-6.5 C
United States of America
Tuesday, February 11, 2025

Dimension-driven section evolution in ultrathin relaxor movies


  • Ahn, C. H., Rabe, Ok. M. & Triscone, J.-M. Ferroelectricity on the nanoscale: native polarization in oxide skinny movies and heterostructures. Science 303, 488–491 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlom, D. G. et al. Pressure tuning of ferroelectric skinny movies. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric skinny movies. Nat. Mater. 10, 963–967 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Ultrahigh capacitive vitality density in ion-bombarded relaxor ferroelectric movies. Science 369, 81–84 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, W. et al. Establishing polymorphic nanodomains in BaTiO3 movies through epitaxial symmetry engineering. Adv. Funct. Mater. 30, 1910569 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. et al. Emergence of room-temperature ferroelectricity at decreased dimensions. Science 349, 1314–1317 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav, A. Ok. et al. Commentary of polar vortices in oxide superlattices. Nature 530, 198–201 (2015).

    Article 

    Google Scholar
     

  • Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keech, R. et al. Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate–lead titanate skinny movies. Adv. Funct. Mater. 27, 1605014 (2017).

    Article 

    Google Scholar
     

  • Kim, J. et al. Coupled polarization and nanodomain evolution underpins giant electromechanical responses in relaxors. Nat. Phys. 18, 1502–1509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shetty, S. et al. Relaxor habits in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) skinny movies. Adv. Funct. Mater. 29, 1804258 (2019).

    Article 

    Google Scholar
     

  • Naumov, I. I., Bellaiche, L. & Fu, H. Uncommon section transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eom, C. B. & Trolier-McKinstry, S. Skinny-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Baek, S. H. et al. Large piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, H. et al. Ultrahigh–vitality density lead-free dielectric movies through polymorphic nanodomain design. Science 365, 578–582 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandya, S. et al. Pyroelectric vitality conversion with giant vitality and energy density in relaxor ferroelectric skinny movies. Nat. Mater. 17, 432–438 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindemann, S. et al. Low-voltage magnetoelectric coupling in membrane heterostructures. Sci. Adv. 7, eabh2294 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic native correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric strong resolution crystals. Nat. Commun. 7, 13807 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar constructions in single-crystal relaxors. Nature 546, 391–395 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G., Wen, J., Inventory, C. & Gehring, P. M. Section instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toulouse, J. The three attribute temperatures of relaxor dynamics and their which means. Ferroelectrics 369, 203–213 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Epitaxial pressure management of relaxor ferroelectric section evolution. Adv. Mater. 31, 1901060 (2019).

    Article 

    Google Scholar
     

  • Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale native construction in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Mathan, N. et al. A structural mannequin for the relaxor PbMg1/3Nb2/3O3 at 5 Ok. J. Phys. Condens. Matter 3, 8159 (1991).

  • Jiménez, R. et al. Impact of grain measurement on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).

    Article 

    Google Scholar
     

  • Randall, C. A., Kim, N., Kucera, J., Cao, W. & Shrout, T. R. Intrinsic and extrinsic measurement results in high quality‐grained morphotropic‐section‐boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, T. M., Trolier-McKinstry, S. & McIntyre, P. C. The properties of ferroelectric movies at small dimensions. Mater. Sci. 30, 263–298 (2000).

    CAS 

    Google Scholar
     

  • Blinc, R., Zalar, B., Zupančič, B., Morozovska, A. N. & Glinchuk, M. D. NMR examine of measurement results in relaxor PMN nanoparticles. Phys. Stat. Sol. 248, 2653–2655 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Grigalaitis, R. et al. Dimension results in a relaxor: additional insights into PMN. J. Phys. Condens. Matter 26, 272201 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keech, R. et al. Lateral scaling of Pb(Mg1/3Nb2/3)O3-PbTiO3 skinny movies for piezoelectric logic purposes. J. Appl. Phys. 115, 234106 (2014).

    Article 

    Google Scholar
     

  • Riemer, L. M. et al. Dielectric and electro-mechanic nonlinearities in perovskite oxide ferroelectrics, relaxors, and relaxor ferroelectrics. J. Appl. Phys. 129, 054101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kay, H. F. & Dunn, J. W. Thickness dependence of the nucleation discipline of triglycine sulphate. Philos. Magazine. A 7, 2027–2034 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization habits. Phys. Rev. B 28, 2527–2530 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Dkhil, B. et al. Intermediate temperature scale T in lead-based relaxor methods. Phys. Rev. B 80, 064103 (2009).

    Article 

    Google Scholar
     

  • Viehland, D., Jang, S., Cross, E. L. & Wuttig, M. The dielectric rest of lead magnesium niobate relaxor ferroelectrics. Phil. Magazine. Half B 64, 335–344 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Hehlen, B., Al-Sabbagh, M., Al-Zein, A. & Hlinka, J. Relaxor ferroelectrics: again to the single-soft-mode image. Phys. Rev. Lett. 117, 155501 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez, A., Kim, J., Meyers, D., Saremi, S. & Martin, L. W. Finite-size results in lead scandium tantalate relaxor skinny movies. Phys. Rev. B 101, 094102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z., Duan, W., Wu, J., Gu, B.-L. & Zhang, X.-W. Dielectric properties of relaxor ferroelectric movies. J. Appl. Phys. 98, 094105 (2005).

    Article 

    Google Scholar
     

  • Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective space epitaxy of SrRuO3 utilizing an MgO masks. Adv. Mater. 24, 1610–1615 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frederick, J. et al. Visualization of dielectric constant-electric field-temperature section maps for imprinted relaxor ferroelectric skinny movies. Appl. Phys. Lett. 108, 132902 (2016).

    Article 

    Google Scholar
     

  • Fong, D. D. et al. Ferroelectricity in ultrathin perovskite movies. Science 304, 1650–1653 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grinberg, I., Juhás, P., Davies, P. Ok. & Rappe, A. M. Relationship between Native construction and relaxor habits in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Carreaud, J. et al. Dimension-driven rest and polar states in PbMg1/3Nb2/3O3-based system. Phys. Rev. B 72, 174115 (2005).

    Article 

    Google Scholar
     

  • Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electrical-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, A. et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh‐vitality‐storage capacitors. Adv. Mater. 34, 2204356 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Large piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirc, R. & Blinc, R. Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007).

    Article 

    Google Scholar
     

  • Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting pattern drift distortion with out prior data. Ultramicroscopy 138, 28–35 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Place averaged convergent beam electron diffraction: principle and purposes. Ultramicroscopy 110, 118–125 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, Y. et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear constructions in medical photographs. Med. Picture Anal. 2, 143–168 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, Y. & Rabe, Ok. M. Section competitors in HfO2 with utilized electrical discipline from first rules. Phys. Rev. B 102, 214108 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. & Vanderbilt, D. First-principles perturbative computation of dielectric and Born cost tensors in finite electrical fields. Phys. Rev. B 75, 115116 (2007).

    Article 

    Google Scholar
     

  • Wang, X. & Vanderbilt, D. First-principles perturbative computation of phonon properties of insulators in finite electrical fields. Phys. Rev. B 74, 054304 (2006).

    Article 

    Google Scholar
     

  • Kim, J. Dataset of size-driven section evolution in ultrathin relaxor movies. Zenodo https://doi.org/10.5281/zenodo.14510532 (2024).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles