Area AC, Leite Kassuya CA, Konkiewitz EC, Ziff EB. Pure merchandise as sources of New Analgesic medication. Evid Based mostly Complement Alternat Med. 2022. https://doi.org/10.1155/2022/9767292. 2022(9767292.
Newman DJ, Cragg GM. Pure merchandise as sources of New medication over the almost 4 a long time from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.
Yuan H, Ma Q, Ye L, Piao G. The Conventional Drugs and Trendy Drugs from Pure merchandise. Molecules. 2016;21(5):559.
Zhang A, Solar H, Wang X. Mass spectrometry-driven drug discovery for improvement of natural medication. Mass Spectrom Rev. 2018;37(3):307–20. https://doi.org/10.1002/mas.21529.
Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, De Diego Puente T. A Compressive Assessment about Taxol(®): Historical past and Future Challenges. Molecules. 2020;25(24). https://doi.org/10.3390/molecules25245986.
Langer D, Mlynarczyk DT, Dlugaszewska J, Tykarska E. Potential of glycyrrhizic and glycyrrhetinic acids towards influenza kind A and B viruses: a perspective to develop new anti-influenza compounds and drug supply techniques. Eur J Med Chem. 2023;246:114934. https://doi.org/10.1016/j.ejmech.2022.114934.
Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: advances within the chemistry and biology of berberine. Eur J Med Chem. 2021;226:113839. https://doi.org/10.1016/j.ejmech.2021.113839.
Zhou J, Liu H, Deng KW, Fan QM, Pan X, Zhu ZF, Yang YT, He FY. Analysis methods on the druggability of Chinese language medication based mostly onpharmacokinetics. China J Chin Materia Med. 2019;34(09):3916–20.
Luan X, Huang M, Ke BW, Ge GB, Zhang WD. Technique and problem of revolutionary drug analysis and improvement fromclinically efficient components of conventional Chinese language medication. China J Chin Materia Med. 2023;48(07):1705–10. https://doi.org/10.19540/j.cnki.cjcmm.20230112.201.
Dipanjan Ok, Swarupananda M, Ayon D, Dipanjana A, Shayeri Chatterjee G, Apurbaa A, Biswajit B. Good multifunctional nanoparticles in Most cancers Theranostics: Progress and Prospect. Pharm Nanatechnol. 2024;12:1–13. https://doi.org/10.2174/0122117385304258240427054724.
Dipanjan Ok, Swarupananda M, Susmita P, Suchana D, Bhupendra P, Ravish JP, Sajal Kumar J. Nanotechnology-powered meningitis therapies: lipid nanoparticles prepared the ground. Curr Pharm Biotechnol. 2024;25:1–13. https://doi.org/10.2174/0113892010303028240429073144.
Karati D, Mukherjee S, Prajapati B, Bose A, Paul S, Elossaily GM, Roy S. A overview on lipid-polymer hybrid nanocarriers in most cancers. J Drug Deliv Sci Technol. 2024;97:105827. https://doi.org/10.1016/j.jddst.2024.105827.
Gao CF, Xia JX, Zhu Y, Ren HW, Hong C, Lu WG, Wang JX. Utility of nanotechnology in enhancing druggability of activeingredients of Chinese language materia medica. Chin Conventional Herb Medication. 2018;49(12):2754–62.
Su Y, Gao J, Dong X, Wheeler KA, Wang Z. Neutrophil-mediated supply of Nanocrystal medication by way of Photoinduced irritation enhances Most cancers Remedy. ACS Nano. 2023;17(16):15542–55. https://doi.org/10.1021/acsnano.3c02013.
Ma Y, Liu Y, Wang Y, Gao P. Transdermal codelivery system of resveratrol nanocrystals and fluorouracil@ HP-β-CD by dissolving microneedles for cutaneous melanoma remedy. J Drug Deliv Sci Technol. 2024;91:105257. https://doi.org/10.1016/j.jddst.2023.105257.
Kotian V, Koland M, Mutalik S. Nanocrystal-based topical gels for enhancing Wound Therapeutic Efficacy of Curcumin. Crystals. 2022;12(11):1565.
Liu J, Solar Y, Cheng M, Liu Q, Liu W, Gao C, Feng J, Jin Y, Tu L. Enhancing oral bioavailability of Luteolin Nanocrystals by Floor Modification of Sodium Dodecyl Sulfate. AAPS PharmSciTech. 2021;22(3):133. https://doi.org/10.1208/s12249-021-02012-y.
Liu C, Chang D, Zhang X, Sui H, Kong Y, Zhu R, Wang W. Oral fast-dissolving movies containing lutein nanocrystals for improved bioavailability: formulation improvement, in vitro and in vivo analysis. AAPS PharmSciTech. 2017;18(8):2957–64. https://doi.org/10.1208/s12249-017-0777-2.
Stanisic D, Liu LHB, Dos Santos RV, Costa AF, Durán N, Tasic L. New sustainable course of for Hesperidin isolation and Anti-ageing results of Hesperidin Nanocrystals. Molecules. 2020;25(19). https://doi.org/10.3390/molecules25194534.
Zhang J, Zhang J, Wang S, Yi T. Growth of an oral compound Pickering Emulsion composed of nanocrystals of poorly soluble ingredient and unstable oils from conventional Chinese language medication. Pharmaceutics. 2018;10(4). https://doi.org/10.3390/pharmaceutics10040170.
Zhang YN, Yin HM, Zhang Y, Zhao W, Liu LX, Zhang DJ, Kuang HX. Synthesis and characterization of Pharmaceutical Co-crystal of Luteolin with 4, 4’-Dipyridy. J Northeast Agricultural Univ. 2015;46(12):72–8. https://doi.org/10.19720/j.cnki.issn.1005-9369.2015.12.011.
Liu M, Hong C, Li G, Ma P, Xie Y. The technology of myricetin-nicotinamide nanococrystals by prime down and backside up applied sciences. Nanotechnology. 2016;27(39):395601. https://doi.org/10.1088/0957-4484/27/39/395601.
Yang D, Wang H, Liu Q, Yuan P, Chen T, Zhang L, Yang S, Zhou Z, Lu Y, Du G. Structural panorama on a collection of rhein: Berberine cocrystal salt solvates: the formation, dissolution elucidation from experimental and theoretical investigations. Chin Chem Lett. 2022;33(06):3207–11.
Liu L, Li YG, Zhang M, Zhang YJ, Lou BY. A drug-drug Cocrystal of Dihydromyricetin and Pentoxifylline. J Pharm Sci. 2021;111(1):82–7.
Tian Z, Mai Y, Meng T, Ma S, Gou G, Yang J. Nanocrystals for enhancing oral bioavailability of medicine: intestinal transport mechanisms and influencing elements. AAPS PharmSciTech. 2021;22(5):179. https://doi.org/10.1208/s12249-021-02041-7.
Chang Z, Chen D, Peng J, Liu R, Li B, Kang J, Guo L, Hou R, Xu X, Lee M, Zhang X. Bone-targeted Supramolecular Nanoagonist assembled by Correct Ratiometric Natural-Derived therapeutics for osteoporosis reversal. Nano Lett. 2024;24(17):5154–64. https://doi.org/10.1021/acs.nanolett.4c00029.
Liu Y, Zhao D, Yang F, Ye C, Chen Z, Chen Y, Yu X, Xie J, Dou Y, Chang J. ACS Nano. 2024;18(11):7890–906. https://doi.org/10.1021/acsnano.3c09286. Situ Self-Assembled Phytopolyphenol-Coordinated Clever Nanotherapeutics for Multipronged Administration of Ferroptosis-Pushed Alzheimer’s Illness.
Verma S, Singh A, Mishra A. Gallic acid: molecular rival of most cancers. Environ Toxicol Pharmacol. 2013;35(3):473–85. https://doi.org/10.1016/j.etap.2013.02.011.
Wong S, Zhao J, Cao C, Wong CK, Kuchel RP, De Luca S, Hook JM, Garvey CJ, Smith S, Ho J, Stenzel MH. Simply add sugar for carbohydrate induced self-assembly of curcumin. Nat Commun. 2019;10(1):582. https://doi.org/10.1038/s41467-019-08402-y.
Lin H, Xu Q, Zhang F, Wu H, Hu B, Chen G, Ban X, Duan X, Yu M. Self-assembled carrier-free nanomedicine suppresses tumor stemness to beat the acquired drug-resistance of hepatocellular carcinoma. Chem Eng J. 2023;474:145555. https://doi.org/10.1016/j.cej.2023.145555.
Zou JJ, Le JQ, Zhang BC, Yang MY, Jiang JL, Lin JF, Wu PY, Li C, Chen L, Shao JW. Accelerating transdermal supply of insulin by ginsenoside nanoparticles with distinctive permeability. Int J Pharm. 2021;605:120784. https://doi.org/10.1016/j.ijpharm.2021.120784.
Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast most cancers by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnol. 2020;18(1):116. https://doi.org/10.1186/s12951-020-00679-2.
Wu X, Zang R, Qiu Y, Yang N, Liu M, Wei S, Xu X, Diao Y. Self-assembly of Rhein and Matrine nanoparticles for enhanced Wound Therapeutic. Molecules. 2024;29(14). https://doi.org/10.3390/molecules29143326.
Cheng J, Zhao H, Yao L, Li Y, Qi B, Wang J, Yang X. Easy and multifunctional pure self-assembled sterols with anticancer activity-mediated supramolecular photosensitizers for enhanced Antitumor Photodynamic Remedy. ACS Appl Mater Interfaces. 2019;11(33):29498–511. https://doi.org/10.1021/acsami.9b07404.
Zhao R, Zheng G, Fan L, Shen Z, Jiang Ok, Guo Y, Shao JW. Service-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for most cancers imaging and chemo-photo mixture remedy. Acta Biomater. 2018;70:197–210. https://doi.org/10.1016/j.actbio.2018.01.028.
Feng XX, Xie Q, Yang CL, Kong L, Zhang ZP. Arrier-free nanoparticles based mostly on self-assembly of energetic components from Chinese language medication. Acta Pharm Sinica. 2021;56(12):3203–11. https://doi.org/10.16438/j.0513-4870.2021-0748.
Wang F, Liu Y, Cai P, Zhong X, Zhong J, Li Y, Hu H, Sheng Y, Pan H, Kong F. Fabrication and characterization of gelatin-finger Citron Polysaccharide nanoparticles for enhanced solubility and bioavailability of Luteolin in treating Acute Alcoholic Liver Illness. J Agric Meals Chem. 2024;72(50):28072–83. https://doi.org/10.1021/acs.jafc.4c08282.
Li Z, Zheng Y, Shi H, Xie H, Yang Y, Zhu F, Ke L, Chen H, Gao Y. Handy tuning of the elasticity of self-assembled Nano-Sized triterpenoids to control their Organic actions. ACS Appl Mater Interfaces. 2021;13(37):44065–78. https://doi.org/10.1021/acsami.1c12418.
Luo QW, Yao L, Li L, Yang Z, Zhao MM, Zheng YZ, Zhuo FF, Liu TT, Zhang XW, Liu D, Tu PF, Zeng KW. Inherent functionality of self-assembling nanostructures in particular proteasome activation for Most cancers Cell pyroptosis. Small. 2023;19(9):e2205531. https://doi.org/10.1002/smll.202205531.
Fabiano A, De Leo M, Cerri L, Piras AM, Braca A, Zambito Y. Saffron extract self-assembled nanoparticles to delay the precorneal residence of crocin. J Drug Deliv Sci Technol. 2022;74:103580. https://doi.org/10.1016/j.jddst.2022.103580.
Liang X, Gao C, Cui L, Wang S, Wang J, Dai Z. Self-assembly of an amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for extra efficacious mixture chemotherapy in Most cancers. Adv Mater. 2017;29(40). https://doi.org/10.1002/adma.201703135.
Solar H, Nai J, Deng B, Zheng Z, Chen X, Zhang C, Sheng H, Zhu L. Angelica Sinensis Polysaccharide-based nanoparticles for liver-targeted supply of Oridonin. Molecules. 2024;29(3). https://doi.org/10.3390/molecules29030731.
Wang Ok, Xu J, Liu Y, Cui Z, He Z, Zheng Z, Huang X, Zhang Y. Self-assembled Angelica Sinensis polysaccharide nanoparticles with an instinctive liver-targeting means as a drug service for acute alcoholic liver harm safety. Int J Pharm. 2020;577:118996. https://doi.org/10.1016/j.ijpharm.2019.118996.
Zhang L, Li Y, Wang C, Li G, Zhao Y, Yang Y. Synthesis of methylprednisolone loaded ibuprofen modified inulin based mostly nanoparticles and their utility for drug supply. Mater Sci Eng C Mater Biol Appl. 2014;42:111–5. https://doi.org/10.1016/j.msec.2014.05.025.
Li R, Zhou J, Zhang X, Wang Y, Wang J, Zhang M, He C, Zhuang P, Chen H. Building of the Gal-NH(2)/mulberry leaf polysaccharides-lysozyme/luteolin nanoparticles and the amelioration results on lipid accumulation. Int J Biol Macromol. 2023;253(Pt 3):126780. https://doi.org/10.1016/j.ijbiomac.2023.126780.
Cai X, Weng Q, Lin J, Chen G, Wang S. Radix Pseudostellariae protein-curcumin nanocomplex: enchancment on the soundness, mobile uptake and antioxidant exercise of curcumin. Meals Chem Toxicol. 2021;151:112110. https://doi.org/10.1016/j.fct.2021.112110.
Zhou J, Zhang J, Gao G, Wang H, He X, Chen T, Ke L, Rao P, Wang Q. Boiling licorice produces self-assembled protein nanoparticles: a Novel supply of Bioactive nanomaterials. J Agric Meals Chem. 2019;67(33):9354–61. https://doi.org/10.1021/acs.jafc.9b03208.
Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, Wang H, Zhang X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization by means of the ROS-MAPK-NFκB P65 signaling pathway after spinal wire harm. J Nanobiotechnol. 2022;20(1):65. https://doi.org/10.1186/s12951-022-01273-4.
Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical utility of mesenchymal stem cell exosomes alleviates the Imiquimod Induced Psoriasis-Like irritation. Int J Mol Sci. 2021;22(2). https://doi.org/10.3390/ijms22020720.
Li S, Liu J, Liu S, Jiao W, Wang X. Mesenchymal stem cell-derived extracellular vesicles forestall the event of osteoarthritis by way of the circHIPK3/miR-124-3p/MYH9 axis. J Nanobiotechnol. 2021;19(1):194. https://doi.org/10.1186/s12951-021-00940-2.
Carobolante G, Mantaj J, Ferrari E, Vllasaliu D. Cow milk and intestinal epithelial cell-derived Extracellular vesicles as techniques for enhancing oral drug supply. Pharmaceutics. 2020;12(3). https://doi.org/10.3390/pharmaceutics12030226.
Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani N, a A, Witwer KW, Regulation JX. Efficacy and security of small extracellular vesicle interventions in wound therapeutic and pores and skin regeneration: a scientific overview and meta-analysis of animal research. Theranostics. 2022;12(15):6455–508. https://doi.org/10.7150/thno.73436.
Feng T, Wan Y, Dai B, Liu Y. Anticancer exercise of bitter melon-derived vesicles extract towards breast Most cancers. Cells. 2023;12(6). https://doi.org/10.3390/cells12060824.
Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, Zempleni J, Kachman SD, Natarajan SK, Yu J. Protecting function of Shiitake Mushroom-Derived Exosome-Like nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Harm in mice. Vitamins. 2020;12(2). https://doi.org/10.3390/nu12020477.
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-Activated protein kinase. Mol Ther. 2017;25(7):1641–54. https://doi.org/10.1016/j.ymthe.2017.01.025.
Shen H, Zhang M, Liu D, Liang X, Chang Y, Hu X, Gao W. Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular harm by means of the Keap1/Nrf2 pathway. Meals Funct. 2024. https://doi.org/10.1039/d4fo03993a.
Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, Peng LH. Plant exosomes as novel nanoplatforms for MicroRNA switch stimulate neural differentiation of stem cells in Vitro and in vivo. Nano Lett. 2021;21(19):8151–59. https://doi.org/10.1021/acs.nanolett.1c02530.
Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, Li S, Qiu Q, Lee H, Wang J. Anti-glioma impact of ginseng-derived exosomes-like nanoparticles by energetic blood-brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnol. 2023;21(1):253. https://doi.org/10.1186/s12951-023-02006-x.
Cao M, Yan H, Han X, Weng L, Wei Q, Solar X, Lu W, Wei Q, Ye J, Cai X, Hu C, Yin X, Cao P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma development. J Immunother Most cancers. 2019;7(1):326. https://doi.org/10.1186/s40425-019-0817-4.
Sundaram Ok, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Service provider ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience. 2020;23(2):100869. https://doi.org/10.1016/j.isci.2020.100869.
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: a novel therapeutic method for the prevention and remedy of inflammatory bowel illness and colitis-associated most cancers. Biomaterials. 2016. https://doi.org/10.1016/j.biomaterials.2016.06.018. 101(321 – 40.
Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, Mcclain CJ, Zhang HG. Ginger-derived nanoparticles shield towards alcohol-induced liver harm. J Extracell Vesicles. 2015;4:28713. https://doi.org/10.3402/jev.v4.28713.
Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis development by inhibiting oxidative stress by way of the Nrf2 pathway. Nanomed (Lond). 2024;19(28):2357–73. https://doi.org/10.1080/17435889.2024.2403324.
Zhao WJ, Bian YP, Wang QH, Yin F, Yin L, Zhang YL, Liu JH. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver illness by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin. 2022;43(3):645–58. https://doi.org/10.1038/s41401-021-00681-w.
Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG. Grape exosome-like nanoparticles induce intestinal stem cells and shield mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57. https://doi.org/10.1038/mt.2013.64.
Lei C, Mu J, Teng Y, He L, Xu F, Zhang X, Sundaram Ok, Kumar A, Sriwastva MK, Lawrenz MB, Zhang L, Yan J, Feng W, Mcclain CJ, Zhang X, Zhang HG. Lemon Exosome-like nanoparticles-manipulated Probiotics shield mice from C. D Iff an infection. iScience. 2020;23(10):101571. https://doi.org/10.1016/j.isci.2020.101571.
Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, Zito G, Flugy A, Manno M, Di Bella MA, De Leo G, Alessandro R. Citrus limon-derived nanovesicles inhibit most cancers cell proliferation and suppress CML xenograft development by inducing TRAIL-mediated cell demise. Oncotarget. 2015;6(23):19514–27. https://doi.org/10.18632/oncotarget.4004.
Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, Solar W, Zhao E, Wang M, Reis RL, Kundu SC, Shi X, Xiao B. Mulberry Biomass-Derived Nanomedicines Mitigate Colitis by means of Improved Infected Mucosa Accumulation and Intestinal Microenvironment Modulation. Analysis (Wash D C). 2023; 6(0188. https://doi.org/10.34133/analysis.0188
Hwang JH, Park YS, Kim HS, Kim DH, Lee SH, Lee CH, Lee SH, Kim JE, Lee S, Kim HM, Kim HW, Kim J, Website positioning W, Kwon HJ, Track BJ, Kim DK, Baek MC, Cho YE. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and stop osteoporosis in mice. J Management Launch. 2023;355. https://doi.org/10.1016/j.jconrel.2023.01.071. (184 – 98.
Bian YP. Garlic-derived Exosomes-likeNanoparticles Attenuate InflammationResponse within the White Adipose of Excessive-fatDiet-fed C57BL/6 Mice. 2021.
Sundaram Ok, Mu J, Kumar A, Behera J, Lei C, Sriwastva MK, Xu F, Dryden GW, Zhang L, Chen S, Yan J, Zhang X, Park JW, Service provider ML, Tyagi N, Teng Y, Zhang HG. Garlic exosome-like nanoparticles reverse high-fat food plan induced weight problems by way of the intestine/mind axis. Theranostics. 2022;12(3):1220–46. https://doi.org/10.7150/thno.65427.
Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, Yu R, Track L, Zhu J. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory impact by way of TNF-α/NF-κB/PU.1 axis. J Nanobiotechnol. 2023;21(1):160. https://doi.org/10.1186/s12951-023-01919-x.
Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BSB, Luo L, Wang C, Zeng L, Xiao B. Pure exosome-like nanovesicles from edible tea flowers suppress metastatic breast most cancers by way of ROS technology and microbiota modulation. Acta Pharm Sin B. 2022;12(2):907–23. https://doi.org/10.1016/j.apsb.2021.08.016.
Zhu MZ, Xu HM, Liang YJ, Xu J, Yue NN, Zhang Y, Tian CM, Yao J, Wang LS, Nie YQ, Li DF. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis by way of facilitating double-positive CD4(+)CD8(+)T cells enlargement. J Nanobiotechnol. 2023;21(1):309. https://doi.org/10.1186/s12951-023-02065-0.
Kim JS, Eom JY, Kim HW, Ko JW, Hong EJ, Kim MN, Kim J, Kim DK, Kwon HJ, Cho YE. Hemp sprout-derived exosome-like nanovesicles as hepatoprotective brokers attenuate liver fibrosis. Biomater Sci. 2024;12(20):5361–71. https://doi.org/10.1039/d4bm00812j.
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from recent Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung harm and intestine dysbiosis. Biomed Pharmacother. 2023;165:115007. https://doi.org/10.1016/j.biopha.2023.115007.
Sriwastva MK, Deng ZB, Wang B, Teng Y, Kumar A, Sundaram Ok, Mu J, Lei C, Dryden GW, Xu F, Zhang L, Yan J, Zhang X, Park JW, Service provider ML, Egilmez NK, Zhang HG. Exosome-like nanoparticles from Mulberry bark forestall DSS-induced colitis by way of the AhR/COPS8 pathway. EMBO Rep. 2022;23(3):e53365. https://doi.org/10.15252/embr.202153365.
Li JH, Xu J, Huang C, Hu JX, Xu HM, Guo X, Zhang Y, Xu JK, Peng Y, Zhang Y, Zhu MZ, Zhou YL, Nie YQ. Houttuynia cordata-derived Exosome-Like nanoparticles mitigate colitis in mice by way of inhibition of the NLRP3 signaling pathway and modulation of the intestine microbiota. Int J Nanomed. 2024;19. https://doi.org/10.2147/ijn.S493434. (13991 – 4018.
Zhang W, Track Q, Bi X, Cui W, Fang C, Gao J, Li J, Wang X, Qu Ok, Qin X, An X, Zhang C, Zhang X, Yan F, Wu G. Preparation of Pueraria lobata Root-Derived Exosome-Like nanovesicles and analysis of their results on Mitigating Alcoholic Intoxication and selling Alcohol Metabolism in mice. Int J Nanomed. 2024;19:4907–21. https://doi.org/10.2147/ijn.S462602.
Kawada Ok, Ishida T, Morisawa S, Jobu Ok, Higashi Y, Aizawa F, Yagi Ok, Izawa-Ishizawa Y, Niimura T, Abe S, Goda M, Miyamura M, Ishizawa Ok. Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced irritation in murine microglial cells. Entrance Pharmacol. 2024;15:1302055. https://doi.org/10.3389/fphar.2024.1302055.
Zhang S, Xia J, Zhu Y, Dong M, Wang J. Establishing Salvia miltiorrhiza-derived exosome-like nanoparticles and elucidating their function in Angiogenesis. Molecules. 2024;29(7). https://doi.org/10.3390/molecules29071599.
Li S, Zhang R, Wang A, Li Y, Zhang M, Kim J, Zhu Y, Wang Q, Zhang Y, Wei Y, Wang J. Panax notoginseng: derived exosome-like nanoparticles attenuate ischemia reperfusion harm by way of altering microglia polarization. J Nanobiotechnol. 2023;21(1):416. https://doi.org/10.1186/s12951-023-02161-1.
Bazzo GC, Pezzini BR, Stulzer HK. Eutectic mixtures as an method to reinforce solubility, dissolution charge and oral bioavailability of poorly water-soluble medication. Int J Pharm. 2020;588:119741. https://doi.org/10.1016/j.ijpharm.2020.119741.
Couillaud BM, Espeau P, Mignet N, Corvis Y. Cutting-edge of Pharmaceutical Strong types: from Crystal Property Points to nanocrystals Formulation. ChemMedChem. 2019;14(1):8–23. https://doi.org/10.1002/cmdc.201800612.
Guan D, Xuan B, Wang C, Lengthy R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Enhancing the Physicochemical and Biopharmaceutical properties of energetic Pharmaceutical components Derived from Conventional Chinese language Drugs by means of Cocrystal Engineering. Pharmaceutics. 2021;13(12). https://doi.org/10.3390/pharmaceutics13122160.
Guo M, Solar X, Chen J, Cai T. Pharmaceutical cocrystals: a overview of preparations, physicochemical properties and functions. Acta Pharm Sin B. 2021;11(8):2537–64. https://doi.org/10.1016/j.apsb.2021.03.030.
Kendall T, Stratford S, Patterson AR, Lunt RA, Cruickshank D, Bonnaud T, Scott CD. An industrial perspective on co-crystals: screening, identification and improvement of the much less utilised stable kind in drug discovery and improvement. Prog Med Chem. 2021;60:345–442. https://doi.org/10.1016/bs.pmch.2021.05.001.
Malwade CR, Qu H. Course of Analytical Expertise for crystallization of energetic Pharmaceutical components. Curr Pharm Des. 2018;24(21):2456–72. https://doi.org/10.2174/1381612824666180629111632.
Manchanda D, Kumar A, Nanda A. Latest developments in Pharmaceutical cocrystals, Preparation strategies, and their functions. Curr Pharm Des. 2021;27(44):4477–95. https://doi.org/10.2174/1381612827666210415104411.
Nugrahani I, Jessica MA. Amino acids because the potential Co-former for Co-crystal Growth: a overview. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113279.
Pardhi VP, Verma T, Flora SJS, Chandasana H, Shukla R, Nanocrystals. An outline of fabrication, characterization and therapeutic functions in drug supply. Curr Pharm Des. 2018;24(43):5129–46. https://doi.org/10.2174/1381612825666190215121148.
Pi J, Wang S, Li W, Kebebe D, Zhang Y, Zhang B, Qi D, Guo P, Li N, Liu Z. A nano-cocrystal technique to enhance the dissolution charge and oral bioavailability of baicalein. Asian J Pharm Sci. 2019;14(2):154–64. https://doi.org/10.1016/j.ajps.2018.04.009.
Shete G, Pawar YB, Thanki Ok, Jain S, Bansal AK. Oral bioavailability and pharmacodynamic exercise of hesperetin nanocrystals generated utilizing a novel bottom-up expertise. Mol Pharm. 2015;12(4):1158–70. https://doi.org/10.1021/mp5008647.
Shi-Ying J, Jin H, Shi-Xiao J, Qing-Yuan L, Jin-Xia B, Chen HG, Rui-Sheng L, Wei W, Hai-Lengthy Y. Characterization and analysis in vivo of baicalin-nanocrystals ready by an ultrasonic-homogenization-fluid mattress drying methodology. Chin J Nat Med. 2014;12(1):71–80. https://doi.org/10.1016/s1875-5364(14)60012-1.
Tiwari S, Kumar V, Randhawa S, Verma SK. Preparation and characterization of extracellular vesicles. Am J Reprod Immunol. 2021;85(2):e13367. https://doi.org/10.1111/aji.13367.
Xiong S, Liu W, Zhou Y, Mo Y, Liu Y, Chen X, Pan H, Yuan D, Wang Q, Chen T. Enhancement of oral bioavailability and anti-parkinsonian efficacy of resveratrol by means of a nanocrystal formulation. Asian J Pharm Sci. 2020;15(4):518–28. https://doi.org/10.1016/j.ajps.2019.04.003.
Shuang Zhao SZ, Mu X. Analysis progress of nanomedicine. Tianjin Pharm. 2020;32(02):57–61.
Liu CZ, Chang JH, Zhang L, Xue HF, Liu XG, Liu P, Fu Q. Preparation and analysis of Diosgenin nanocrystals to enhance oral bioavailability. AAPS PharmSciTech. 2017;18(6):2067–76. https://doi.org/10.1208/s12249-016-0684-y.
Zhang Ok, Chen C, Huang Q, Li C, Fu X. Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant exercise and adsorption capability. Int J Biol Macromol. 2022;208:196–207. https://doi.org/10.1016/j.ijbiomac.2022.03.082.
Dai MM, Zhang YY, Wang SH, Sheng HG. Analysis progress in nanocrystal drug preparation expertise. China Powder Sci Technol. 2019;25(05):56–62. https://doi.org/10.13732/j.issn.1008-5548.2019.05.010.
Liu J, Xu YY, Li M, Qian H. Analysis progress of nanomedicine. Pharm Clin Res. 2020;28(01):51–5. https://doi.org/10.13664/j.cnki.pcr.2020.01.014.
Li Y, Wang Y, Yue PF, Hu PY, Wu ZF, Yang M, Yuan HL. A novel high-pressure precipitation tandem homogenization expertise for drug nanocrystals manufacturing – a case research with ursodeoxycholic acid. Pharm Dev Technol. 2014;19(6):662–70. https://doi.org/10.3109/10837450.2013.819015.
Chadha Ok, Karan M, Chadha R, Bhalla Y, Vasisht Ok. Is failure of Cocrystallization truly a failure? Eutectic formation in Cocrystal Screening of Hesperetin. J Pharm Sci. 2017;106(8):2026–36. https://doi.org/10.1016/j.xphs.2017.04.038.
Desai PP, Patravale VB. Curcumin Cocrystal Micelles-Multifunctional nanocomposites for Administration of neurodegenerative illnesses. J Pharm Sci. 2018;107(4):1143–56. https://doi.org/10.1016/j.xphs.2017.11.014.
Yang D, Wang H, Liu Q, Yuan P, Chen T, Zhang L, Yang S, Zhou Z, Lu Y, Du G. Structural panorama on a collection of rhein: Berberine cocrystal salt solvates: the formation, dissolution elucidation from experimental and theoretical investigations. Chin Chem Lett. 2022;33(6):3207–11. https://doi.org/10.1016/j.cclet.2021.10.012.
Li W, Pi J, Zhang Y, Ma X, Zhang B, Wang S, Qi D, Li N, Guo P, Liu Z. A technique to enhance the oral availability of baicalein: the baicalein-theophylline cocrystal. Fitoterapia. 2018;129:85–93. https://doi.org/10.1016/j.fitote.2018.06.018.
Liu L, Li Y, Zhang M, Zhang Y, Lou B. A drug-drug Cocrystal of Dihydromyricetin and Pentoxifylline. J Pharm Sci. 2022;111(1):82–7. https://doi.org/10.1016/j.xphs.2021.06.021.
Liu Y, Yang F, Zhao X, Wang S, Yang Q, Zhang X. Crystal construction, solubility, and pharmacokinetic research on a Hesperetin Cocrystal with Piperine as Coformer. Pharmaceutics. 2022;14(1). https://doi.org/10.3390/pharmaceutics14010094.
Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, Zhang Y, Ma A, Li L, Zhou Z. Luteolin cocrystals: characterization, analysis of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol. 2019;50. https://doi.org/10.1016/j.jddst.2019.02.004. (248 – 54.
Mannava MKC, Suresh Ok, Kumar Bommaka M, Bhavani Konga D, Nangia A. Curcumin-Artemisinin Coamorphous Strong: Xenograft Mannequin Preclinical Examine. Pharmaceutics. 2018;10(1). https://doi.org/10.3390/pharmaceutics10010007.
Mctague H, Rasmuson ÅC. Nucleation of the Theophylline:salicylic acid 1:1 Cocrystal. Cryst Progress Des. 2021;21(5):2711–19. https://doi.org/10.1021/acs.cgd.0c01594.
Mohapatra TK, Moharana AK, Swain RP, Subudhi BB. Coamorphisation of acetyl salicylic acid and curcumin for enhancing dissolution, anti-inflammatory impact and minimizing gastro toxicity. J Drug Deliv Sci Technol. 2021;61:102119. https://doi.org/10.1016/j.jddst.2020.102119.
Paulazzi AR, Alves BO, Zilli GaL, Dos Santos AE, Petry F, Soares KD, Danielli LJ, Pedroso J, Apel MA, Aguiar GPS, Siebel AM, Oliveira JV, Müller LG. Curcumin and n-acetylcysteine cocrystal produced with supercritical solvent: characterization, solubility, and preclinical analysis of antinociceptive and anti inflammatory actions. Inflammopharmacology. 2022;30(1):327–41. https://doi.org/10.1007/s10787-021-00917-5.
Rathi N, Paradkar A, Gaikar VG. Polymorphs of Curcumin and its Cocrystals with Cinnamic Acid. J Pharm Sci. 2019;108(8):2505–16. https://doi.org/10.1016/j.xphs.2019.03.014.
Sathisaran I, Devidas Bhatia D, Vishvanath Dalvi S. New curcumin-trimesic acid cocrystal and anti-invasion exercise of curcumin multicomponent solids towards 3D tumor fashions. Int J Pharm. 2020;587:119667. https://doi.org/10.1016/j.ijpharm.2020.119667.
Suresh Ok, Mannava MKC, Nangia A. A novel curcumin–artemisinin coamorphous stable: bodily properties and pharmacokinetic profile. RSC Adv. 2014;4(102):58357–61. https://doi.org/10.1039/C4RA11935E.
Tanaka R, Hattori Y, Otsuka M, Ashizawa Ok. Utility of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder expertise. Drug Dev Ind Pharm. 2020;46(2):179–87. https://doi.org/10.1080/03639045.2020.1716367.
Zhang Y-N, Yin H-M, Zhang Y, Zhang D-J, Su X, Kuang H-X. Preparation of a 1:1 cocrystal of genistein with 4,4′-bipyridine. J Cryst Progress. 2017;458:103–09. https://doi.org/10.1016/j.jcrysgro.2016.10.084.
Zang ZY, Zhang YZ, Zhao YH, Tan XR, Wei JC, Xu AQ, Duan HF, Zhang HY, Wang PL, Huang XM, Lei HM. Analysis progress on carrier-free and carrier-supported supramoleculai nanosystems of conventional Chinese language medication anti-tumor star molecules. Acta Pharm Sinica. 2024;59(04):908–17. https://doi.org/10.16438/j.0513-4870.2023-1169.
Hou Y, Zou L, Li Q, Chen M, Ruan H, Solar Z, Xu X, Yang J, Ma G. Supramolecular assemblies based mostly on pure small molecules: Union could be efficient. Mater At this time Bio. 2022;15:100327. https://doi.org/10.1016/j.mtbio.2022.100327.
Liang Ok, Chung JE, Gao SJ, Yongvongsoontorn N, Kurisawa M. Extremely augmented Drug Loading and Stability of Micellar Nanocomplexes Composed of Doxorubicin and Poly(ethylene glycol)-Inexperienced Tea Catechin Conjugate for Most cancers Remedy. Adv Mater. 2018;30(14):e1706963. https://doi.org/10.1002/adma.201706963.
Wang J, Qiao W, Li X, Zhao H, Zhang H, Dong A, Yang X. A directed co-assembly of natural small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy. J Mater Chem B. 2021;9(4):1040–48. https://doi.org/10.1039/d0tb02071k.
Zhi Ok, Wang J, Zhao H, Yang X. Self-assembled small molecule pure product gel for drug supply: a breakthrough in new utility of small molecule pure merchandise. Acta Pharm Sin B. 2020;10(5):913–27. https://doi.org/10.1016/j.apsb.2019.09.009.
Yu YH, Li CZ, Solar TT, Chen DM, Xie SY. Utility of nanotechnology within the supply system and evaluation oftraditional Chinese language medication. Anim Husb Veterinary Med. 2024;56(04):125–31.
Xingxing Feng QX, Yang C, Kong L, Zhang Z. Service-free nanoparticles based mostly on self-assembly of energetic ingredientsfrom Chinese language medication. Acta Pharm Sinica. 2021;56(12):3203–11. https://doi.org/10.16438/j.0513-4870.2021-0748.
Wang C, Fu L, Hu Z, Zhong Y. A mini-review on peptide-based self-assemblies and their organic functions. Nanotechnology. 2021;33(6). https://doi.org/10.1088/1361-6528/ac2fe3.
Özdemir Z, Šaman D, Bertula Ok, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Nonappa, Wimmer Z. Fast Self-Therapeutic and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine conjugates. Langmuir. 2021;37(8):2693–706. https://doi.org/10.1021/acs.langmuir.0c03335.
Zhang J, Liu S, Li H, Tian X, Li X. Tryptophan-based self-assembling peptides with bacterial flocculation and Antimicrobial properties. Langmuir. 2020;36(38):11316–23. https://doi.org/10.1021/acs.langmuir.0c01957.
Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S. Chirality results on peptide self-assembly unraveled from molecules to supplies. Chem. 2018;4(8):1862–76. https://doi.org/10.1016/j.chempr.2018.05.016.
Dai Y, Zhao X, Su X, Li G, Zhang A. Supramolecular meeting of C3 peptidic molecules into helical polymers. Macromol Fast Commun. 2014;35(15):1326–31. https://doi.org/10.1002/marc.201400158.
Brown N, Lei J, Zhan C, Shimon LJW, Adler-Abramovich L, Wei G, Gazit E. Structural polymorphism in a self-assembled tri-aromatic peptide system. ACS Nano. 2018;12(4):3253–62. https://doi.org/10.1021/acsnano.7b07723.
Qin M, Li Y, Zhang Y, Xing C, Zhao C, Dou X, Zhang Z, Feng C. Solvent-controlled topological evolution from Nanospheres to Superhelices. Small. 2020;16(47):e2004756. https://doi.org/10.1002/smll.202004756.
Shu W, Liu Z, Xie Y, Shi X, Qi S, Xu M, He X. Regulating the morphology and measurement of homopolypeptide self-assemblies by way of selective solvents. Mushy Matter. 2021;17(30):7118–23. https://doi.org/10.1039/d1sm00679g.
Xu L, Zhang M, Zhu X, Xue C, Wang HX, Liu M. Solvent-modulated chiral Self-Meeting: selective formation of Helical nanotubes, nanotwists, and vitality switch. ACS Appl Mater Interfaces. 2022;14(1):1765–73. https://doi.org/10.1021/acsami.1c20969.
Zhang G, Zhang L, Rao H, Wang Y, Li Q, Qi W, Yang X, Su R, He Z. Position of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-ph-sensitive hydrogel. J Colloid Interface Sci. 2020;577. https://doi.org/10.1016/j.jcis.2020.05.087. (388 – 96.
Zheng J, Fan R, Wu H, Yao H, Yan Y, Liu J, Ran L, Solar Z, Yi L, Dang L, Gan P, Zheng P, Yang T, Zhang Y, Tang T, Wang Y. Directed self-assembly of natural small molecules into sustained launch hydrogels for treating neural irritation. Nat Commun. 2019;10(1):1604. https://doi.org/10.1038/s41467-019-09601-3.
Guo Z, Lin L, Hao Ok, Wang D, Liu F, Solar P, Yu H, Tang Z, Chen M, Tian H, Chen X. Helix self-assembly conduct of amino acid-modified Camptothecin Prodrugs and its Antitumor Impact. ACS Appl Mater Interfaces. 2020;12(6):7466–76. https://doi.org/10.1021/acsami.9b21311.
Huang X, Wang P, Li T, Tian X, Guo W, Xu B, Huang G, Cai D, Zhou F, Zhang H, Lei H. Self-assemblies based mostly on Conventional Drugs Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus. ACS Appl Mater Interfaces. 2020;12(1):227–37. https://doi.org/10.1021/acsami.9b17722.
Li L, Cui H, Li T, Qi J, Chen H, Gao F, Tian X, Mu Y, He R, Lv S, Chu F, Xu B, Wang P, Lei H, Xu H, Wang C. Synergistic impact of Berberine-based Chinese language Drugs Assembled nanostructures on Diarrhea-Predominant irritable bowel syndrome in vivo. Entrance Pharmacol. 2020;11:1210. https://doi.org/10.3389/fphar.2020.01210.
Li T, Wang P, Guo W, Huang X, Tian X, Wu G, Xu B, Li F, Yan C, Liang XJ, Lei H. Pure berberine-based Chinese language Herb Drugs assembled nanostructures with modified antibacterial utility. ACS Nano. 2019;13(6):6770–81. https://doi.org/10.1021/acsnano.9b01346.
Shen Y, Zou Y, Chen X, Li P, Rao Y, Yang X, Solar Y, Hu H. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids towards Helicobacter pylori. J Management Launch. 2020. https://doi.org/10.1016/j.jconrel.2020.09.025. 328(575 – 86.
Tian X, Wang P, Li T, Huang X, Guo W, Yang Y, Yan M, Zhang H, Cai D, Jia X, Li F, Xu B, Ma T, Yan C, Lei H. Self-assembled pure phytochemicals for synergistically antibacterial utility from the enlightenment of conventional Chinese language medication mixture. Acta Pharm Sin B. 2020;10(9):1784–95. https://doi.org/10.1016/j.apsb.2019.12.014.
Wang P, Guo W, Huang G, Zhen J, Li Y, Li T, Zhao L, Yuan Ok, Tian X, Huang X, Feng Y, Lei H, Xu A. Berberine-based heterogeneous Linear supramolecules neutralized the Acute Nephrotoxicity of Aristolochic Acid by the self-assembly technique. ACS Appl Mater Interfaces. 2021;13(28):32729–42. https://doi.org/10.1021/acsami.1c06968.
Jianjun Cheng XY. Self-assembly efficiency of triterpene pure small molecules and theirapplication in synergistic antitumor chemotherapy. Acta Pharm Sinica. 2021;56(08):2102–11. https://doi.org/10.16438/j.0513-4870.2021-0617.
Bag BG, Majumdar R. Self-assembly of renewable Nano-sized triterpenoids. Chem Rec. 2017;17(9):841–73. https://doi.org/10.1002/tcr.201600123.
Cheng J, Fu S, Qin Z, Han Y, Yang X. Self-assembled pure small molecule diterpene acids with favorable anticancer exercise and biosafety for synergistically enhanced antitumor chemotherapy. J Mater Chem B. 2021;9(11):2674–87. https://doi.org/10.1039/d0tb02995e.
Fan L, Zhang B, Xu A, Shen Z, Guo Y, Zhao R, Yao H, Shao JW. Service-Free, pure Nanodrug fashioned by the self-assembly of an Anticancer Drug for Most cancers Immune Remedy. Mol Pharm. 2018;15(6):2466–78. https://doi.org/10.1021/acs.molpharmaceut.8b00444.
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a conventional Chinese language medication self-assembly nanostrategy and its utility in most cancers: a promising remedy. Chin Med. 2023;18(1):66. https://doi.org/10.1186/s13020-023-00764-2.
Wang J, Qiao W, Zhao H, Yang X. Paclitaxel and betulonic acid synergistically improve antitumor efficacy by forming co-assembled nanoparticles. Biochem Pharmacol. 2020;182:114232. https://doi.org/10.1016/j.bcp.2020.114232.
Wang J, Zhao H, Qiao W, Cheng J, Han Y, Yang X. Nanomedicine-Cum-Service by Co-assembly of Pure Small merchandise for synergistic enhanced antitumor with tissues protecting actions. ACS Appl Mater Interfaces. 2020;12(38):42537–50. https://doi.org/10.1021/acsami.0c12641.
Zhang B, Jiang J, Wu P, Zou J, Le J, Lin J, Li C, Luo B, Zhang Y, Huang R, Shao J. A sensible dual-drug nanosystem based mostly on co-assembly of plant and food-derived pure merchandise for synergistic HCC immunotherapy. Acta Pharm Sin B. 2021;11(1):246–57. https://doi.org/10.1016/j.apsb.2020.07.026.
Wang J, Zhao H, Zhi Ok, Yang X. Exploration of the pure energetic small-molecule drug-loading course of and extremely environment friendly synergistic Antitumor Efficacy. ACS Appl Mater Interfaces. 2020;12(6):6827–39. https://doi.org/10.1021/acsami.9b18443.
Li X, Wu Q, Xie Y, Ding Y, Du WW, Sdiri M, Yang BB. Ergosterol purified from medicinal mushroom amauroderma impolite inhibits most cancers development in vitro and in vivo by up-regulating a number of tumor suppressors. Oncotarget. 2015;6(19):17832–46. https://doi.org/10.18632/oncotarget.4026.
Zhi Ok, Zhao H, Yang X, Zhang H, Wang J, Wang J, Regenstein JM. Pure product gelators and a normal methodology for acquiring them from organisms. Nanoscale. 2018;10(8):3639–43. https://doi.org/10.1039/c7nr08368h.
Paramonov SE, Jun HW, Hartgerink JD. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc. 2006;128(22):7291–8. https://doi.org/10.1021/ja060573x.
Van Den Heuvel M, Prenen AM, Gielen JC, Christianen PC, Broer DJ, Löwik DW, Van Hest JC. Patterns of diacetylene-containing peptide amphiphiles utilizing polarization holography. J Am Chem Soc. 2009;131(41):15014–7. https://doi.org/10.1021/ja9054756.
Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe Ok, Steinmann J, Van Der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel Ok, Demarco SJ, Robinson JA. Peptidomimetic antibiotics goal outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010;327(5968):1010–3. https://doi.org/10.1126/science.1182749.
Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Conventional Chinese language medication polysaccharide in nano-drug supply techniques: present progress and future views. Biomed Pharmacother. 2024;173:116330. https://doi.org/10.1016/j.biopha.2024.116330.
Wang Y, Chen J, Han Q, Luo Q, Zhang H, Wang Y. Building of doxorubicin-conjugated lentinan nanoparticles for enhancing the cytotoxocity results towards breast most cancers cells. Colloids Surf a. 2019;579:123657. https://doi.org/10.1016/j.colsurfa.2019.123657.
Chen C, Zhou P, Huang C, Zeng R, Yang L, Han Z, Qu Y, Zhang C. Photothermal-promoted multi-functional twin community polysaccharide hydrogel adhesive for contaminated and vulnerable wound therapeutic. Carbohydr Polym. 2021;273:118557. https://doi.org/10.1016/j.carbpol.2021.118557.
Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Area-Move Fractionation in Molecular Biology and Biotechnology. Molecules. 2023;28(17). https://doi.org/10.3390/molecules28176201.
Liu Y, Wu S, Koo Y, Yang A, Dai Y, Khant H, Osman SR, Chowdhury M, Wei H, Li Y, Court docket Ok, Hwang E, Wen Y, Dasari SK, Nguyen M, Tang EC, Chehab EW, De Val N, Braam J, Sood AK. Characterization of and isolation strategies for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine. 2020;29:102271. https://doi.org/10.1016/j.nano.2020.102271.
Xu WM, Li A, Chen JJ, Solar EJ. Analysis Growth on exosome separation expertise. J Membr Biol. 2023;256(1):25–34. https://doi.org/10.1007/s00232-022-00260-y.
Zhu L, Solar HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ. Isolation and characterization of exosomes for most cancers analysis. J Hematol Oncol. 2020;13(1):152. https://doi.org/10.1186/s13045-020-00987-y.
Chen X, Liu B, Li X, An TT, Zhou Y, Li G, Wu-Good J, Alvarez S, Naldrett MJ, Eudy J, Kubik G, Wilson RA, Kachman SD, Cui J, Yu J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles. 2021;10(4):e12069. https://doi.org/10.1002/jev2.12069.
Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H. Vegetation ship small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360(6393):1126–29. https://doi.org/10.1126/science.aar4142.
Garaeva L, Kamyshinsky R, Kil Y, Varfolomeeva E, Verlov N, Komarova E, Garmay Y, Landa S, Burdakov V, Myasnikov A, Vinnikov IA, Margulis B, Guzhova I, Kagansky A, Konevega AL, Shtam T. Supply of useful exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11(1):6489. https://doi.org/10.1038/s41598-021-85833-y.
Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG. Interspecies communication between plant and mouse intestine host cells by means of edible plant derived exosome-like nanoparticles. Mol Nutr Meals Res. 2014;58(7):1561–73. https://doi.org/10.1002/mnfr.201300729.
Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang HG. Focused drug supply to intestinal macrophages by bioactive nanovesicles launched from grapefruit. Mol Ther. 2014;22(3):522–34. https://doi.org/10.1038/mt.2013.190.
Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic actions. Asian J Pharm Sci. 2022;17(1):53–69. https://doi.org/10.1016/j.ajps.2021.05.006.
Barzin M, Bagheri AM, Ohadi M, Abhaji AM, Salarpour S, Dehghannoudeh G. Utility of plant-derived exosome-like nanoparticles in drug supply. Pharm Dev Technol. 2023;28(5):383–402. https://doi.org/10.1080/10837450.2023.2202242.
Liu L, Li Y, Zhang M, Zhang Y, Lou B. A drug–drug Cocrystal of Dihydromyricetin and Pentoxifylline. J Pharm Sci. 2022;111(1):82–7. https://doi.org/10.1016/j.xphs.2021.06.021.
Feng Q, Zhang X, Zhao X, Liu J, Wang Q, Yao Y, Xiao H, Zhu Y, Zhang W, Wang L. Intranasal Supply of Pure Nanodrug Loaded Liposomes for Alzheimer’s Illness Therapy by Effectively Regulating Microglial Polarization. Small. 2024;e2405781. https://doi.org/10.1002/smll.202405781.
Chen J, Wu J, Mu J, Li L, Hu J, Lin H, Cao J, Gao J. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal wire restore by regulating oxidative stress microenvironment. Nanomedicine. 2023;47:102625. https://doi.org/10.1016/j.nano.2022.102625.
Yang D, Cao J, Jiao L, Yang S, Zhang L, Lu Y, Du G. Solubility and Stability benefits of a New Cocrystal of Berberine Chloride with Fumaric Acid. ACS Omega. 2020;5(14):8283–92. https://doi.org/10.1021/acsomega.0c00692.
Brittain HG. Vibrational spectroscopic research of cocrystals and salts. 4. Cocrystal merchandise fashioned by benzylamine, α-methylbenzylamine, and their chloride salts. Cryst Progress Des. 2011;11:2500.
Han N, Liu Y, Liu X, Li P, Lu Y, Du S, Wu Ok. The Managed Preparation of a carrier-free Nanoparticulate Formulation composed of Curcumin and Piperine utilizing high-gravity expertise. Pharmaceutics. 2024;16(6):808.
Hu Y, Miao Y, Zhang Y, Wang X, Liu X, Zhang W, Deng D. Co-assembled binary Polyphenol Pure merchandise for the Prevention and Therapy of Radiation-Induced pores and skin Harm. ACS Nano. 2024;18(40):27557–69. https://doi.org/10.1021/acsnano.4c08508.
Xu C, Zhai Z, Ying H, Lu L, Zhang J, Zeng Y. Curcumin primed ADMSCs derived small extracellular vesicle exert enhanced protecting results on osteoarthritis by inhibiting oxidative stress and chondrocyte apoptosis. J Nanobiotechnol. 2022;20(1):123. https://doi.org/10.1186/s12951-022-01339-3.
Jiang D, Li Z, Liu H, Liu H, Xia X, Xiang X. Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin supply: molecular docking, stability and bioactivity. Meals Chem. 2024;438:137963. https://doi.org/10.1016/j.foodchem.2023.137963.
Zheng Q, Li L, Liu M, Huang B, Zhang N, Mehmood R, Nan Ok, Li Q, Chen W, Lin S. In situ scavenging of mitochondrial ROS by anti-oxidative MitoQ/hyaluronic acid nanoparticles for environment-induced dry eye illness remedy. Chem Eng J. 2020;398:125621. https://doi.org/10.1016/j.cej.2020.125621.
Wang Y, Kohane DS. Exterior triggering and triggered focusing on methods for drug supply. Nat Rev Mater. 2017;2:17020.
Hao L, Wang X, Zhang D, Xu Q, Track S, Wang F, Li C, Guo H, Liu Y, Zheng D, Zhang Q. Research on the preparation, characterization and pharmacokinetics of Amoitone B nanocrystals. Int J Pharm. 2012;433(1–2). https://doi.org/10.1016/j.ijpharm.2012.05.002. 157 – 64.
Han M, Liu X, Guo Y, Wang Y, Wang X. Preparation, characterization, biodistribution and antitumor efficacy of hydroxycamptothecin nanosuspensions. Int J Pharm. 2013;455(1–2):85–92. https://doi.org/10.1016/j.ijpharm.2013.07.056.
Yang Tian YP, Zhang Z, Zhang H, Gao X. Analysis progress on preparation expertise of nanocrystal medication. Acta Pharm Sinica. 2021;56(07):1902–10. https://doi.org/10.16438/j.0513-4870.2021-0248.
Liu Y, Ma Y, Xu J, Chen Y, Xie J, Yue P, Zheng Q, Yang M. Apolipoproteins adsorption and brain-targeting analysis of baicalin nanocrystals modified by mixture of Tween80 and TPGS. Colloids Surf B Biointerfaces. 2017. https://doi.org/10.1016/j.colsurfb.2017.10.009. 160(619 – 27.
Tao Han YC, Ding Z. Analysis progress of pure polysaccharides and their nano-sized drugdelivery techniques in regulating tumor microenvironment. Acta Pharm Sinica. 2021;56(12):3212–23. https://doi.org/10.16438/j.0513-4870.2021-0396.
Dong L, Xia S, Luo Y, Diao H, Zhang J, Chen J, Zhang J. Concentrating on supply oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata efficiently inhibited the expression of TNF-alpha. J Management Launch. 2009;134(3):214–20. https://doi.org/10.1016/j.jconrel.2008.11.013.
Zhang Y, Cui Z, Mei H, Xu J, Zhou T, Cheng F, Wang Ok. Angelica Sinensis polysaccharide nanoparticles as a focused drug supply system for enhanced remedy of liver most cancers. Carbohydr Polym. 2019;219. https://doi.org/10.1016/j.carbpol.2019.04.041. (143 – 54.
Ishida T, Kawada Ok, Jobu Ok, Morisawa S, Kawazoe T, Nishimura S, Akagaki Ok, Yoshioka S, Miyamura M. Exosome-like nanoparticles derived from Allium tuberosum forestall neuroinflammation in microglia-like cells. J Pharm Pharmacol. 2023;75(10):1322–31. https://doi.org/10.1093/jpp/rgad062.
Kalarikkal SP, Sundaram GM. Edible plant-derived exosomal microRNAs: exploiting a cross-kingdom regulatory mechanism for focusing on SARS-CoV-2. Toxicol Appl Pharmacol. 2021;414:115425. https://doi.org/10.1016/j.taap.2021.115425.
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram Ok, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Service provider ML, Zhang X, Mcclain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung irritation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40. https://doi.org/10.1016/j.ymthe.2021.05.005.
Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, Zheng L. Characterization of the MicroRNA Profile of Ginger Exosome-like nanoparticles and their anti-inflammatory results in Intestinal Caco-2 cells. J Agric Meals Chem. 2022;70(15):4725–34. https://doi.org/10.1021/acs.jafc.1c07306.
Du J, Liang Z, Xu J, Zhao Y, Li X, Zhang Y, Zhao D, Chen R, Liu Y, Joshi T, Chang J, Wang Z, Zhang Y, Zhu J, Liu Q, Xu D, Jiang C. Plant-derived phosphocholine facilitates mobile uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci China Life Sci. 2019;62(3):309–20. https://doi.org/10.1007/s11427-017-9026-7.
Huang R, Jia B, Su D, Li M, Xu Z, He C, Huang Y, Fan H, Chen H, Cheng F. Plant exosomes fused with engineered mesenchymal stem cell-derived nanovesicles for synergistic remedy of autoimmune pores and skin issues. J Extracell Vesicles. 2023;12(10):e12361. https://doi.org/10.1002/jev2.12361.
Park J, Solar B, Yeo Y. Albumin-coated nanocrystals for carrier-free supply of paclitaxel. J Management Launch. 2017;263:90–101. https://doi.org/10.1016/j.jconrel.2016.12.040.
Liang WD, Luo C, Zhang HL, Zhang CT. Characterization and efficiency of naringenin-isoniazid cocrysta. J Wuhan Univ Sci Technol. 2018;41(03):190–94.
Zhang B, Li L, Huang M, Zhao E, Li Y, Solar J, He Z, Fu C, Liu G, Solar B. Probing the influence of Floor Functionalization Module on the efficiency of Mitoxantrone Prodrug nanoassemblies: enhancing the effectiveness and security. Nano Lett. 2024;24(12):3759–67. https://doi.org/10.1021/acs.nanolett.4c00300.
Pang G, Chen C, Liu Y, Jiang T, Yu H, Wu Y, Wang Y, Wang FJ, Liu Z, Zhang LW. Bioactive polysaccharide nanoparticles enhance Radiation-Induced Abscopal Impact by means of Manipulation of dendritic cells. ACS Appl Mater Interfaces. 2019;11(45):42661–70. https://doi.org/10.1021/acsami.9b16814.
Zhang L, He F, Gao L, Cong M, Solar J, Xu J, Wang Y, Hu Y, Asghar S, Hu L, Qiao H. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis can inhibit the proliferation of Hepatocellular Carcinoma Cells with Higher Security Profile. Int J Nanomed. 2021;16:1575–86. https://doi.org/10.2147/ijn.S293067.
Liu J, Xiang J, Jin C, Ye L, Wang L, Gao Y, Lv N, Zhang J, You F, Qiao H, Shi L. Medicinal plant-derived mtDNA by way of nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression. J Nanobiotechnol. 2023;21(1):78. https://doi.org/10.1186/s12951-023-01835-0.
Zhao Q, Feng J, Liu F, Liang Q, Xie M, Dong J, Zou Y, Ye J, Liu G, Cao Y, Guo Z, Qiao H, Zheng L, Zhao Ok. Rhizoma Drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells by way of focusing on ERα signaling. Acta Pharm Sin B. 2024;14(5):2210–27. https://doi.org/10.1016/j.apsb.2024.02.005.
Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, Ma Q, Chen Y, Xu F, Shi X, Liu Z, Wang C. Oral administration of garlic-derived nanoparticles improves most cancers immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Nat Nanotechnol. 2024;19(10):1569–78. https://doi.org/10.1038/s41565-024-01722-1.
Solar Q, Luan L, Arif M, Li J, Dong QJ, Gao Y, Chi Z, Liu CG. Redox-sensitive nanoparticles based mostly on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide supply in inflammatory bowel illnesses. Carbohydr Polym. 2018. https://doi.org/10.1016/j.carbpol.2017.12.021. 189(352 – 59.
Luo W, Yang Z, Zheng J, Cai Z, Li X, Liu J, Guo X, Luo M, Fan X, Cheng M, Tang T, Liu J, Wang Y. Small molecule hydrogels loading small molecule medication from Chinese language Drugs for the improved remedy of traumatic mind Harm. ACS Nano. 2024;18(42):28894–909. https://doi.org/10.1021/acsnano.4c09097.
Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible ginger-derived Nano-lipids loaded with doxorubicin as a Novel Drug-delivery Strategy for Colon most cancers remedy. Mol Ther. 2016;24(10):1783–96. https://doi.org/10.1038/mt.2016.159.
Jarvis M, Krishnan V, Mitragotri S, Nanocrystals. A perspective on translational analysis and medical research. Bioeng Transl Med. 2019;4(1):5–16. https://doi.org/10.1002/btm2.10122.
Deng YG, Lyu XL, Zhu YL, Zhang SC, Liu SJ, Zhao BX, Li GF. [Preparation of evodiamine-glycyrrhizic acid micelles with glycyrrhizic acid as carrier and their anti-hepatic fibrosis activity]. Zhongguo Zhong Yao Za Zhi. 2020;45(13):3136–43. https://doi.org/10.19540/j.cnki.cjcmm.20200424.304.
Ejazi SA, Louisthelmy R, Maisel Ok. Mechanisms of Nanoparticle Transport throughout intestinal tissue: an oral supply perspective. ACS Nano. 2023;17(14):13044–61. https://doi.org/10.1021/acsnano.3c02403.
Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The affect of Nanoparticle properties on oral bioavailability of medicine. Int J Nanomed. 2020;15. https://doi.org/10.2147/ijn.S257269. (6295 – 310.
Ge N, Yan GL, Solar H, Yang L, Kong L, Solar Y, Han Y, Zhao QQ, Kang SY, Wang XJ. Model updates of methods for drug discovery based mostly on efficient constituents of conventional Chinese language medication. Acupunct Natural Med. 2023;3(3):158–179.
Zhu ZZ, Liao LY, Qiao HZ. Extracellular vesicle–based mostly drug supply system boosts phytochemicals’ therapeutic impact for neurodegenerative illnesses. Acupunct Natural Med. 2022;2(4):229–39.