Glenn A, Armstrong CE. Physiology of pink and white blood cells. Anaesth Intensive Care Med. 2019;20(3):170–4.
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: some ways to die. Entrance Immunol. 2021;12: 631821.
Zawrotniak M, Rapala-Kozik M. Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochim Pol. 2013;60(3):277–84.
Yipp BG, Kubes P. NETosis: how important is it? Blood. 2013;122(16):2784–94.
Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, position in physiology and pathology. Biochemistry (Mosc). 2020;85(10):1178–90.
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, et al. Harm related molecular patterns and neutrophil extracellular traps in acute pancreatitis. Entrance Cell Infect Microbiol. 2022;12: 927193.
Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Harm-associated molecular pattern-activated neutrophil extracellular entice exacerbates sterile inflammatory liver damage. Hepatology. 2015;62(2):600–14.
Iba T, Murai M, Nagaoka I, Tabe Y. Neutrophil extracellular traps, damage-associated molecular patterns, and cell dying throughout sepsis. Acute Med Surg. 2014;1(1):2–9.
Manda-Handzlik A, Stojkov D, Wachowska M, Surmiak M. Editorial: neutrophil extracellular traps: mechanistic and useful perception. Entrance Immunol. 2024;15:1407232.
Chen T, Li Y, Solar R, Hu H, Liu Y, Herrmann M, et al. Receptor-mediated NETosis on neutrophils. Entrance Immunol. 2021;12: 775267.
Papayannopoulos V. Neutrophil extracellular traps in immunity and illness. Nat Rev Immunol. 2018;18(2):134–47.
Fang H, Bo Y, Hao Z, Mang G, Jin J, Wang H. A promising frontier: focusing on NETs for stroke therapy breakthroughs. Cell Commun Sign. 2024;22(1):238.
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 prompts neutrophil extracellular traps to ensnare micro organism in septic blood. Nat Med. 2007;13(4):463–9.
Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. An infection-induced NETosis is a dynamic course of involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93.
Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.
Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe measurement and selectively launch neutrophil extracellular traps in response to giant pathogens. Nat Immunol. 2014;15(11):1017–25.
Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, et al. Neutrophil extracellular traps profiles in sufferers with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol. 2020;47(3):377–86.
Martinod Ok, Claessen A, Martens C, Krauel Ok, Velásquez Pereira LC, Witsch J, et al. NET burden in left atrial blood is related to biomarkers of thrombosis and cardiac damage in sufferers with enlarged left atria. Clin Res Cardiol. 2024. https://doi.org/10.1007/s00392-024-02464-9.
Zhang Q, Zhang J, Gu H, Yang Y, Zhang H, Miao C. Perioperative NETosis and most cancers development: present proof and future views. Curr Oncol Rep. 2024. https://doi.org/10.1007/s11912-024-01573-y.
Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev. 2024;209: 115316.
Chellappan DK, Yee LW, Xuan KY, Kunalan Ok, Rou LC, Jean LS, et al. Concentrating on neutrophils utilizing novel drug supply methods in power respiratory illnesses. Drug Dev Res. 2020;81(4):419–36.
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic goal of NETosis in illnesses. MedComm (2020). 2022;3(3): e162.
Islam MM, Takeyama N. Position of neutrophil extracellular traps in well being and illness pathophysiology: latest insights and advances. Int J Mol Sci. 2023;24(21):15805.
Baz AA, Hao H, Lan S, Li Z, Liu S, Chen S, et al. Neutrophil extracellular traps in bacterial infections and evasion methods. Entrance Immunol. 2024;15:1357967.
Scozzi D, Liao F, Krupnick AS, Kreisel D, Gelman AE. The position of neutrophil extracellular traps in acute lung damage. Entrance Immunol. 2022;13: 953195.
Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, et al. Neutrophil extracellular traps induce organ harm throughout experimental and scientific sepsis. PLoS ONE. 2016;11(2): e0148142.
Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps instantly induce epithelial and endothelial cell dying: a predominant position of histones. PLoS ONE. 2012;7(2): e32366.
Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging within the liver vasculature. Nat Commun. 2015;6:6673.
Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, et al. Neutrophil extracellular traps (NETs) in autoimmune illnesses: a complete evaluate. Autoimmun Rev. 2017;16(11):1160–73.
Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent course of. J Immunol. 2013;191(5):2647–56.
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory illnesses. Nat Rev Immunol. 2023;23(5):274–88.
Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular entice: a key participant within the pathogenesis of autoimmune illnesses. Int Immunopharmacol. 2023;116: 109843.
Pisetsky DS. Distinctive interaction between antinuclear antibodies and nuclear molecules within the pathogenesis of systemic lupus erythematosus. Arthritis Rheumatol. 2024. https://doi.org/10.1002/artwork.42863.
van der Linden M, van den Hoogen LL, Westerlaken GHA, Fritsch-Stork RDE, van Roon JAG, Radstake T, et al. Neutrophil extracellular entice launch is related to antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford). 2018;57(7):1228–34.
Kang N, Liu X, Haneef Ok, Liu W. Previous and new damage-associated molecular patterns (DAMPs) in autoimmune illnesses. Rheumatol Autoimmunity. 2022;2(4):185–97.
Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a supply of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.
Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E, et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol. 2017;2(10):eaag3358.
Kessenbrock Ok, Krumbholz M, Schönermarck U, Again W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5.
Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of neutrophil extracellular entice formation and regulation in cancers. Int J Mol Sci. 2023;24(12):10265.
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon H-U, Varricchi G, et al. Neutrophil extracellular traps in most cancers. Semin Most cancers Biol. 2022;79:91–104.
Podaza E, Sabbione F, Risnik D, Borge M, Almejún MB, Colado A, et al. Neutrophils from power lymphocytic leukemia sufferers exhibit an elevated capability to launch extracellular traps (NETs). Most cancers Immunol Immunother. 2017;66(1):77–89.
Demers M, Krause DS, Schatzberg D, Martinod Ok, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to launch extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81.
Zhu Y, Huang Y, Ji Q, Fu S, Gu J, Tai N, et al. Interaction between extracellular matrix and neutrophils in illnesses. J Immunol Res. 2021;2021:8243378.
Martins-Cardoso Ok, Almeida VH, Bagri KM, Rossi MID, Mermelstein CS, König S, et al. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast most cancers cells by means of epithelial-mesenchymal transition. Cancers (Basel). 2020;12(6):1542.
Wen L, Guo L, Zhang W, Li Y, Jiang W, Di X, et al. Cooperation between the irritation and coagulation methods promotes the survival of circulating tumor cells in renal cell carcinoma sufferers. Entrance Oncol. 2019;9:504.
Chen Q, Zou J, He Y, Pan Y, Yang G, Zhao H, et al. A story evaluate of circulating tumor cells clusters: a key morphology of most cancers cells in circulation promote hematogenous metastasis. Entrance Oncol. 2022;12: 944487.
Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil extracellular traps (NETs) in most cancers metastasis. Cancers (Basel). 2021;13(23):6131.
Shaul ME, Fridlender ZG. Neutrophils as energetic regulators of the immune system within the tumor microenvironment. J Leukoc Biol. 2017;102(2):343–9.
Li Y, Wu S, Zhao Y, Dinh T, Jiang D, Selfridge JE, et al. Neutrophil extracellular traps induced by chemotherapy inhibit tumor progress in murine fashions of colorectal most cancers. J Clin Make investments. 2024;134(5): e175031.
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai Ok, Cherfils-Vicini J, et al. Neutrophil extracellular traps shaped throughout chemotherapy confer therapy resistance through TGF-β activation. Most cancers Cell. 2023;41(4):757-75.e10.
Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, et al. Position of neutrophil extracellular traps in radiation resistance of invasive bladder most cancers. Nat Commun. 2021;12(1):2776.
Tamura Ok, Miyato H, Kanamaru R, Sadatomo A, Takahashi Ok, Ohzawa H, et al. Neutrophil extracellular traps (NETs) scale back the diffusion of doxorubicin which can attenuate its skill to induce apoptosis of ovarian most cancers cells. Heliyon. 2022;8(6): e09730.
Martins-Cardoso Ok, Maçao A, Souza JL, Silva AG, König S, Martins-Gonçalves R, et al. TF/PAR2 signaling axis helps the protumor impact of neutrophil extracellular traps (NETs) on human breast most cancers cells. Cancers (Basel). 2023;16(1):5.
Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, et al. Neutrophil extracellular traps (NETs) promote non-small cell lung most cancers metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway. Entrance Immunol. 2022;13: 867516.
Zhou X, Wu C, Wang X, Pan N, Solar X, Chen B, et al. Tumor cell-released autophagosomes (TRAPs) induce PD-L1-decorated NETs that suppress T-cell operate to advertise breast most cancers pulmonary metastasis. J Immunother Most cancers. 2024;12(6): e009082.
Laridan E, Martinod Ok, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93.
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, et al. Neutrophil heterogeneity and its roles within the inflammatory community after ischemic stroke. Curr Neuropharmacol. 2023;21(3):621–50.
Zhou Y, Xu Z, Liu Z. Affect of neutrophil extracellular traps on thrombosis formation: new findings and future perspective. Entrance Cell Infect Microbiol. 2022;12: 910908.
Li W, Wang Z, Su C, Liao Z, Pei Y, Wang J, et al. The impact of neutrophil extracellular traps in venous thrombosis. Thromb J. 2023;21(1):67.
Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity through neutrophil serine proteases. Nat Med. 2010;16(8):887–96.
Badimon L, Vilahur G. Neutrophil extracellular traps: a brand new supply of tissue think about atherothrombosis. Eur Coronary heart J. 2015;36(22):1364–6.
Xu X, Wu Y, Xu S, Yin Y, Ageno W, De Stefano V, et al. Medical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb J. 2022;20(1):63.
Rangaswamy C, Englert H, Deppermann C, Renné T. Polyanions in coagulation and thrombosis: give attention to polyphosphate and neutrophils extracellular traps. Thromb Haemost. 2021;121(8):1021–30.
Yao M, Ma J, Wu D, Fang C, Wang Z, Guo T, et al. Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to remedy. Entrance Immunol. 2023;14:1198952.
Li C, Xing Y, Zhang Y, Hua Y, Hu J, Bai Y. Neutrophil extracellular traps exacerbate ischemic mind harm. Mol Neurobiol. 2022;59(1):643–56.
Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, et al. Neutrophil cerebrovascular transmigration triggers speedy neurotoxicity by means of launch of proteases related to decondensed DNA. J Immunol. 2012;189(1):381–92.
Chen Y, Li X, Lin X, Liang H, Liu X, Zhang X, et al. Complement C5a induces the technology of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to advertise the event of arterial thrombosis. Thromb J. 2022;20(1):24.
Cui BB, Tan CY, Schorn C, Tang HH, Liu Y, Zhao Y. Neutrophil extracellular traps in sterile irritation: the story after dying? Autoimmunity. 2012;45(8):593–6.
Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, et al. Community of extracellular traps within the pathogenesis of sterile power inflammatory illnesses: position of oxidative stress and potential scientific purposes. Antioxid Redox Sign. 2023. https://doi.org/10.1089/ars.2023.0329.
Zhang F, Li Y, Wu J, Zhang J, Cao P, Solar Z, et al. The position of extracellular traps in ischemia reperfusion damage. Entrance Immunol. 2022;13:1022380.
Qi H, Yang S, Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Entrance Immunol. 2017;8:928.
Keir HR, Chalmers JD. Neutrophil extracellular traps in power lung illness: implications for pathogenesis and remedy. Eur Respir Rev. 2022;31(163): 210241.
Yan S, Li M, Liu B, Ma Z, Yang Q. Neutrophil extracellular traps and pulmonary fibrosis: an replace. J Inflamm (Lond). 2023;20(1):2.
Li H, Li Y, Tune C, Hu Y, Dai M, Liu B, et al. Neutrophil extracellular traps augmented alveolar macrophage pyroptosis through AIM2 inflammasome activation in LPS-induced ALI/ARDS. J Inflamm Res. 2021;14:4839–58.
Hough KP, Curtiss ML, Blain TJ, Liu R-M, Trevor J, Deshane JS, et al. Airway transforming in bronchial asthma. Entrance Med. 2020;7:191.
King PT, Dousha L. Neutrophil extracellular traps and respiratory illness. J Clin Med. 2024;13(8):2390.
Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Irritation. Neutrophil extracellular traps license macrophages for cytokine manufacturing in atherosclerosis. Science. 2015;349(6245):316–20.
Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem. 2024. https://doi.org/10.1007/s11010-024-04931-3.
Drury B, Hardisty G, Grey RD, Ho GT. Neutrophil extracellular traps in inflammatory bowel illness: pathogenic mechanisms and scientific translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321–33.
Landén NX, Li D, Ståhle M. Transition from irritation to proliferation: a crucial step throughout wound therapeutic. Cell Mol Life Sci. 2016;73(20):3861–85.
Davis FM, Kimball A, Boniakowski A, Gallagher Ok. Dysfunctional wound therapeutic in diabetic foot ulcers: new crossroads. Curr Diab Rep. 2018;18(1):2.
Wong SL, Demers M, Martinod Ok, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to endure NETosis, which impairs wound therapeutic. Nat Med. 2015;21(7):815–9.
Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles particularly acknowledge the neutrophil extracellular traps (NETs) and promote their degradation. J Management Launch. 2023;354:109–19.
Rezaei N, Zadory M, Babity S, Marleau S, Brambilla D. Therapeutic purposes of nanoparticles focusing on neutrophil and extracellular traps. J Management Launch. 2023;358:636–53.
Yang H, Marion TN, Liu Y, Zhang L, Cao X, Hu H, et al. Nanomaterial publicity induced neutrophil extracellular traps: a brand new goal in irritation and innate immunity. J Immunol Res. 2019;2019:3560180.
Vaseruk A, Bila G, Bilyy R. Nanoparticles for stimulation of neutrophil extracellular trap-mediated immunity. Eur J Immunol. 2024;54(4):2350582.
Bilyy R, Bila G, Vishchur O, Vovk V, Herrmann M. Neutrophils as important gamers of immune response in the direction of nondegradable nanoparticles. Nanomaterials (Basel). 2020;10(7):1273.
Lovas M, Tanka-Salamon A, Beinrohr L, Voszka I, Szabó L, Molnár Ok, et al. Polyphosphate nanoparticles improve the fibrin stabilization by histones extra effectively than linear polyphosphates. PLoS ONE. 2022;17(4): e0266782.
Kang H, Search engine marketing J, Yang EJ, Choi IH. Silver nanoparticles induce neutrophil extracellular traps through activation of PAD and neutrophil elastase. Biomolecules. 2021;11(2):317.
Yang Y, Wang N, Zhu Y, Lu Y, Chen Q, Fan S, et al. Gold nanoparticles synergize with bacterial lipopolysaccharide to boost class A scavenger receptor dependent particle uptake in neutrophils and increase neutrophil extracellular traps formation. Ecotoxicol Environ Saf. 2021;211: 111900.
Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Mobile uptake and retention of nanoparticles: insights on particle properties and interplay with mobile parts. Mater At this time Commun. 2020;25: 101692.
Bartneck M, Keul HA, Zwadlo-Klarwasser G, Groll J. Phagocytosis impartial extracellular nanoparticle clearance by human immune cells. Nano Lett. 2010;10(1):59–63.
Golbek TW, Harper BJ, Harper SL, Baio JE. Form-dependent gold nanoparticle interactions with a mannequin cell membrane. Biointerphases. 2022;17(6): 061003.
Desai J, Foresto-Neto O, Honarpisheh M, Steiger S, Nakazawa D, Popper B, et al. Particles of various styles and sizes induce neutrophil necroptosis adopted by the discharge of neutrophil extracellular trap-like chromatin. Sci Rep. 2017;7(1):15003.
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5.
Sorvillo N, Cherpokova D, Martinod Ok, Wagner DD. Extracellular DNA NET-works with dire penalties for well being. Circ Res. 2019;125(4):470–88.
Hwang T-L, Aljuffali IA, Hung C-F, Chen C-H, Fang J-Y. The influence of cationic stable lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Work together. 2015;235:106–14.
Petretto E, Ong QK, Olgiati F, Mao T, Campomanes P, Stellacci F, et al. Monovalent ion-mediated charge-charge interactions drive aggregation of surface-functionalized gold nanoparticles. Nanoscale. 2022;14(40):15181–92.
Lotosh NY, Aliaseva SO, Malashenkova IK, Sorokoumova GM, Vasilov RG, Selischeva AA. Cationic liposomes trigger ROS technology and launch of neutrophil extracellular traps. Biochemistry (Moscow), Suppl Ser A Membr Cell Biol. 2019;13(1):40–9.
Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative research of cytotoxicity, oxidative stress and genotoxicity induced by 4 typical nanomaterials: the position of particle measurement, form and composition. J Appl Toxicol. 2009;29(1):69–78.
Hou M, Wu X, Zhao Z, Deng Q, Chen Y, Yin L. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory therapy of myocardial ischemia reperfusion damage. Acta Biomater. 2022;143:344–55.
Snoderly HT, Freshwater KA, Martinez de la Torre C, Panchal DM, Vito JN, Bennewitz MF. PEGylation of steel oxide nanoparticles modulates neutrophil extracellular entice formation. Biosensors (Basel). 2022;12(2):123.
Deng X, Zhao J, Liu Ok, Wu C, Liang F. Stealth PEGylated chitosan polyelectrolyte complicated nanoparticles as drug supply service. J Biomater Sci Polym Ed. 2021;32(11):1387–405.
Mitri N, Rahme Ok, Fracasso G, Ghanem E. Human blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles. Nanotechnology. 2022;33(31): 315101.
Wang C, Liu X, Han Z, Zhang X, Wang J, Wang Ok, et al. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. Ecotoxicol Environ Saf. 2019;183: 109508.
Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, et al. Implications of protein corona on physico-chemical and organic properties of magnetic nanoparticles. Biomaterials. 2015;46:1–12.
Park SJ. Protein-nanoparticle interplay: corona formation and conformational modifications in proteins on nanoparticles. Int J Nanomed. 2020;15:5783–802.
Kopac T. Protein corona, understanding the nanoparticle-protein interactions and future views: a crucial evaluate. Int J Biol Macromol. 2021;169:290–301.
Bilyy R, Unterweger H, Weigel B, Dumych T, Paryzhak S, Vovk V, et al. Inert coats of magnetic nanoparticles stop formation of occlusive intravascular co-aggregates with neutrophil extracellular traps. Entrance Immunol. 2018;9:2266.
Shi Y, Dong M, Wu Y, Gong F, Wang Z, Xue L, et al. An elastase-inhibiting, plaque-targeting and neutrophil-hitchhiking liposome in opposition to atherosclerosis. Acta Biomater. 2024;173:470–81.
Xu XL, Lu KJ, Zhu ML, Du YL, Zhu YF, Zhang NN, et al. Sialic acid-functionalized ph-triggered micelles for enhanced tumor tissue accumulation and energetic mobile internalization of orthotopic hepatocarcinoma. ACS Appl Mater Interfaces. 2018;10(38):31903–14.
Solar S, Lv W, Li S, Zhang Q, He W, Min Z, et al. Good liposomal nanocarrier enhanced the therapy of ischemic stroke by means of neutrophil extracellular traps and cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway inhibition of ischemic penumbra. ACS Nano. 2023;17(18):17845–57.
Li R, Wang Z, Li J, Chen H, Guo X, Zhou S. Relieving thrombo-inflammation with acid-triggered polymersomes towards ischemic stroke remedy. Nano At this time. 2024;54: 102114.
Cheng R, Wang S, Santos HA. Acid-labile chemical bonds-based nanoparticles for endosome escape and intracellular supply. Biomed Technol. 2023;3:52–8.
Lim EK, Chung BH, Chung SJ. Current advances in pH-sensitive polymeric nanoparticles for sensible drug supply in most cancers remedy. Curr Drug Targets. 2018;19(4):300–17.
Van Driessche A, Kocere A, Everaert H, Nuhn L, Van Herck S, Griffiths G, et al. pH-sensitive hydrazone-linked doxorubicin nanogels through polymeric-activated ester scaffolds: synthesis, meeting, and in vitro and in vivo analysis in tumor-bearing zebrafish. Chem Mater. 2018;30(23):8587–96.
Zhang J, Su L, Liu Z, Tang J, Zhang L, Li Z, et al. A responsive hydrogel modulates innate immune cascade fibrosis to advertise ocular floor reconstruction after chemical damage. J Management Launch. 2024;365:1124–38.
Xu Q, He C, Xiao C, Chen X. Reactive oxygen species (ROS) responsive polymers for biomedical purposes. Macromol Biosci. 2016;16(5):635–46.
Xu X, Noticed PE, Tao W, Li Y, Ji X, Bhasin S, et al. ROS-responsive polyprodrug nanoparticles for triggered drug supply and efficient most cancers remedy. Adv Mater. 2017;29(33):1700141.
Wang CJ, Ko GR, Lee YY, Park J, Park W, Park TE, et al. Polymeric DNase-I nanozymes focusing on neutrophil extracellular traps for the therapy of bowel irritation. Nano Converg. 2024;11(1):6.
Mu Q, Yao Ok, Syeda MZ, Wan J, Cheng Q, You Z, et al. Neutrophil focusing on platform reduces neutrophil extracellular traps for improved traumatic mind damage and stroke theranostics. Adv Sci (Weinh). 2024;11(21): e2308719.
Ocampo-Gallego JS, Pedroza-Escobar D, Caicedo-Ortega AR, Berumen-Murra MT, Novelo-Aguirre AL, de Sotelo-León RD, et al. Human neutrophil elastase inhibitors: classification, biological-synthetic sources and their relevance in associated illnesses. Fundam Clin Pharmacol. 2024;38(1):13–32.
Hu Ok, Zhong L, Lin W, Zhao G, Pu W, Feng Z, et al. Pathogenesis-guided rational engineering of nanotherapies for the focused therapy of stomach aortic aneurysm by inhibiting neutrophilic irritation. ACS Nano. 2024;18(8):6650–72.
Liu C, Xi L, Liu Y, Mak JCW, Mao S, Wang Z, et al. An inhalable hybrid biomimetic nanoplatform for sequential drug launch and transforming lung immune homeostasis in acute lung damage therapy. ACS Nano. 2023;17(12):11626–44.
Li M, Zhang D, Peng F, Xie J, Zhang X, Qian S, et al. Zinc-doped ferric oxyhydroxide nano-layer enhances the bactericidal exercise and osseointegration of a magnesium alloy by means of augmenting the formation of neutrophil extracellular traps. Acta Biomater. 2022;152:575–92.
Lin CJ, Hwang TL, Wang RYL, Nain A, Shih RH, Chang L, et al. Augmenting neutrophil extracellular traps with carbonized polymer dots: a possible therapy for bacterial sepsis. Small. 2024;20(27): e2307210.
Li Y, Han Y, Su R, Liu Y, Chong G, Xu D, et al. Photosensitizer-laden neutrophils are managed remotely for most cancers immunotherapy. Cell Rep. 2020;33(11): 108499.
Zheng J, Qi R, Dai C, Li G, Sang M. Enzyme catalysis biomotor engineering of neutrophils for nanodrug supply and cell-based thrombolytic remedy. ACS Nano. 2022;16(2):2330–44.
Cheng X, Yu P, Zhou X, Zhu J, Han Y, Zhang C, et al. Enhanced tumor homing of pathogen-mimicking liposomes pushed by R848 stimulation: a brand new platform for synergistic oncology remedy. Acta Pharm Sin B. 2022;12(2):924–38.
Li M, Li S, Zhou H, Tang X, Wu Y, Jiang W, et al. Chemotaxis-driven supply of nano-pathogenoids for full eradication of tumors post-phototherapy. Nat Commun. 2020;11(1):1126.
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill micro organism. Science. 2004;303(5663):1532–5.
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6(8):2569–612.
Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, classes and views. Cell Demise Discov. 2023;9(1):465.
van der Ballot T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54(11):2450–64.
Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1): e1170.
Cesta MC, Zippoli M, Marsiglia C, Gavioli EM, Cremonesi G, Khan A, et al. Neutrophil activation and neutrophil extracellular traps (NETs) in COVID-19 ARDS and immunothrombosis. Eur J Immunol. 2023;53(1): e2250010.
SenGupta S, Subramanian BC, Dad or mum CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol. 2019;105(3):449–62.
Li X, Qiao Q, Liu X, Hu Q, Yu Y, Qin X, et al. Engineered biomimetic nanovesicles based mostly on neutrophils for hierarchical focusing on remedy of acute respiratory misery syndrome. ACS Nano. 2024;18(2):1658–77.
Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug supply. Bioactive Mater. 2024;35:150–66.
Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, et al. Neutrophils: between host defence, immune modulation, and tissue damage. PLoS Pathog. 2015;11(3): e1004651.
Mutua V, Gershwin LJ. A evaluate of neutrophil extracellular traps (NETs) in illness: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211.
Du Y, Chen Y, Li F, Mao Z, Ding Y, Wang W. Genetically engineered mobile nanovesicle as focused DNase I supply system for the clearance of neutrophil extracellular traps in acute lung damage. Adv Sci (Weinh). 2023;10(32): e2303053.
Park HH, Park W, Lee YY, Kim H, Search engine marketing HS, Choi DW, et al. Bioinspired DNase-I-coated melanin-like nanospheres for modulation of infection-associated NETosis dysregulation. Adv Sci (Weinh). 2020;7(23):2001940.
Dong W, Liu D, Zhang T, You Q, Huang F, Wu J. Oral supply of staphylococcal nuclease ameliorates DSS induced ulcerative colitis in mice through degrading intestinal neutrophil extracellular traps. Ecotoxicol Environ Saf. 2021;215: 112161.
Wang N, Ma J, Tune W, Zhao C. An injectable hydrogel to disrupt neutrophil extracellular traps for treating rheumatoid arthritis. Drug Deliv. 2023;30(1):2173332.
Tune J, Yang G, Tune Y, Jiang Z, Jiang Y, Luan Y, et al. Neutrophil Hitchhiking Biomimetic Nanozymes Prime Neuroprotective Results of Ischemic Stroke in a Tailor-made “Burning the Bridges” Method. Adv Func Mater. 2024;34:2315275.
Kong J, Deng Y, Xu Y, Zhang P, Li L, Huang Y. A two-pronged supply technique disrupting constructive suggestions loop of neutrophil extracellular traps for metastasis suppression. ACS Nano. 2024;18(24):15432–51.
Chen J, Hou S, Liang Q, He W, Li R, Wang H, et al. Localized degradation of neutrophil extracellular traps by photoregulated enzyme supply for most cancers immunotherapy and metastasis suppression. ACS Nano. 2022;16(2):2585–97.
Yin H, Lu H, Xiong Y, Ye L, Teng C, Cao X, et al. Tumor-associated neutrophil extracellular traps regulating nanocarrier-enhanced inhibition of malignant tumor progress and distant metastasis. ACS Appl Mater Interfaces. 2021;13(50):59683–94.
Hao Y, Li X, Liu Y, Liu D, Zhao X, Ji S, et al. Manganese doped nanosystem for degrading neutrophil extracellular traps and bettering chemotherapy effectivity to synergistically inhibit lung metastasis of breast most cancers. Chem Eng J. 2023;466: 142957.
Zhu L, Li Z, Liu N, Solar H, Wang Y, Solar M. Dynamically deformable protein supply technique disassembles neutrophil extracellular traps to forestall liver metastasis. Adv Func Mater. 2021;31(42):2105089.
Wang Z, Chen C, Shi C, Zhao X, Gao L, Guo F, et al. Cell membrane derived liposomes loaded with DNase I goal neutrophil extracellular traps which inhibits colorectal most cancers liver metastases. J Management Launch. 2023;357:620–9.
Cheng Y, Gong Y, Chen X, Zhang Q, Zhang X, He Y, et al. Injectable adhesive hemostatic gel with tumor acidity neutralizer and neutrophil extracellular traps lyase for enhancing adoptive NK cell remedy prevents post-resection recurrence of hepatocellular carcinoma. Biomaterials. 2022;284: 121506.
Zhou H, Zhu C, Zhao Q, Ni J, Zhang H, Yang G, et al. Wrecking neutrophil extracellular traps and antagonizing cancer-associated neurotransmitters by interpenetrating community hydrogels stop postsurgical most cancers relapse and metastases. Bioact Mater. 2024;39:14–24.
Okeke EB, Louttit C, Fry C, Najafabadi AH, Han Ok, Nemzek J, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular entice formation and rescues mice from endotoxic shock. Biomaterials. 2020;238: 119836.
Liu M, Liu S, Liu L, Xiu J, Zhang T, Chen D, et al. Nanoparticle-inhibited neutrophil elastase prevents neutrophil extracellular entice and alleviates rheumatoid arthritis in C57BL/6 mice. Nano At this time. 2023;50: 101880.
Cruz MA, Bohinc D, Andraska EA, Alvikas J, Raghunathan S, Masters NA, et al. Nanomedicine platform for focusing on activated neutrophils and neutrophil-platelet complexes utilizing an α(1)-antitrypsin-derived peptide motif. Nat Nanotechnol. 2022;17(9):1004–14.
Liang H, Du Y, Zhu C, Zhang Z, Liao G, Liu L, et al. Nanoparticulate cationic poly(amino acid)s block most cancers metastases by destructing neutrophil extracellular traps. ACS Nano. 2023;17(3):2868–80.
Tu Z, Zhu Y, Gao W, Liu M, Wei Y, Xu C, et al. Tackling extreme neutrophilic irritation in airway issues with functionalized nanosheets. ACS Nano. 2024;18(9):7084–97.
Wang J, Wang Y, Li J, Ying J, Mu Y, Zhang X, et al. Neutrophil extracellular traps-inhibiting and fouling-resistant polysulfoxides potently stop postoperative adhesion, tumor recurrence, and metastasis. Adv Mater. 2024;36(31): e2400894.
Li Z, Li L, Yue M, Peng Q, Pu X, Zhou Y. Tracing immunological interplay in trimethylamine N-oxide hydrogel-derived zwitterionic microenvironment throughout promoted diabetic wound regeneration. Adv Mater. 2024;36: e2402738.
Liu S, Liu M, Xiu J, Zhang T, Zhang B, Cun D, et al. Celastrol-loaded bovine serum albumin nanoparticles goal infected neutrophils for improved rheumatoid arthritis remedy. Acta Biomater. 2024;174:345–57.
Di L, Thomas A, Switala L, Kalikasingh Ok, Lapping S, Nayak L, et al. Floor geometry of cargo-less gold nanoparticles is a driving drive for selective focusing on of activated neutrophils to cut back thrombosis in antiphospholipid syndrome. Nano Lett. 2023;23(21):9690–6.
Mei J, Zhou J, Kong L, Dai Y, Zhang X, Tune W, et al. An injectable photo-cross-linking silk hydrogel system augments diabetic wound therapeutic in orthopaedic surgical procedure by means of spatiotemporal immunomodulation. J Nanobiotechnol. 2022;20(1):232.
Cai J, Tao H, Liu H, Hu Y, Han S, Pu W, et al. Intrinsically bioactive and biomimetic nanoparticle-derived therapies alleviate bronchial asthma by regulating a number of pathological cells. Bioact Mater. 2023;28:12–26.
Li L, Ma Y, Hu Y, Wang P, Han S, Zhang X, et al. Web site-specific inhibition of neutrophilic irritation by low-dose nanotherapy for immunoregulatory therapy of bronchial asthma. Nano At this time. 2023;52: 101957.
Yin N, Wang W, Pei F, Zhao Y, Liu C, Guo M, et al. A neutrophil hijacking nanoplatform reprograming NETosis for focused microglia polarizing mediated ischemic stroke therapy. Adv Sci (Weinh). 2024;11(17): e2305877.
Liu W, Lu H, Rao X, Li X, Lu H, Li F, et al. Enhanced therapy for cerebral ischemia-reperfusion damage of puerarin loading liposomes by means of neutrophils-mediated focused supply. Nano Res. 2021;14(12):4634–43.
Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes most cancers metastasis through CCDC25. Nature. 2020;583(7814):133–8.
Liu X, Li T, Chen H, Yuan L, Ao H. Position and intervention of PAD4 in NETs in acute respiratory misery syndrome. Respir Res. 2024;25(1):63.
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, et al. Moonlighting chromatin: when DNA escapes nuclear management. Cell Demise Differ. 2023;30(4):861–75.
Wang CL, Wang Y, Jiang QL, Zeng Y, Yao QP, Liu X, et al. DNase I and sivelestat ameliorate experimental hindlimb ischemia-reperfusion damage by eliminating neutrophil extracellular traps. J Inflamm Res. 2023;16:707–21.
Hallberg LAE, Barlous Ok, Hawkins CL. Antioxidant methods to modulate NETosis and the discharge of neutrophil extracellular traps throughout power irritation. Antioxidants (Basel). 2023;12(2):478.
Adelnia H, Blakey I, Little PJ, Ta HT. Poly(succinimide) nanoparticles as reservoirs for spontaneous and sustained synthesis of poly(aspartic acid) beneath physiological situations: potential for vascular calcification remedy and oral drug supply. J Mater Chem B. 2023;11(12):2650–62.
Datla US, Vundurthy B, Hook JS, Menon N, Razmi Bagtash H, Shihabeddin T, et al. Quantifying neutrophil extracellular entice launch in a mixed infection-inflammation NET-array system. Lab Chip. 2024;24(3):615–28.
Wang S, Hou Y. New kinds of magnetic nanoparticles for stimuli-responsive theranostic nanoplatforms. Adv Sci (Weinh). 2024;11(8): e2305459.
Najahi-Missaoui W, Arnold RD, Cummings BS. Protected nanoparticles: are we there but? Int J Mol Sci. 2020;22(1):385.
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: a quantitative method for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev. 2023;194: 114708.
Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, et al. A evaluate on microfluidic-assisted nanoparticle synthesis, and their purposes utilizing multiscale simulation strategies. Discov Nano. 2023;18(1):18.
Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, et al. Harnessing nanomedicine for modulating microglial states within the central nervous system issues: challenges and alternatives. Biomed Pharmacother. 2024;177: 117011.
Shrestha B, Tang L, Hood RL. Nanotechnology for personalised drugs. In: Gu N, editor. Nanomedicine. Singapore: Springer Nature Singapore; 2023. p. 555–603.