-6.5 C
United States of America
Tuesday, February 11, 2025

Drug supply methods with lipid-based nanoparticles for Alzheimer’s illness therapy | Journal of Nanobiotechnology


  • Przedborski S, Vila M, Jackson-Lewis V. Collection introduction: neurodegeneration: what’s it and the place are we? J Clin Investig. 2003;111(1):3–10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Erkkinen MG, Kim M-O, Geschwind MD. Scientific neurology and epidemiology of the key neurodegenerative illnesses. Chilly Spring Harb Perspect Biol. 2018;10(4): a033118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calabrò M, et al. The organic pathways of Alzheimer illness: a assessment. AIMS Neurosci. 2021;8(1):86.

    Article 
    PubMed 

    Google Scholar
     

  • Iwata N, Higuchi M, Saido TC. Metabolism of amyloid-β peptide and Alzheimer’s illness. Pharmacol Ther. 2005;108(2):129–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Skovronsky DM, Lee VM, Trojanowski JQ. Neurodegenerative illnesses: new ideas of pathogenesis and their therapeutic implications. Annu Rev Pathol. 2006;1:151–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lang AE, Lozano AM. Parkinson’s illness. First of two elements. N Engl J Med. 1998;339(15):1044–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen X, Pan W. The therapy methods for neurodegenerative illnesses by integrative drugs. Integr Med Int. 2014;1(4):223–5.

    Article 

    Google Scholar
     

  • Fonseca-Santos B, Gremiao MP, Chorilli M. Nanotechnology-based drug supply methods for the therapy of Alzheimer’s illness. Int J Nanomed. 2015;10:4981–5003.

    Article 
    CAS 

    Google Scholar
     

  • Masters CL, et al. Alzheimer’s illness. Nat Rev Dis Primers. 2015;1:15056.

    Article 
    PubMed 

    Google Scholar
     

  • Huang LK, Chao SP, Hu CJ. Scientific trials of latest medicine for Alzheimer illness. J Biomed Sci. 2020;27(1):18.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • La Porte SL, et al. Structural foundation of C-terminal beta-amyloid peptide binding by the antibody ponezumab for the therapy of Alzheimer’s illness. J Mol Biol. 2012;421(4–5):525–36.

    Article 
    PubMed 

    Google Scholar
     

  • Knopman DS, Jones DT, Greicius MD. Failure to display efficacy of aducanumab: an evaluation of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement. 2021;17(4):696–701.

    Article 
    PubMed 

    Google Scholar
     

  • Lemere CA. Immunotherapy for Alzheimer’s illness: hoops and hurdles. Mol Neurodegener. 2013;8:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beshir SA, et al. Aducanumab remedy to deal with Alzheimer’s illness: a story assessment. Int J Alzheimers Dis. 2022;2022:9343514.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker AJ, McCulloch EA, Until JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963. https://doi.org/10.1038/197452a0.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Liu L. Fashionable strategies for supply of medication throughout the blood–mind barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Keaney J, Campbell M. The dynamic blood–mind barrier. FEBS J. 2015;282(21):4067–79.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Solar Y, et al. Engineered extracellular vesicles as a focused supply platform for precision remedy. Tissue Eng Regener Med. 2023;20(2):157–75.

    Article 
    CAS 

    Google Scholar
     

  • Guo M, et al. Mesenchymal stem cell-derived exosome: a promising various within the remedy of Alzheimer’s illness. Alzheimer’s Res Remedy. 2020;12:1–14.

    Article 

    Google Scholar
     

  • Cano A, et al. Nanomedicine-based applied sciences and novel biomarkers for the prognosis and therapy of Alzheimer’s illness: from present to future challenges. J Nanobiotechnol. 2021;19(1):122.

    Article 

    Google Scholar
     

  • Zhong G, et al. Blood-brain barrier Permeable nanoparticles for Alzheimer’s illness therapy by selective mitophagy of microglia. Biomaterials. 2022;288:121690.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hou Ok, et al. Chiral gold nanoparticles enantioselectively rescue reminiscence deficits in a mouse mannequin of Alzheimer’s illness. Nat Commun. 2020;11(1):4790.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim D, Kwon HJ, Hyeon T. Magnetite/ceria nanoparticle assemblies for extracorporeal cleaning of amyloid-β in Alzheimer’s illness. Adv Mater. 2019;31(19):1807965.

    Article 

    Google Scholar
     

  • Konishi Ok, et al. Speculation of endogenous anticholinergic exercise in Alzheimer’s illness. Neurodegener Dis. 2015;15(3):149–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu PP, et al. Historical past and progress of hypotheses and scientific trials for Alzheimer’s illness. Sign Transduct Goal Ther. 2019;4:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukunaga Ok, Yabuki Y. SAK3-induced neuroprotection is mediated by nicotinic acetylcholine receptors. In: Akaike A, Shimohama S, Misu Y, editors. Nicotinic acetylcholine receptor signaling in neuroprotection. Singapore: Springer Singapore; 2018. p. 159–71. https://doi.org/10.1007/978-981-10-8488-1_9.

    Chapter 

    Google Scholar
     

  • Singh SP, Gupta D. Discovery of potential inhibitor towards human acetylcholinesterase: a molecular docking and molecular dynamics investigation. Comput Biol Chem. 2017;68:224–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tata AM, et al. Cholinergic system dysfunction and neurodegenerative illnesses: trigger or impact? CNS Neurol Disord Drug Targets. 2014;13(7):1294–303.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell tradition. J Neurosci. 1987;7(2):357–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer’s illness. Cell Calcium. 2003;34(4–5):385–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rothman SM. The neurotoxicity of excitatory amino acids is produced by passive chloride inflow. J Neurosci. 1985;5(6):1483–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koh JY, Choi DW. Selective blockade of non-NMDA receptors doesn’t block quickly triggered glutamate-induced neuronal demise. Mind Res. 1991;548(1–2):318–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lipton SA, Nicotera P. Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium. 1998;23(2–3):165–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hardy JA, Higgins GA. Alzheimer’s illness: the amyloid cascade speculation. Science. 1992;256(5054):184–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Haass C, et al. Trafficking and proteolytic processing of APP. Chilly Spring Harb Perspect Med. 2012;2(5):a006270.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szaruga M, et al. Alzheimer’s-causing mutations shift abeta size by destabilizing gamma-secretase-abetan interactions. Cell. 2017;170(3):443–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mucke L, Selkoe DJ. Neurotoxicity of amyloid beta-protein: synaptic and community dysfunction. Chilly Spring Harb Perspect Med. 2012;2(7):a006338.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardy J, Selkoe DJ. The amyloid speculation of Alzheimer’s illness: progress and issues on the street to therapeutics. Science. 2002;297(5580):353–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Montine TJ, et al. Nationwide Institute on Ageing-Alzheimer’s Affiliation pointers for the neuropathologic evaluation of Alzheimer’s illness: a sensible strategy. Acta Neuropathol. 2012;123(1):1–11.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • DaRocha-Souto B, et al. Mind oligomeric beta-amyloid however not whole amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J Neuropathol Exp Neurol. 2011;70(5):360–76.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Van Dam D, et al. Age-dependent cognitive decline within the APP23 mannequin precedes amyloid deposition. Eur J Neurosci. 2003;17(2):388–96.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, et al. A systemic view of Alzheimer illness – insights from amyloid-beta metabolism past the mind. Nat Rev Neurol. 2017;13(10):612–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related modifications. Acta Neuropathol. 1991;82(4):239–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kumar S, et al. Phases and conformations of the Tau repeat area throughout aggregation and its impact on neuronal toxicity. J Biol Chem. 2014;289(29):20318–32.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Santacruz Ok, et al. Tau suppression in a neurodegenerative mouse mannequin improves reminiscence operate. Science. 2005;309(5733):476–81.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lane CA, Hardy J, Schott JM. Alzheimer’s illness. Eur J Neurol. 2018;25(1):59–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Consolation, Cholinesterase inhibition in therapy of Alzheimer’s dementia. Lancet. 1978; 1(8065): 659–60.

  • Rabins PV, Lyketsos CG. Cholinesterase inhibitors and memantine have a task within the therapy of Alzheimer’s illness. Nat Clin Pract Neurol. 2006;2(11):578–9.

    Article 
    PubMed 

    Google Scholar
     

  • Vaz M, Silvestre S. Alzheimer’s illness: latest therapy methods. Eur J Pharmacol. 2020;887:173554.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Birks J, et al. Rivastigmine for Alzheimer’s illness. Cochrane Database Syst Rev. 2009;2:CD001191.


    Google Scholar
     

  • Frampton JE. Rivastigmine transdermal patch 13.3 mg/24 h: a assessment of its use within the administration of delicate to average Alzheimer’s dementia. Medicine Ageing. 2014;31(8):639–49.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Larkin HD. First donepezil transdermal patch authorised for Alzheimer Illness. JAMA. 2022;327(17):1642.

    PubMed 

    Google Scholar
     

  • Atri A. Present and future remedies in Alzheimer’s illness. Semin Neurol. 2019;39(2):227–40.

    Article 
    PubMed 

    Google Scholar
     

  • Tricco AC, et al. Comparative effectiveness and security of cognitive enhancers for treating Alzheimer’s illness: systematic assessment and community metaanalysis. J Am Geriatr Soc. 2018;66(1):170–8.

    Article 
    PubMed 

    Google Scholar
     

  • Fish PV, et al. New approaches for the therapy of Alzheimer’s illness. Bioorg Med Chem Lett. 2019;29(2):125–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Namzaric (memantine hydrochloride extended-release/donepezil hydrochloride) capsules. 2014, US Meals and Drug Administration.

  • Calhoun A, et al. An analysis of memantine ER + donepezil for the therapy of Alzheimer’s illness. Skilled Opin Pharmacother. 2018;19(15):1711–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen R, et al. Remedy results between monotherapy of donepezil versus mixture with memantine for Alzheimer illness: a meta-analysis. PLoS ONE. 2017;12(8):e0183586.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, et al. Memantine, donepezil, or mixture remedy—hat is one of the best remedy for Alzheimer’s Illness? A community meta-analysis. Mind Behav. 2020;10(11):e01831.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folch J, et al. Present analysis therapeutic methods for Alzheimer’s illness therapy. Neural Plast. 2016;2016:8501693.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egan MF, et al. Randomized trial of verubecestat for prodromal ALZHEIMER’S illness. N Engl J Med. 2019;380(15):1408–20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Henley D, et al. Preliminary outcomes of a trial of atabecestat in preclinical Alzheimer’s illness. N Engl J Med. 2019;380(15):1483–5.

    Article 
    PubMed 

    Google Scholar
     

  • Lopez Lopez C, et al. The Alzheimer’s prevention initiative technology program: research design of two randomized managed trials for people in danger for scientific onset of Alzheimer’s illness. Alzheimers Dement (N Y). 2019;5:216–27.

    Article 
    PubMed 

    Google Scholar
     

  • Panza F, et al. BACE inhibitors in scientific growth for the therapy of Alzheimer’s illness. Skilled Rev Neurother. 2018;18(11):847–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wessels AM, et al. Efficacy and security of lanabecestat for therapy of early and delicate Alzheimer illness: The AMARANTH and DAYBREAK-ALZ randomized scientific trials. JAMA Neurol. 2020;77(2):199–209.

    Article 
    PubMed 

    Google Scholar
     

  • Hu X, et al. Bace1 modulates myelination within the central and peripheral nervous system. Nat Neurosci. 2006;9(12):1520–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu X, et al. BACE1 deficiency causes altered neuronal exercise and neurodegeneration. J Neurosci. 2010;30(26):8819–29.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hitt BD, et al. BACE1-/- mice exhibit seizure exercise that doesn’t correlate with sodium channel degree or axonal localization. Mol Neurodegener. 2010;5:31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laird FM, et al. BACE1, a significant determinant of selective vulnerability of the mind to amyloid-beta amyloidogenesis, is crucial for cognitive, emotional, and synaptic features. J Neurosci. 2005;25(50):11693–709.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Willem M, et al. Management of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006;314(5799):664–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chiang Ok, Koo EH. Rising therapeutics for Alzheimer’s illness. Annu Rev Pharmacol Toxicol. 2014;54:381–405.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Coric V, et al. Focusing on prodromal Alzheimer illness with avagacestat: a randomized scientific trial. JAMA Neurol. 2015;72(11):1324–33.

    Article 
    PubMed 

    Google Scholar
     

  • Doody RS, et al. A section 3 trial of semagacestat for therapy of Alzheimer’s illness. N Engl J Med. 2013;369(4):341–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • De Strooper B. Classes from a failed gamma-secretase Alzheimer trial. Cell. 2014;159(4):721–6.

    Article 
    PubMed 

    Google Scholar
     

  • Imbimbo BP, Giardina GA. gamma-secretase inhibitors and modulators for the therapy of Alzheimer’s illness: disappointments and hopes. Curr Prime Med Chem. 2011;11(12):1555–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang G, et al. Structural foundation of Notch recognition by human gamma-secretase. Nature. 2019;565(7738):192–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Eriksen JL, et al. NSAIDs and enantiomers of flurbiprofen goal gamma-secretase and decrease Abeta 42 in vivo. J Clin Make investments. 2003;112(3):440–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xia W. gamma-Secretase and its modulators: twenty years and past. Neurosci Lett. 2019;701:162–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Inexperienced RC, et al. Impact of tarenflurbil on cognitive decline and actions of every day residing in sufferers with delicate Alzheimer illness: a randomized managed trial. JAMA. 2009;302(23):2557–64.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karran E, Hardy J. A critique of the drug discovery and section 3 scientific packages concentrating on the amyloid speculation for Alzheimer illness. Ann Neurol. 2014;76(2):185–205.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Penke B, Szucs M, Bogar F. Oligomerization and conformational change flip monomeric beta-amyloid and tau proteins poisonous: their function in Alzheimer’s pathogenesis. Molecules. 2020. https://doi.org/10.3390/molecules25071659.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauthier S, et al. Impact of tramiprosate in sufferers with mild-to-moderate Alzheimer’s illness: exploratory analyses of the MRI sub-group of the Alphase research. J Nutr Well being Ageing. 2009;13(6):550–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fenili D, et al. Properties of scyllo-inositol as a therapeutic therapy of AD-like pathology. J Mol Med (Berl). 2007;85(6):603–11.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McLaurin J, et al. Cyclohexanehexol inhibitors of Abeta aggregation stop and reverse Alzheimer phenotype in a mouse mannequin. Nat Med. 2006;12(7):801–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salloway S, et al. A section 2 randomized trial of ELND005, scyllo-inositol, in delicate to average Alzheimer illness. Neurology. 2011;77(13):1253–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rafii MS, et al. A randomized, double-blind, placebo-controlled, section II research of oral ELND005 (scyllo-Inositol) in younger adults with Down syndrome with out dementia. J Alzheimers Dis. 2017;58(2):401–11.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abushakra S, et al. Scientific results of tramiprosate in APOE4/4 homozygous sufferers with delicate Alzheimer’s illness recommend illness modification potential. J Prev Alzheimers Dis. 2017;4(3):149–56.

    PubMed 
    CAS 

    Google Scholar
     

  • Hey JA, et al. Scientific pharmacokinetics and security of ALZ-801, a novel prodrug of tramiprosate in growth for the therapy of ALZHEIMER’S illness. Clin Pharmacokinet. 2018;57(3):315–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schenk D, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology within the PDAPP mouse. Nature. 1999;400(6740):173–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gilman S, et al. Scientific results of Abeta immunization (AN1792) in sufferers with AD in an interrupted trial. Neurology. 2005;64(9):1553–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Orgogozo JM, et al. Subacute meningoencephalitis in a subset of sufferers with AD after Abeta42 immunization. Neurology. 2003;61(1):46–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nicoll JAR, et al. Persistent neuropathological results 14 years following amyloid-beta immunization in Alzheimer’s illness. Mind. 2019;142(7):2113–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandenberghe R, et al. Energetic Abeta immunotherapy CAD106 in Alzheimer’s illness: a section 2b research. Alzheimers Dement (N Y). 2017;3(1):10–22.

    Article 
    PubMed 

    Google Scholar
     

  • Winblad B, et al. Security, tolerability, and antibody response of lively Abeta immunotherapy with CAD106 in sufferers with Alzheimer’s illness: randomised, double-blind, placebo-controlled, first-in-human research. Lancet Neurol. 2012;11(7):597–604.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hull M, et al. Lengthy-term extensions of randomized vaccination trials of ACC-001 and QS-21 in delicate to average Alzheimer’s illness. Curr Alzheimer Res. 2017;14(7):696–708.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ketter N, et al. A randomized, double-blind, section 2 research of the results of the vaccine vanutide cridificar with QS-21 adjuvant on immunogenicity, security and amyloid imaging in sufferers with delicate to average Alzheimer’s illness. J Prev Alzheimers Dis. 2016;3(4):192–201.

    PubMed 
    CAS 

    Google Scholar
     

  • Lacosta AM, et al. Security, tolerability and immunogenicity of an lively anti-Abeta(40) vaccine (ABvac40) in sufferers with Alzheimer’s illness: a randomised, double-blind, placebo-controlled, section I trial. Alzheimers Res Ther. 2018;10(1):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molina E, et al. Replace section 2 research of Abvac40, an lively vaccine anti-AB40 in sufferers with delicate cognitive impairment or very-mild alzheimer’s illness, in ADPD 2022, Worldwide Convention on Alzheimer’s and Parkinson’s Ailments and associated neurological problems. 2022: Barcelona, Spain.

  • Liu B, et al. MER5101, a novel Abeta1-15:DT conjugate vaccine, generates a sturdy anti-Abeta antibody response and attenuates Abeta pathology and cognitive deficits in APPswe/PS1DeltaE9 transgenic mice. J Neurosci. 2013;33(16):7027–37.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Muhs A, et al. Liposomal vaccines with conformation-specific amyloid peptide antigens outline immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A. 2007;104(23):9810–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schneeberger A, et al. Outcomes from a Part II research to evaluate the scientific and immunological exercise of AFFITOPE(R) AD02 in sufferers with early Alzheimer’s illness. J Prev Alzheimers Dis. 2015;2(2):103–14.

    PubMed 
    CAS 

    Google Scholar
     

  • Wang CY, et al. UB-311, a novel UBITh((R)) amyloid beta peptide vaccine for delicate Alzheimer’s illness. Alzheimers Dement (N Y). 2017;3(2):262–72.

    Article 
    PubMed 

    Google Scholar
     

  • Egan MF, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s illness. N Engl J Med. 2018;378(18):1691–703.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abushakra S, et al. Scientific advantages of tramiprosate in Alzheimer’s illness are related to larger variety of APOE4 alleles: the “APOE4 gene-dose impact.” J Prev Alzheimers Dis. 2016;3(4):219–28.

    PubMed 
    CAS 

    Google Scholar
     

  • Aisen PS, et al. Tramiprosate in mild-to-moderate Alzheimer’s illness—a randomized, double-blind, placebo-controlled, multi-centre research (the Alphase Examine). Arch Med Sci. 2011;7(1):102–11.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Doody RS, et al. Part 3 trials of solanezumab and bapineuzumab for Alzheimer’s illness. N Engl J Med. 2014;370(15):1460.

    PubMed 
    CAS 

    Google Scholar
     

  • Vandenberghe R, et al. Bapineuzumab for delicate to average Alzheimer’s illness in two world, randomized, section 3 trials. Alzheimers Res Ther. 2016;8(1):18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salloway S, et al. Lengthy-term security and efficacy of bapineuzumab in sufferers with mild-to-moderate Alzheimer’s illness: a section 2 open-label extension research. Curr Alzheimer Res. 2018;15(13):1231–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Honig LS, et al. Trial of solanezumab for delicate dementia on account of Alzheimer’s illness. N Engl J Med. 2018;378(4):321–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • NIA, NIA assertion on research outcomes suggesting solanezumab doesn’t cut back cognitive decline in individuals in danger for creating Alzheimer’s. 2023, Nationwide Institute on Ageing: Nationwide Institutes of Well being.

  • Adolfsson O, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with distinctive abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci. 2012;32(28):9677–89.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cummings JL, et al. ABBY: a section 2 randomized trial of crenezumab in delicate to average Alzheimer illness. Neurology. 2018;90(21):e1889–97.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Roche, Roche to discontinue Part III CREAD 1 and a pair of scientific research of crenezumab in early Alzheimer’s illness (AD)‐different firm programmes in AD proceed 2019.

  • Bohrmann B, et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removing of human amyloid-beta. J Alzheimers Dis. 2012;28(1):49–69.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ostrowitzki S, et al. A section III randomized trial of gantenerumab in prodromal Alzheimer’s illness. Alzheimers Res Ther. 2017;9(1):95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bateman RJ, et al. Gantenerumab: an anti-amyloid monoclonal antibody with potential disease-modifying results in early Alzheimer’s illness. Alzheimers Res Ther. 2022;14(1):178.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sevigny J, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s illness. Nature. 2016;537(7618):50–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Selkoe DJ. Alzheimer illness and aducanumab: adjusting our strategy. Nat Rev Neurol. 2019;15(7):365–6.

    Article 
    PubMed 

    Google Scholar
     

  • Budd Haeberlein S, et al. Emerge and interact topline outcomes: section 3 research of aducanumab in early Alzheimer’s illness. Alzheimer’s Dementia. 2020;16: e047259.

    Article 

    Google Scholar
     

  • Steinbrook R. The accelerated approval of aducanumab for therapy of sufferers with Alzheimer illness. JAMA Intern Med. 2021;181(10):1281.

    Article 
    PubMed 

    Google Scholar
     

  • Murphy J, et al. ENVISION: A section 3b/4 randomized, double-blind, placebo-controlled, parallel-group research to confirm the scientific good thing about aducanumab in individuals with early Alzheimer’s illness. Alzheimer’s & Dementia. 2022;18(S10): e069428.

    Article 

    Google Scholar
     

  • Logovinsky V, et al. Security and tolerability of BAN2401—a scientific research in Alzheimer’s illness with a protofibril selective Abeta antibody. Alzheimers Res Ther. 2016;8(1):14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson CJ, et al. A randomized, double-blind, section 2b proof-of-concept scientific trial in early Alzheimer’s illness with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther. 2021;13(1):80.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • van Dyck CH, et al. Lecanemab in Early Alzheimer’s Illness. N Engl J Med. 2023;388(1):9–21.

    Article 
    PubMed 

    Google Scholar
     

  • Lowe SL, et al. Donanemab (LY3002813) section 1b research in alzheimer’s illness: fast and sustained discount of mind amyloid measured by Florbetapir F18 imaging. J Prev Alzheimers Dis. 2021;8(4):414–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mintun MA, et al. Donanemab in early Alzheimer’s illness. N Engl J Med. 2021;384(18):1691–704.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sims JR, et al. Donanemab in early symptomatic Alzheimer illness: the TRAILBLAZER-ALZ 2 randomized scientific trial. JAMA. 2023;330(6):512–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tayeb HO, et al. Bapineuzumab and solanezumab for Alzheimer’s illness: is the “amyloid cascade speculation” nonetheless alive? Skilled Opin Biol Ther. 2013;13(7):1075–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cummings J, et al. Lecanemab: acceptable use suggestions. J Prev Alzheimers Dis. 2023;10(3):362–77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brier MR, et al. Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s illness. Sci Transl Med. 2016;8(338):338–66.

    Article 

    Google Scholar
     

  • Gauthier S, et al. Efficacy and security of tau-aggregation inhibitor remedy in sufferers with delicate or average Alzheimer’s illness: a randomised, managed, double-blind, parallel-arm, section 3 trial. Lancet. 2016;388(10062):2873–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li C, Gotz J. Tau-based therapies in neurodegeneration: alternatives and challenges. Nat Rev Drug Discov. 2017;16(12):863–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bittar A, Bhatt N, Kayed R. Advances and concerns in AD tau-targeted immunotherapy. Neurobiol Dis. 2020;134: 104707.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Novak P, et al. AADvac1, an lively immunotherapy for Alzheimer’s illness and non alzheimer tauopathies: an outline of preclinical and scientific growth. J Prev Alzheimers Dis. 2019;6(1):63–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ballabh P, Braun A, Nedergaard M. The blood–mind barrier: an outline: construction, regulation, and scientific implications. Neurobiol Dis. 2004;16(1):1–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kumagai AK, Eisenberg JB, Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by remoted mind capillaries. Mannequin system of blood-brain barrier transport. J Biol Chem. 1987;262(31):15214–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou X, Smith QR, Liu X. Mind penetrating peptides and peptide-drug conjugates to beat the blood-brain barrier and goal CNS illnesses. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(4): e1695.

    Article 
    PubMed 

    Google Scholar
     

  • Schnitzer JE. Caveolae: from primary trafficking mechanisms to concentrating on transcytosis for tissue-specific drug and gene supply in vivo. Adv Drug Deliv Rev. 2001;49(3):265–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Allen DD, Geldenhuys WJ. Molecular modeling of blood-brain barrier nutrient transporters: in silico foundation for analysis of potential drug supply to the central nervous system. Life Sci. 2006;78(10):1029–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tsuji A. Small molecular drug switch throughout the blood-brain barrier by way of carrier-mediated transport methods. NeuroRx. 2005;2(1):54–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS drug supply with a concentrate on transporter-mediated transcytosis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20123108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brasnjevic I, et al. Supply of peptide and protein medicine over the blood–mind barrier. Prog Neurobiol. 2009;87(4):212–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hong S, et al. The binding avidity of a nanoparticle-based multivalent focused drug supply platform. Chem Biol. 2007;14(1):107–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li L, et al. Massive amino acid transporter 1 mediated glutamate modified docetaxel-loaded liposomes for glioma concentrating on. Colloids Surf B Biointerfaces. 2016;141:260–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie J, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing methods. Biomaterials. 2019;224: 119491.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grasso P, et al. Transglutaminase exercise in bovine calf testicular membranes: proof for a potential function within the interplay of follicle-stimulating hormone with its receptor. Endocrinology. 1987;121(2):459–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Terstappen GC, et al. Methods for delivering therapeutics throughout the blood–mind barrier. Nat Rev Drug Discov. 2021;20(5):362–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tenchov R, et al. Lipid nanoparticles─from liposomes to mRNA vaccine supply, a panorama of analysis variety and development. ACS Nano. 2021;15(11):16982–7015.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ganesan P, Narayanasamy D. Lipid nanoparticles: Totally different preparation strategies, characterization, hurdles, and techniques for the manufacturing of strong lipid nanoparticles and nanostructured lipid carriers for oral drug supply. Maintain Chem Pharm. 2017;6:37–56.

    Article 

    Google Scholar
     

  • Choi SW, et al. Therapeutic extracellular vesicles from tonsil-derived mesenchymal stem cells for the therapy of retinal degenerative illness. Tissue Eng Regener Med. 2023;20(6):951–64.

    Article 
    CAS 

    Google Scholar
     

  • Hu L, et al. Latest progress of nanomedicine within the therapy of Alzheimer’s illness. Entrance Cell Dev Biol. 2023. https://doi.org/10.3389/fcell.2023.1228679.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Andaloussi S, et al. Extracellular vesicles: biology and rising therapeutic alternatives. Nat Rev Drug Discov. 2013;12(5):347–57.

    Article 
    PubMed 

    Google Scholar
     

  • Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and evaluation: enabling liquid biopsy for personalised drugs. Lab Chip. 2017;17(21):3558–77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lässer C, et al. Human saliva, plasma and breast milk exosomes comprise RNA: uptake by macrophages. J Transl Med. 2011;9(1):1–8.

    Article 

    Google Scholar
     

  • Magni F, et al. Biomarkers discovery by peptide and protein profiling in organic fluids primarily based on functionalized magnetic beads purification and mass spectrometry. Blood Transfus. 2010;8(Suppl 3): s92.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattar RSA, et al. Diagnostic and prognostic biomarkers in colorectal most cancers and the potential function of exosomes in drug supply. Cell Sign. 2022;99: 110413.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mu N et al. Plant-derived exosome-like nanovesicles: present progress and prospects. Int J Nanomed. 2023;18: 4987–5009.

  • Wu G, et al. Molecularly engineered macrophage-derived exosomes with irritation tropism and intrinsic heme biosynthesis for atherosclerosis therapy. Angew Chem. 2020;132(10):4097–103.

    Article 

    Google Scholar
     

  • Sadeghi S, et al. Exosome engineering in cell remedy and drug supply. Inflammopharmacology. 2023;31(1):145–69.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li P, et al. Progress in exosome isolation strategies. Theranostics. 2017;7(3):789.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lobb RJ, et al. Optimized exosome isolation protocol for cell tradition supernatant and human plasma. J Extracell Vesicles. 2015;4(1):27031.

    Article 
    PubMed 

    Google Scholar
     

  • Greening DW et al. A protocol for exosome isolation and characterization: analysis of ultracentrifugation, density-gradient separation, and immunoaffinity seize strategies. Proteom profiling: Strategies Protoc. 2015;1295:179–209.

  • Heinemann ML, et al. Benchtop isolation and characterization of purposeful exosomes by sequential filtration. J Chromatogr A. 2014;1371:125–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hong C-G, et al. Transplantation of nasal olfactory mucosa mesenchymal stem cells advantages Alzheimer’s illness. Mol Neurobiol. 2022;59(12):7323–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghasempour E, et al. Mesenchymal stem cell-derived exosomes as a brand new therapeutic technique within the mind tumors. Stem Cell Res Ther. 2022;13(1):527.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wei H, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis. Cell Loss of life Dis. 2020;11(4):290.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ebrahim N, et al. Exploring the molecular mechanisms of MSC-derived exosomes in Alzheimer’s illness: Autophagy, insulin and the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 2024;176: 116836.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cui G-H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue reminiscence deficits by regulating inflammatory responses in a mouse mannequin of Alzheimer’s illness. Immun Ageing. 2019;16:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Seow Y, Wooden MJ. Organic gene supply automobiles: past viral vectors. Mol Ther. 2009;17(5):767–77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Alvarez-Erviti L, et al. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29(4):341–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan MI, et al. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the related molecular pathways. Sci Rep. 2023;13(1):15731.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schurtenberger P, Mazer N, Känzig W. Micelle to vesicle transition in aqueous options of bile salt and lecithin. J Phys Chem. 1985;89(6):1042–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H. Skinny-film hydration adopted by extrusion technique for liposome preparation. Liposomes: strategies and protocols, 2017;1522: 17–22.

  • Gao J-Q, et al. Glioma concentrating on and blood–mind barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials. 2013;34(22):5628–39.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang X, et al. Transferrin-Pep63-liposomes speed up the clearance of Aβ and rescue impaired synaptic plasticity in early Alzheimer’s illness fashions. Cell Loss of life Discov. 2021;7(1):256.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, et al. Lactoferrin-modified procationic liposomes as a novel drug provider for mind supply. Eur J Pharm Sci. 2010;40(2):94–102.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu S, et al. Chitosan-coated nanoliposomes for environment friendly supply of betanin with enhanced stability and bioavailability. Meals Hydrocolloids. 2022;132: 107871.

    Article 
    CAS 

    Google Scholar
     

  • Andrade S, Pereira MC, Loureiro JA. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer’s illness remedy. Colloids Surf, B. 2023;225: 113270.

    Article 
    CAS 

    Google Scholar
     

  • Kong L, et al. Transferrin-modified osthole PEGylated liposomes journey the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int J Nanomed. 2020;15: 2841–58.

  • Kuo Y-C, Wang C-T. Safety of SK-N-MC cells towards β-amyloid peptide-induced degeneration utilizing neuron development factor-loaded liposomes with floor lactoferrin. Biomaterials. 2014;35(22):5954–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Senapati S, et al. Multifunctional liposomes concentrating on amyloid-β oligomers for early prognosis and remedy of Alzheimer’s illness. Small. 2024. https://doi.org/10.1002/smll.202311670.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, et al. Multifunctional icariin and tanshinone IIA co-delivery liposomes with potential utility for Alzheimer’s illness. Drug Supply. 2022;29(1):1648–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Su D, et al. MicroRNA-195 liposomes for remedy of Alzheimer’s illness. J Management Launch. 2024;365:583–601.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arora S, Layek B, Singh J. Design and validation of liposomal ApoE2 gene supply system to evade blood–mind barrier for efficient therapy of Alzheimer’s illness. Mol Pharm. 2020;18(2):714–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu M, et al. Physiological boundaries and techniques of lipid-based nanoparticles for nucleic acid drug supply. Adv Mater. 2024;36(22):2303266.

    Article 
    CAS 

    Google Scholar
     

  • Naseri N, Valizadeh H, Zakeri-Milani P. Stable lipid nanoparticles and nanostructured lipid carriers: construction, preparation and utility. Adv Pharm Bull. 2015;5(3):305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wilson B, et al. Chitosan nanoparticles to boost nasal absorption and mind concentrating on of sitagliptin to deal with Alzheimer’s illness. J Drug Deliv Sci Technol. 2021;61: 102176.

    Article 
    CAS 

    Google Scholar
     

  • Gartziandia O, et al. Chitosan coated nanostructured lipid carriers for mind supply of proteins by intranasal administration. Colloids Surf, B. 2015;134:304–13.

    Article 
    CAS 

    Google Scholar
     

  • Saini S, et al. Systematically designed chitosan-coated strong lipid nanoparticles of ferulic acid for efficient administration of Alzheimer’s illness: a preclinical proof. Colloids Surf, B. 2021;205: 111838.

    Article 
    CAS 

    Google Scholar
     

  • Martínez EO, et al. Dopamine-loaded chitosan-coated strong lipid nanoparticles as a promise nanocarriers to the CNS. Neuropharmacology. 2024;249: 109871.

    Article 

    Google Scholar
     

  • Dara T, et al. Enchancment of reminiscence deficits within the rat mannequin of Alzheimer’s illness by erythropoietin-loaded strong lipid nanoparticles. Neurobiol Be taught Mem. 2019;166: 107082.

    Article 
    PubMed 

    Google Scholar
     

  • Shehata MK, Ismail AA, Kamel MA. Mixed Donepezil with Astaxanthin by way of nanostructured lipid carriers efficient supply to mind for Alzheimer’s illness in rat mannequin. Int J Nanomed. 2023;18: 4193–227.

  • Gomaa E, et al. Strategies for preparation of nanostructured lipid carriers. Strategies. 2022;199:3–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug concentrating on provider. J Drug Deliv Sci Technol. 2019;51:255–67.

    Article 
    CAS 

    Google Scholar
     

  • Raju M, et al. Berberine loaded nanostructured lipid provider for Alzheimer’s illness: design, statistical optimization and enhanced in vivo efficiency. Life Sci. 2021;285: 119990.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han Y, et al. Neuronal mitochondria-targeted remedy for Alzheimer’s illness by systemic supply of resveratrol utilizing dual-modified novel biomimetic nanosystems. Drug Supply. 2020;27(1):502–18.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bian X, et al. Regulation of cerebral blood circulate boosts exact mind concentrating on of vinpocetine-derived ionizable-lipidoid nanoparticles. Nat Commun. 2024;15(1):3987.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang H, et al. Curcumin-primed exosomes potently ameliorate cognitive operate in AD mice by inhibiting hyperphosphorylation of the Tau protein by way of the AKT/GSK-3β pathway. Nanoscale. 2019;11(15):7481–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Perets N, et al. Golden exosomes selectively goal mind pathologies in neurodegenerative and neurodevelopmental problems. Nano Lett. 2019;19(6):3422–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ge X, et al. Elevated microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive consequence after rmTBI. Mol Ther. 2020;28(2):503–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fernandes M, et al. Novel idea of exosome-like liposomes for the therapy of Alzheimer’s illness. J Management Launch. 2021;336:130–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gu Z, et al. PEGylated-liposomal astaxanthin ameliorates Aβ neurotoxicity and Alzheimer-related phenotypes by scavenging formaldehyde. J Management Launch. 2024;366:783–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shalabalija D, et al. Formulation and optimization of bioinspired rosemary extract loaded PEGylated nanoliposomes for potential therapy of Alzheimer’s illness utilizing design of experiments. J Drug Deliv Sci Technol. 2021;63: 102434.

    Article 
    CAS 

    Google Scholar
     

  • Lv Q, et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved therapy of metastatic peritoneal most cancers. Adv Sci. 2020;7(18):2000515.

    Article 
    CAS 

    Google Scholar
     

  • Solar L, et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug supply to pulmonary fibrosis. Biomaterials. 2021;271: 120761.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li L, et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian most cancers. J Nanobiotechnol. 2022;20(1):50.

    Article 
    CAS 

    Google Scholar
     

  • Rayamajhi S, et al. Macrophage-derived exosome-mimetic hybrid vesicles for tumor focused drug supply. Acta Biomater. 2019;94:482–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiao P, et al. Milk exosome-liposome hybrid vesicles with self-adapting floor properties overcome the sequential absorption boundaries for oral supply of peptides. ACS Nano. 2024;18(32):21091–111.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles