6.8 C
United States of America
Saturday, February 22, 2025

A shark-derived broadly neutralizing nanobody concentrating on a extremely conserved epitope on the S2 area of sarbecoviruses | Journal of Nanobiotechnology


  • Vaughan A. Omicron emerges. New Sci. 2021;252(3363):7. https://doi.org/10.1016/S0262-4079(21)02140-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopsidas I, Karagiannidou S, Kostaki EG, Kousi D, Douka E, Sfikakis PP, Moustakidis S, Kokkotis C, Tsaopoulos D, Tseti I, Zaoutis T, Paraskevis D. World Distribution, dispersal patterns, and Development of a number of Omicron subvariants of SARS-CoV-2 throughout the Globe. Trop Med Infect Illness. 2022;7(11):373. https://doi.org/10.3390/tropicalmed7110373.

    Article 

    Google Scholar
     

  • Tsujino S, Deguchi S, Nomai T, Padilla-Blanco M, Plianchaisuk A, Wang L, Begum MSTM, Uriu Ok, Mizuma Ok, Nao N, Kojima I, Tsubo T, Li J, Matsumura Y, Nagao M, Oda Y, Tsuda M, Anraku Y, Kita S, Yajima H, Sasaki‐Tabata Ok, Guo Z, Hinay AA, Yoshimatsu Ok, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu Ok, Yoshimura Ok, Nasser H, Jonathan M, Putri O, Kim Y, Chen L, Suzuki R, Tamura T, Maenaka Ok, Irie T, Matsuno Ok, Tanaka S, Ito J, Ikeda T, Takayama Ok, Zahradnik J, Hashiguchi T, Fukuhara T, Sato Ok. Virological traits of the SARS‐CoV‐2 omicron EG.5.1 variant. Microbiol Immunol. 2024. https://doi.org/10.1111/1348-0421.13165.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Q, Guo Y, Liu L, Schwanz LT, Li Z, Nair MS, Ho J, Zhang RM, Iketani S, Yu J, Huang Y, Qu Y, Valdez R, Lauring AS, Huang Y, Gordon A, Wang HH, Liu L, Ho DD. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature. 2023;624(7992):639–44. https://doi.org/10.1038/s41586-023-06750-w.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Dopfer-Jablonka A, Cossmann A, Stankov MV, Graichen L, Moldenhauer A-S, Fichter C, Aggarwal A, Turville SG, Behrens GMN, Pöhlmann S, Hoffmann M. Speedy unfold of the SARS-CoV-2 JN.1 lineage is related to elevated neutralization evasion. iScience. 2024;27(6):109904. https://doi.org/10.1016/j.isci.2024.109904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP, Jr.;, Bjorkman PJ. SARS-CoV-2 neutralizing antibody constructions inform therapeutic methods. Nature 2020, 588 (7839), 682–687. https://doi.org/10.1038/s41586-020-2852-1

  • Dong J, Huang B, Jia Z, Wang B, Gallolu Kankanamalage S, Titong A, Liu Y. Growth of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interplay with excessive affinity and avidity. Emerg Microbes Infections. 2020;9(1):1034–6. https://doi.org/10.1080/22221751.2020.1768806.

    Article 
    CAS 

    Google Scholar
     

  • Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. Excessive affinity nanobodies block SARS-CoV-2 spike receptor binding area interplay with human angiotensin changing enzyme. Sci Rep. 2020;10(1):22370. https://doi.org/10.1038/s41598-020-79036-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, Corcoran M, Achour A, Karlsson Hedestam GB, Hällberg BM, Murrell B, McInerney GM. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interplay. Nat Commun. 2020;11(1). https://doi.org/10.1038/s41467-020-18174-5.

  • Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, Ren J, Zhou D, Harrison PJ, Weckener M, Clare DK, Vogirala VK, Radecke J, Moynie L, Zhao Y, Gilbert-Jaramillo J, Knight ML, Tree JA, Buttigieg KR, Coombes N, Elmore MJ, Carroll MW, Carrique L, Shah PNM, James W, Townsend AR, Stuart DI, Owens RJ, Naismith JH. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interplay with ACE2. Nature structural & molecular biology 2020, https://doi.org/10.1038/s41594-020-0469-6

  • Cao Y, Yisimayi A, Jian F, Track W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, Yu Y, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Solar H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Track X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z, Wang Y, Wang X, Xiao J, Xie XS. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron an infection. Nature. 2022;608(7923):593–602. https://doi.org/10.1038/s41586-022-04980-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Jian F, Wang J, Yu Y, Track W, Yisimayi A, Wang J, An R, Chen X, Zhang N, Wang Y, Wang P, Zhao L, Solar H, Yu L, Yang S, Niu X, Xiao T, Gu Q, Shao F, Hao X, Xu Y, Jin R, Shen Z, Wang Y, Xie XS. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. 2023;614(7948):521–9. https://doi.org/10.1038/s41586-022-05644-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Wang J, Jian F, Xiao T, Track W, Yisimayi A, Huang W, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Solar H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao J, Wang Y, Xie XS. Omicron escapes the vast majority of current SARS-CoV-2 neutralizing antibodies. Nature. 2021. https://doi.org/10.1038/s41586-021-04385-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan Y-H, Boonyaratanakornkit J, Sholukh AM, Jackson AM, Zhou P, Burton DR, Andrabi R, Ozorowski G, Ward AB, Stamatatos L, Pancera M, McGuire AT. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biology. 2022;5(1). https://doi.org/10.1038/s42003-022-03262-7.

  • Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable components in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Sign Transduct Goal Remedy. 2023;8(1). https://doi.org/10.1038/s41392-023-01472-x.

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of sunshine chains. Nature. 1993;363(6428):446–8. https://doi.org/10.1038/363446a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A brand new antigen receptor gene household that undergoes rearrangement and intensive somatic diversification in sharks. Nature. 1995;374(6518):168–73. https://doi.org/10.1038/374168a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol. 2011;48(15–16):2027–37. https://doi.org/10.1016/j.molimm.2011.06.437.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu JL, Zabetakis D, Brown JC, Anderson GP, Goldman ER. Thermal stability and refolding functionality of shark derived single area antibodies. Mol Immunol. 2014;59(2):194–9. https://doi.org/10.1016/j.molimm.2014.02.014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahbarizadeh F, Rasaee MJ, Forouzandeh-Moghadam M, Allameh AA. Excessive expression and purification of the recombinant camelid anti-MUC1 single area antibodies in Escherichia coli. Protein Expr Purif. 2005;44(1):32–8. https://doi.org/10.1016/j.pep.2005.04.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh AA. Over expression of anti-MUC1 single-domain antibody fragments within the yeast Pichia pastoris. Mol Immunol. 2006;43(5):426–35. https://doi.org/10.1016/j.molimm.2005.03.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: massive alternatives for small antibodies. Drug Discovery Right this moment. 2016;21(7):1076–113. https://doi.org/10.1016/j.drudis.2016.04.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bathula NV, Bommadevara H, Hayes JM, Nanobodies. The way forward for antibody-based Immune therapeutics. Most cancers Biother Radiopharm. 2021;36(2):109–22. https://doi.org/10.1089/cbr.2020.3941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng B, Chen Z, Solar J, Xu T, Wang Q, Yi H, Niu X, Zhu J, Fan M, Hou R, Shao Y, Huang S, Li C, Hu P, Zheng P, He P, Luo J, Yan Q, Xiong X, Liu J, Zhao J, Chen L. A category of Shark-Derived single-domain antibodies can broadly neutralize SARS-Associated coronaviruses and the structural foundation of neutralization and omicron escape. Small Strategies. 2022;6(7):e2200387. https://doi.org/10.1002/smtd.202200387.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif LJ, Peeples ME, Liu SL. SARS-CoV-2 spreads by cell-to-cell transmission. Proc Natl Acad Sci U S A. 2022;119(1). https://doi.org/10.1073/pnas.2111400119.

  • Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu L. Fusion mechanism of 2019-nCoV and fusion inhibitors concentrating on HR1 area in spike protein. Cell Mol Immunol. 2020;17(7):765–7. https://doi.org/10.1038/s41423-020-0374-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto D, Sauer MM, Czudnochowski N, SiongLow4 J, Tortorici MA, Housley MP, Noack J, Partitions AC; JohnE.Bowen;, Guarino B, Rosen LE, Iulio Jd, JosipaJerak; Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap Ok, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, EneidaVetti AC, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, AgostinoRiva; Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, DavideCorti, Veesler. D., Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 2021, 373, 1109–1116.

  • Sauer MM, Tortorici MA, Park Y-J, Partitions AC, Homad L, Acton OJ, Bowen JE, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch B-J, McGuire AT, Veesler D. Structural foundation for broad coronavirus neutralization. Nat Struct Mol Biol. 2021;28(6):478–86. https://doi.org/10.1038/s41594-021-00596-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Yi C, Zhu Y, Ding L, Xia S, Chen X, Liu M, Gu C, Lu X, Fu Y, Chen S, Zhang T, Zhang Y, Yang Z, Ma L, Gu W, Hu G, Du S, Yan R, Fu W, Yuan S, Qiu C, Zhao C, Zhang X, He Y, Qu A, Zhou X, Li X, Wong G, Deng Q, Zhou Q, Lu H, Ling Z, Ding J, Lu L, Xu J, Xie Y, Solar B. Neutralization mechanism of a human antibody with pan-coronavirus reactivity together with SARS-CoV-2. Nat Microbiol. 2022;7(7):1063–74. https://doi.org/10.1038/s41564-022-01155-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dacon C, Tucker C, Peng L, Lee C-CD, Lin T-H, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo C-W, Kosik I, Hu Z, Zhao M, Mohan D, Cooper AJR, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Drawbaugh D, Eaton B, Zhang Y, Yang ES, Chen M, Leung Ok, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan. J., Broadly neutralizing antibodies goal the coronavirus fusion peptide. Science 2022, 377, 728–735.

  • Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng Q-F, Cai X, Qu D, Lu L, Xie Y, Jiang S, Chen X. Decoy nanoparticles shield in opposition to COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci. 2020;117(44):27141–7. https://doi.org/10.1073/pnas.2014352117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng Q-F, Tai W, Tian M, Zhuang X, Pan Y, Lai J, Xu Y, Xu Z, Li M, Zhao G, Yu G-T, Yu G, Chen R, Jin N, Li X, Cheng G, Chen X, Rao L. Inhalation supply of dexamethasone with iSENDnanoparticles attenuates the COVID-19 cytokine stormin mice and nonhuman primates. Sci Adv. 2023;9:eadg3277. https://doi.org/10.1002/adma.202207875.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao C, Pan Y, Yu G, Zhao XZ, Chen X, Rao L. Vesicular antibodies: shedding gentle on antibody therapeutics with cell membrane nanotechnology. Adv Mater. 2023;35(12). https://doi.org/10.1002/adma.202207875.

  • Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Solar F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (beforehand 2019-nCoV) an infection by a extremely potent pan-coronavirus fusion inhibitor concentrating on its spike protein that harbors a excessive capability to mediate membrane fusion. Cell Res. 2020;30(4):343–55. https://doi.org/10.1038/s41422-020-0305-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovalenko OV, Olland A, Piche-Nicholas N, Godbole A, King D, Svenson Ok, Calabro V, Muller MR, Barelle CJ, Somers W, Gill DS, Mosyak L, Tchistiakova L. Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable area characterised by humanization and structural evaluation. J Biol Chem. 2013;288(24):17408–19. https://doi.org/10.1074/jbc.M112.435289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Niu X, Deng Y, Zhang Z, Wang Y, Gao X, Liang H, Li Z, Wang Q, Cheng Y, Chen Q, Huang S, Pan Y, Su M, Lin X, Niu C, Chen Y, Yang W, Zhang Y, Yan Q, He J, Zhao J, Chen L, Xiong X. An unconventional VH1-2 antibody tolerates escape mutations and exhibits an antigenic hotspot on SARS-CoV-2 spike. Cell Rep. 2024;43(6):114265. https://doi.org/10.1016/j.celrep.2024.114265.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles