
     

  • Cheng J, Zhang Q, Fan S, Zhang A, Liu B, Hong Y, Guo J, Cui D, Tune J. The vacuolization of macrophages induced by giant quantities of inorganic nanoparticle uptake to boost the immune response. Nanoscale. 2019;11(47):22849–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Pei Y, Zhang X, Zhu L, Hou L, Chang J, Zhang ZJ. Engineering of an clever cascade nanoreactor for sequential enchancment of microenvironment and enhanced tumor phototherapy. Appl Mater Immediately. 2020;18:100494.

  • Ma S, Li D, Jia X, Xu W, Ding G, He J, Wang J. Homologous tumor concentrating on molybdenum-doped prussian blue for enhancing immunotherapy through PTT/CDT and reworked tumor immune microenvironment. Adv Funct Mater. 2024;34(41):2402692.

  • Lengthy Y, Fan J, Zhou N, Liang J, Xiao C, Tong C, Wang W, Liu B. Biomimetic prussian blue nanocomplexes for chemo-photothermal therapy of triple-negative breast most cancers by enhancing ICD. Biomaterials. 2023;303:122369.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Y, Du Z, Zhang Y, Kang X, Tune J, Chen X, Hu Y, Yang Z, Qi J, Shen X. Boosting Theranostic efficiency of AIEgens utilizing Nanocatalyzer for Strong Most cancers Immunotherapy. Adv Funct Mater. 2024;34(23):2315127.

    Article 
    CAS 

    Google Scholar
     

  • Rolfo C, Giovannetti E, Martinez P, McCue S, Naing A. Purposes and scientific trial panorama utilizing toll-like receptor agonists to cut back the toll of most cancers, npj Summary. Oncol. 2023;7(1):26.

    CAS 

    Google Scholar
     

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino Ok, Horiuchi T, Tomizawa H, Takeda Ok, Akira S. Small anti-viral compounds activate immune cells through the TLR7 MyD88–dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yuan J, Ni G, Wang T, Mounsey Ok, Cavezza S, Pan X, Liu X. Genital warts therapy: past imiquimod. Hum Vaccin Immunother. 2018;14(7):1815–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma M, Sharma G, Singh B, Katare OP. Actinic keratosis and imiquimod: a overview of novel carriers and patents, Knowledgeable Opin. Drug Supply. 2019;16(2):101–12.

    CAS 

    Google Scholar
     

  • Papakostas D, Stockfleth E. Topical therapy of basal cell carcinoma with the immune response modifier imiquimod. Future Oncol. 2015;11(22):2985–90.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tojo S, Zhang Z, Matsui H, Tahara M, Ikeguchi M, Kochi M, Kamada M, Shigematsu H, Tsutsumi A, Adachi N, Shibata T, Yamamoto M, Kikkawa M, Senda T, Isobe Y, Ohto U, Shimizu T. Structural evaluation reveals TLR7 dynamics underlying antagonism. Nat Commun. 2020;11(1):5204.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chi H, Li C, Zhao FS, Zhang L, Ng TB, Jin G, Sha O. Anti-tumor exercise of toll-like receptor 7 agonists. Entrance Pharmacol. 2017;8:304.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Mouronte E, Berna-Rico E, de Nicolas-Ruanes B, Azcarraga-Llobet C, Alonso-Martinez de Salinas L, Bea-Ardebol S. Imiquimod as native immunotherapy within the administration of premalignant cutaneous situations and pores and skin most cancers. Int J Mol Sci. 2023;24(13):10835.

  • Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Most cancers cell membrane-coated nanoparticles for bimodal imaging-guided photothermal remedy and docetaxel-enhanced immunotherapy towards most cancers. J Nanobiotechnology. 2021;19(1):449.

  • Li Y, Zeng N, Qin Z, Chen Y, Lu Q, Cheng Y, Xia Q, Lu Z, Gu N, Luo D. Ultrasmall prussian blue nanoparticles attenuate UVA-induced mobile senescence in human dermal fibroblasts through inhibiting the ERK/AP-1 pathway. Nanoscale. 2021;13(38):16104–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng Ok, Zhang J, Dong H, Li Z, Gu N, Ma M, Zhang Y. Prussian blue nanoparticles having varied sizes and crystallinities for Multienzyme Catalysis and Magnetic Resonance Imaging, ACS appl. Nano Mater. 2021;4(5):5176–86.

    CAS 

    Google Scholar
     

  • Qu H, Jin X, Cheng W, Wu D, Ma B, Lou C, Zheng J, Jing L, Xue X, Wang Y. Uncovering the destiny and dangers of intravenously injected Prussian blue nanoparticles in mice by an built-in methodology of toxicology, pharmacokinetics, proteomics, and metabolomics. Half Fibre Toxicol. 2023;20(1):18.

  • Feng Ok, Wang Z, Wang S, Wang G, Dong H, He H, Wu H, Ma M, Gao X, Zhang Y. Elucidating the catalytic mechanism of prussian blue nanozymes with self-increasing catalytic exercise. Nat Commun. 2024;15(1):5908.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles