-2.8 C
United States of America
Saturday, February 8, 2025

Modern nanoparticle-based approaches for modulating neutrophil extracellular traps in illnesses: from mechanisms to therapeutics | Journal of Nanobiotechnology


  • Glenn A, Armstrong CE. Physiology of pink and white blood cells. Anaesth Intensive Care Med. 2019;20(3):170–4.

    Article 

    Google Scholar
     

  • Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: some ways to die. Entrance Immunol. 2021;12: 631821.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zawrotniak M, Rapala-Kozik M. Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochim Pol. 2013;60(3):277–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yipp BG, Kubes P. NETosis: how important is it? Blood. 2013;122(16):2784–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, position in physiology and pathology. Biochemistry (Mosc). 2020;85(10):1178–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, et al. Harm related molecular patterns and neutrophil extracellular traps in acute pancreatitis. Entrance Cell Infect Microbiol. 2022;12: 927193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Harm-associated molecular pattern-activated neutrophil extracellular entice exacerbates sterile inflammatory liver damage. Hepatology. 2015;62(2):600–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iba T, Murai M, Nagaoka I, Tabe Y. Neutrophil extracellular traps, damage-associated molecular patterns, and cell dying throughout sepsis. Acute Med Surg. 2014;1(1):2–9.

    Article 
    PubMed 

    Google Scholar
     

  • Manda-Handzlik A, Stojkov D, Wachowska M, Surmiak M. Editorial: neutrophil extracellular traps: mechanistic and useful perception. Entrance Immunol. 2024;15:1407232.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen T, Li Y, Solar R, Hu H, Liu Y, Herrmann M, et al. Receptor-mediated NETosis on neutrophils. Entrance Immunol. 2021;12: 775267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papayannopoulos V. Neutrophil extracellular traps in immunity and illness. Nat Rev Immunol. 2018;18(2):134–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang H, Bo Y, Hao Z, Mang G, Jin J, Wang H. A promising frontier: focusing on NETs for stroke therapy breakthroughs. Cell Commun Sign. 2024;22(1):238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 prompts neutrophil extracellular traps to ensnare micro organism in septic blood. Nat Med. 2007;13(4):463–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. An infection-induced NETosis is a dynamic course of involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe measurement and selectively launch neutrophil extracellular traps in response to giant pathogens. Nat Immunol. 2014;15(11):1017–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, et al. Neutrophil extracellular traps profiles in sufferers with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol. 2020;47(3):377–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinod Ok, Claessen A, Martens C, Krauel Ok, Velásquez Pereira LC, Witsch J, et al. NET burden in left atrial blood is related to biomarkers of thrombosis and cardiac damage in sufferers with enlarged left atria. Clin Res Cardiol. 2024. https://doi.org/10.1007/s00392-024-02464-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Zhang J, Gu H, Yang Y, Zhang H, Miao C. Perioperative NETosis and most cancers development: present proof and future views. Curr Oncol Rep. 2024. https://doi.org/10.1007/s11912-024-01573-y.

    Article 
    PubMed 

    Google Scholar
     

  • Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev. 2024;209: 115316.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chellappan DK, Yee LW, Xuan KY, Kunalan Ok, Rou LC, Jean LS, et al. Concentrating on neutrophils utilizing novel drug supply methods in power respiratory illnesses. Drug Dev Res. 2020;81(4):419–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic goal of NETosis in illnesses. MedComm (2020). 2022;3(3): e162.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam MM, Takeyama N. Position of neutrophil extracellular traps in well being and illness pathophysiology: latest insights and advances. Int J Mol Sci. 2023;24(21):15805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baz AA, Hao H, Lan S, Li Z, Liu S, Chen S, et al. Neutrophil extracellular traps in bacterial infections and evasion methods. Entrance Immunol. 2024;15:1357967.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scozzi D, Liao F, Krupnick AS, Kreisel D, Gelman AE. The position of neutrophil extracellular traps in acute lung damage. Entrance Immunol. 2022;13: 953195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, et al. Neutrophil extracellular traps induce organ harm throughout experimental and scientific sepsis. PLoS ONE. 2016;11(2): e0148142.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps instantly induce epithelial and endothelial cell dying: a predominant position of histones. PLoS ONE. 2012;7(2): e32366.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging within the liver vasculature. Nat Commun. 2015;6:6673.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, et al. Neutrophil extracellular traps (NETs) in autoimmune illnesses: a complete evaluate. Autoimmun Rev. 2017;16(11):1160–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent course of. J Immunol. 2013;191(5):2647–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory illnesses. Nat Rev Immunol. 2023;23(5):274–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular entice: a key participant within the pathogenesis of autoimmune illnesses. Int Immunopharmacol. 2023;116: 109843.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisetsky DS. Distinctive interaction between antinuclear antibodies and nuclear molecules within the pathogenesis of systemic lupus erythematosus. Arthritis Rheumatol. 2024. https://doi.org/10.1002/artwork.42863.

    Article 
    PubMed 

    Google Scholar
     

  • van der Linden M, van den Hoogen LL, Westerlaken GHA, Fritsch-Stork RDE, van Roon JAG, Radstake T, et al. Neutrophil extracellular entice launch is related to antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford). 2018;57(7):1228–34.

    Article 
    PubMed 

    Google Scholar
     

  • Kang N, Liu X, Haneef Ok, Liu W. Previous and new damage-associated molecular patterns (DAMPs) in autoimmune illnesses. Rheumatol Autoimmunity. 2022;2(4):185–97.

    Article 
    CAS 

    Google Scholar
     

  • Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a supply of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E, et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol. 2017;2(10):eaag3358.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessenbrock Ok, Krumbholz M, Schönermarck U, Again W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of neutrophil extracellular entice formation and regulation in cancers. Int J Mol Sci. 2023;24(12):10265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristinziano L, Modestino L, Antonelli A, Marone G, Simon H-U, Varricchi G, et al. Neutrophil extracellular traps in most cancers. Semin Most cancers Biol. 2022;79:91–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podaza E, Sabbione F, Risnik D, Borge M, Almejún MB, Colado A, et al. Neutrophils from power lymphocytic leukemia sufferers exhibit an elevated capability to launch extracellular traps (NETs). Most cancers Immunol Immunother. 2017;66(1):77–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demers M, Krause DS, Schatzberg D, Martinod Ok, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to launch extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Huang Y, Ji Q, Fu S, Gu J, Tai N, et al. Interaction between extracellular matrix and neutrophils in illnesses. J Immunol Res. 2021;2021:8243378.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins-Cardoso Ok, Almeida VH, Bagri KM, Rossi MID, Mermelstein CS, König S, et al. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast most cancers cells by means of epithelial-mesenchymal transition. Cancers (Basel). 2020;12(6):1542.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen L, Guo L, Zhang W, Li Y, Jiang W, Di X, et al. Cooperation between the irritation and coagulation methods promotes the survival of circulating tumor cells in renal cell carcinoma sufferers. Entrance Oncol. 2019;9:504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Zou J, He Y, Pan Y, Yang G, Zhao H, et al. A story evaluate of circulating tumor cells clusters: a key morphology of most cancers cells in circulation promote hematogenous metastasis. Entrance Oncol. 2022;12: 944487.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil extracellular traps (NETs) in most cancers metastasis. Cancers (Basel). 2021;13(23):6131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaul ME, Fridlender ZG. Neutrophils as energetic regulators of the immune system within the tumor microenvironment. J Leukoc Biol. 2017;102(2):343–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Wu S, Zhao Y, Dinh T, Jiang D, Selfridge JE, et al. Neutrophil extracellular traps induced by chemotherapy inhibit tumor progress in murine fashions of colorectal most cancers. J Clin Make investments. 2024;134(5): e175031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai Ok, Cherfils-Vicini J, et al. Neutrophil extracellular traps shaped throughout chemotherapy confer therapy resistance through TGF-β activation. Most cancers Cell. 2023;41(4):757-75.e10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, et al. Position of neutrophil extracellular traps in radiation resistance of invasive bladder most cancers. Nat Commun. 2021;12(1):2776.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura Ok, Miyato H, Kanamaru R, Sadatomo A, Takahashi Ok, Ohzawa H, et al. Neutrophil extracellular traps (NETs) scale back the diffusion of doxorubicin which can attenuate its skill to induce apoptosis of ovarian most cancers cells. Heliyon. 2022;8(6): e09730.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins-Cardoso Ok, Maçao A, Souza JL, Silva AG, König S, Martins-Gonçalves R, et al. TF/PAR2 signaling axis helps the protumor impact of neutrophil extracellular traps (NETs) on human breast most cancers cells. Cancers (Basel). 2023;16(1):5.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, et al. Neutrophil extracellular traps (NETs) promote non-small cell lung most cancers metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway. Entrance Immunol. 2022;13: 867516.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Wu C, Wang X, Pan N, Solar X, Chen B, et al. Tumor cell-released autophagosomes (TRAPs) induce PD-L1-decorated NETs that suppress T-cell operate to advertise breast most cancers pulmonary metastasis. J Immunother Most cancers. 2024;12(6): e009082.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laridan E, Martinod Ok, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, et al. Neutrophil heterogeneity and its roles within the inflammatory community after ischemic stroke. Curr Neuropharmacol. 2023;21(3):621–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Xu Z, Liu Z. Affect of neutrophil extracellular traps on thrombosis formation: new findings and future perspective. Entrance Cell Infect Microbiol. 2022;12: 910908.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Wang Z, Su C, Liao Z, Pei Y, Wang J, et al. The impact of neutrophil extracellular traps in venous thrombosis. Thromb J. 2023;21(1):67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity through neutrophil serine proteases. Nat Med. 2010;16(8):887–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badimon L, Vilahur G. Neutrophil extracellular traps: a brand new supply of tissue think about atherothrombosis. Eur Coronary heart J. 2015;36(22):1364–6.

    Article 
    PubMed 

    Google Scholar
     

  • Xu X, Wu Y, Xu S, Yin Y, Ageno W, De Stefano V, et al. Medical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb J. 2022;20(1):63.

    Article 
    PubMed 

    Google Scholar
     

  • Rangaswamy C, Englert H, Deppermann C, Renné T. Polyanions in coagulation and thrombosis: give attention to polyphosphate and neutrophils extracellular traps. Thromb Haemost. 2021;121(8):1021–30.

    Article 
    PubMed 

    Google Scholar
     

  • Yao M, Ma J, Wu D, Fang C, Wang Z, Guo T, et al. Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to remedy. Entrance Immunol. 2023;14:1198952.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Xing Y, Zhang Y, Hua Y, Hu J, Bai Y. Neutrophil extracellular traps exacerbate ischemic mind harm. Mol Neurobiol. 2022;59(1):643–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, et al. Neutrophil cerebrovascular transmigration triggers speedy neurotoxicity by means of launch of proteases related to decondensed DNA. J Immunol. 2012;189(1):381–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Li X, Lin X, Liang H, Liu X, Zhang X, et al. Complement C5a induces the technology of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to advertise the event of arterial thrombosis. Thromb J. 2022;20(1):24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui BB, Tan CY, Schorn C, Tang HH, Liu Y, Zhao Y. Neutrophil extracellular traps in sterile irritation: the story after dying? Autoimmunity. 2012;45(8):593–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, et al. Community of extracellular traps within the pathogenesis of sterile power inflammatory illnesses: position of oxidative stress and potential scientific purposes. Antioxid Redox Sign. 2023. https://doi.org/10.1089/ars.2023.0329.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang F, Li Y, Wu J, Zhang J, Cao P, Solar Z, et al. The position of extracellular traps in ischemia reperfusion damage. Entrance Immunol. 2022;13:1022380.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi H, Yang S, Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Entrance Immunol. 2017;8:928.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keir HR, Chalmers JD. Neutrophil extracellular traps in power lung illness: implications for pathogenesis and remedy. Eur Respir Rev. 2022;31(163): 210241.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan S, Li M, Liu B, Ma Z, Yang Q. Neutrophil extracellular traps and pulmonary fibrosis: an replace. J Inflamm (Lond). 2023;20(1):2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Li Y, Tune C, Hu Y, Dai M, Liu B, et al. Neutrophil extracellular traps augmented alveolar macrophage pyroptosis through AIM2 inflammasome activation in LPS-induced ALI/ARDS. J Inflamm Res. 2021;14:4839–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hough KP, Curtiss ML, Blain TJ, Liu R-M, Trevor J, Deshane JS, et al. Airway transforming in bronchial asthma. Entrance Med. 2020;7:191.

    Article 

    Google Scholar
     

  • King PT, Dousha L. Neutrophil extracellular traps and respiratory illness. J Clin Med. 2024;13(8):2390.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Irritation. Neutrophil extracellular traps license macrophages for cytokine manufacturing in atherosclerosis. Science. 2015;349(6245):316–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem. 2024. https://doi.org/10.1007/s11010-024-04931-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drury B, Hardisty G, Grey RD, Ho GT. Neutrophil extracellular traps in inflammatory bowel illness: pathogenic mechanisms and scientific translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landén NX, Li D, Ståhle M. Transition from irritation to proliferation: a crucial step throughout wound therapeutic. Cell Mol Life Sci. 2016;73(20):3861–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis FM, Kimball A, Boniakowski A, Gallagher Ok. Dysfunctional wound therapeutic in diabetic foot ulcers: new crossroads. Curr Diab Rep. 2018;18(1):2.

    Article 
    PubMed 

    Google Scholar
     

  • Wong SL, Demers M, Martinod Ok, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to endure NETosis, which impairs wound therapeutic. Nat Med. 2015;21(7):815–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles particularly acknowledge the neutrophil extracellular traps (NETs) and promote their degradation. J Management Launch. 2023;354:109–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezaei N, Zadory M, Babity S, Marleau S, Brambilla D. Therapeutic purposes of nanoparticles focusing on neutrophil and extracellular traps. J Management Launch. 2023;358:636–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Marion TN, Liu Y, Zhang L, Cao X, Hu H, et al. Nanomaterial publicity induced neutrophil extracellular traps: a brand new goal in irritation and innate immunity. J Immunol Res. 2019;2019:3560180.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaseruk A, Bila G, Bilyy R. Nanoparticles for stimulation of neutrophil extracellular trap-mediated immunity. Eur J Immunol. 2024;54(4):2350582.

    Article 
    CAS 

    Google Scholar
     

  • Bilyy R, Bila G, Vishchur O, Vovk V, Herrmann M. Neutrophils as important gamers of immune response in the direction of nondegradable nanoparticles. Nanomaterials (Basel). 2020;10(7):1273.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovas M, Tanka-Salamon A, Beinrohr L, Voszka I, Szabó L, Molnár Ok, et al. Polyphosphate nanoparticles improve the fibrin stabilization by histones extra effectively than linear polyphosphates. PLoS ONE. 2022;17(4): e0266782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang H, Search engine marketing J, Yang EJ, Choi IH. Silver nanoparticles induce neutrophil extracellular traps through activation of PAD and neutrophil elastase. Biomolecules. 2021;11(2):317.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Wang N, Zhu Y, Lu Y, Chen Q, Fan S, et al. Gold nanoparticles synergize with bacterial lipopolysaccharide to boost class A scavenger receptor dependent particle uptake in neutrophils and increase neutrophil extracellular traps formation. Ecotoxicol Environ Saf. 2021;211: 111900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Mobile uptake and retention of nanoparticles: insights on particle properties and interplay with mobile parts. Mater At this time Commun. 2020;25: 101692.

    Article 
    CAS 

    Google Scholar
     

  • Bartneck M, Keul HA, Zwadlo-Klarwasser G, Groll J. Phagocytosis impartial extracellular nanoparticle clearance by human immune cells. Nano Lett. 2010;10(1):59–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golbek TW, Harper BJ, Harper SL, Baio JE. Form-dependent gold nanoparticle interactions with a mannequin cell membrane. Biointerphases. 2022;17(6): 061003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai J, Foresto-Neto O, Honarpisheh M, Steiger S, Nakazawa D, Popper B, et al. Particles of various styles and sizes induce neutrophil necroptosis adopted by the discharge of neutrophil extracellular trap-like chromatin. Sci Rep. 2017;7(1):15003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorvillo N, Cherpokova D, Martinod Ok, Wagner DD. Extracellular DNA NET-works with dire penalties for well being. Circ Res. 2019;125(4):470–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang T-L, Aljuffali IA, Hung C-F, Chen C-H, Fang J-Y. The influence of cationic stable lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Work together. 2015;235:106–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petretto E, Ong QK, Olgiati F, Mao T, Campomanes P, Stellacci F, et al. Monovalent ion-mediated charge-charge interactions drive aggregation of surface-functionalized gold nanoparticles. Nanoscale. 2022;14(40):15181–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotosh NY, Aliaseva SO, Malashenkova IK, Sorokoumova GM, Vasilov RG, Selischeva AA. Cationic liposomes trigger ROS technology and launch of neutrophil extracellular traps. Biochemistry (Moscow), Suppl Ser A Membr Cell Biol. 2019;13(1):40–9.

    Article 

    Google Scholar
     

  • Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative research of cytotoxicity, oxidative stress and genotoxicity induced by 4 typical nanomaterials: the position of particle measurement, form and composition. J Appl Toxicol. 2009;29(1):69–78.

    Article 
    PubMed 

    Google Scholar
     

  • Hou M, Wu X, Zhao Z, Deng Q, Chen Y, Yin L. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory therapy of myocardial ischemia reperfusion damage. Acta Biomater. 2022;143:344–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snoderly HT, Freshwater KA, Martinez de la Torre C, Panchal DM, Vito JN, Bennewitz MF. PEGylation of steel oxide nanoparticles modulates neutrophil extracellular entice formation. Biosensors (Basel). 2022;12(2):123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng X, Zhao J, Liu Ok, Wu C, Liang F. Stealth PEGylated chitosan polyelectrolyte complicated nanoparticles as drug supply service. J Biomater Sci Polym Ed. 2021;32(11):1387–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitri N, Rahme Ok, Fracasso G, Ghanem E. Human blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles. Nanotechnology. 2022;33(31): 315101.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Liu X, Han Z, Zhang X, Wang J, Wang Ok, et al. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. Ecotoxicol Environ Saf. 2019;183: 109508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, et al. Implications of protein corona on physico-chemical and organic properties of magnetic nanoparticles. Biomaterials. 2015;46:1–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SJ. Protein-nanoparticle interplay: corona formation and conformational modifications in proteins on nanoparticles. Int J Nanomed. 2020;15:5783–802.

    Article 
    CAS 

    Google Scholar
     

  • Kopac T. Protein corona, understanding the nanoparticle-protein interactions and future views: a crucial evaluate. Int J Biol Macromol. 2021;169:290–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilyy R, Unterweger H, Weigel B, Dumych T, Paryzhak S, Vovk V, et al. Inert coats of magnetic nanoparticles stop formation of occlusive intravascular co-aggregates with neutrophil extracellular traps. Entrance Immunol. 2018;9:2266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Dong M, Wu Y, Gong F, Wang Z, Xue L, et al. An elastase-inhibiting, plaque-targeting and neutrophil-hitchhiking liposome in opposition to atherosclerosis. Acta Biomater. 2024;173:470–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu XL, Lu KJ, Zhu ML, Du YL, Zhu YF, Zhang NN, et al. Sialic acid-functionalized ph-triggered micelles for enhanced tumor tissue accumulation and energetic mobile internalization of orthotopic hepatocarcinoma. ACS Appl Mater Interfaces. 2018;10(38):31903–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar S, Lv W, Li S, Zhang Q, He W, Min Z, et al. Good liposomal nanocarrier enhanced the therapy of ischemic stroke by means of neutrophil extracellular traps and cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway inhibition of ischemic penumbra. ACS Nano. 2023;17(18):17845–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Wang Z, Li J, Chen H, Guo X, Zhou S. Relieving thrombo-inflammation with acid-triggered polymersomes towards ischemic stroke remedy. Nano At this time. 2024;54: 102114.

    Article 
    CAS 

    Google Scholar
     

  • Cheng R, Wang S, Santos HA. Acid-labile chemical bonds-based nanoparticles for endosome escape and intracellular supply. Biomed Technol. 2023;3:52–8.

    Article 

    Google Scholar
     

  • Lim EK, Chung BH, Chung SJ. Current advances in pH-sensitive polymeric nanoparticles for sensible drug supply in most cancers remedy. Curr Drug Targets. 2018;19(4):300–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Driessche A, Kocere A, Everaert H, Nuhn L, Van Herck S, Griffiths G, et al. pH-sensitive hydrazone-linked doxorubicin nanogels through polymeric-activated ester scaffolds: synthesis, meeting, and in vitro and in vivo analysis in tumor-bearing zebrafish. Chem Mater. 2018;30(23):8587–96.

    Article 

    Google Scholar
     

  • Zhang J, Su L, Liu Z, Tang J, Zhang L, Li Z, et al. A responsive hydrogel modulates innate immune cascade fibrosis to advertise ocular floor reconstruction after chemical damage. J Management Launch. 2024;365:1124–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Q, He C, Xiao C, Chen X. Reactive oxygen species (ROS) responsive polymers for biomedical purposes. Macromol Biosci. 2016;16(5):635–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Noticed PE, Tao W, Li Y, Ji X, Bhasin S, et al. ROS-responsive polyprodrug nanoparticles for triggered drug supply and efficient most cancers remedy. Adv Mater. 2017;29(33):1700141.

    Article 

    Google Scholar
     

  • Wang CJ, Ko GR, Lee YY, Park J, Park W, Park TE, et al. Polymeric DNase-I nanozymes focusing on neutrophil extracellular traps for the therapy of bowel irritation. Nano Converg. 2024;11(1):6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu Q, Yao Ok, Syeda MZ, Wan J, Cheng Q, You Z, et al. Neutrophil focusing on platform reduces neutrophil extracellular traps for improved traumatic mind damage and stroke theranostics. Adv Sci (Weinh). 2024;11(21): e2308719.

    Article 
    PubMed 

    Google Scholar
     

  • Ocampo-Gallego JS, Pedroza-Escobar D, Caicedo-Ortega AR, Berumen-Murra MT, Novelo-Aguirre AL, de Sotelo-León RD, et al. Human neutrophil elastase inhibitors: classification, biological-synthetic sources and their relevance in associated illnesses. Fundam Clin Pharmacol. 2024;38(1):13–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Ok, Zhong L, Lin W, Zhao G, Pu W, Feng Z, et al. Pathogenesis-guided rational engineering of nanotherapies for the focused therapy of stomach aortic aneurysm by inhibiting neutrophilic irritation. ACS Nano. 2024;18(8):6650–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Xi L, Liu Y, Mak JCW, Mao S, Wang Z, et al. An inhalable hybrid biomimetic nanoplatform for sequential drug launch and transforming lung immune homeostasis in acute lung damage therapy. ACS Nano. 2023;17(12):11626–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Zhang D, Peng F, Xie J, Zhang X, Qian S, et al. Zinc-doped ferric oxyhydroxide nano-layer enhances the bactericidal exercise and osseointegration of a magnesium alloy by means of augmenting the formation of neutrophil extracellular traps. Acta Biomater. 2022;152:575–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin CJ, Hwang TL, Wang RYL, Nain A, Shih RH, Chang L, et al. Augmenting neutrophil extracellular traps with carbonized polymer dots: a possible therapy for bacterial sepsis. Small. 2024;20(27): e2307210.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Han Y, Su R, Liu Y, Chong G, Xu D, et al. Photosensitizer-laden neutrophils are managed remotely for most cancers immunotherapy. Cell Rep. 2020;33(11): 108499.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng J, Qi R, Dai C, Li G, Sang M. Enzyme catalysis biomotor engineering of neutrophils for nanodrug supply and cell-based thrombolytic remedy. ACS Nano. 2022;16(2):2330–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng X, Yu P, Zhou X, Zhu J, Han Y, Zhang C, et al. Enhanced tumor homing of pathogen-mimicking liposomes pushed by R848 stimulation: a brand new platform for synergistic oncology remedy. Acta Pharm Sin B. 2022;12(2):924–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Li S, Zhou H, Tang X, Wu Y, Jiang W, et al. Chemotaxis-driven supply of nano-pathogenoids for full eradication of tumors post-phototherapy. Nat Commun. 2020;11(1):1126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill micro organism. Science. 2004;303(5663):1532–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6(8):2569–612.

    CAS 
    PubMed 

    Google Scholar
     

  • Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, classes and views. Cell Demise Discov. 2023;9(1):465.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Ballot T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54(11):2450–64.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1): e1170.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cesta MC, Zippoli M, Marsiglia C, Gavioli EM, Cremonesi G, Khan A, et al. Neutrophil activation and neutrophil extracellular traps (NETs) in COVID-19 ARDS and immunothrombosis. Eur J Immunol. 2023;53(1): e2250010.

    Article 
    PubMed 

    Google Scholar
     

  • SenGupta S, Subramanian BC, Dad or mum CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol. 2019;105(3):449–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Qiao Q, Liu X, Hu Q, Yu Y, Qin X, et al. Engineered biomimetic nanovesicles based mostly on neutrophils for hierarchical focusing on remedy of acute respiratory misery syndrome. ACS Nano. 2024;18(2):1658–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug supply. Bioactive Mater. 2024;35:150–66.

    Article 
    CAS 

    Google Scholar
     

  • Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, et al. Neutrophils: between host defence, immune modulation, and tissue damage. PLoS Pathog. 2015;11(3): e1004651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutua V, Gershwin LJ. A evaluate of neutrophil extracellular traps (NETs) in illness: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du Y, Chen Y, Li F, Mao Z, Ding Y, Wang W. Genetically engineered mobile nanovesicle as focused DNase I supply system for the clearance of neutrophil extracellular traps in acute lung damage. Adv Sci (Weinh). 2023;10(32): e2303053.

    Article 
    PubMed 

    Google Scholar
     

  • Park HH, Park W, Lee YY, Kim H, Search engine marketing HS, Choi DW, et al. Bioinspired DNase-I-coated melanin-like nanospheres for modulation of infection-associated NETosis dysregulation. Adv Sci (Weinh). 2020;7(23):2001940.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong W, Liu D, Zhang T, You Q, Huang F, Wu J. Oral supply of staphylococcal nuclease ameliorates DSS induced ulcerative colitis in mice through degrading intestinal neutrophil extracellular traps. Ecotoxicol Environ Saf. 2021;215: 112161.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Ma J, Tune W, Zhao C. An injectable hydrogel to disrupt neutrophil extracellular traps for treating rheumatoid arthritis. Drug Deliv. 2023;30(1):2173332.

    Article 
    PubMed 

    Google Scholar
     

  • Tune J, Yang G, Tune Y, Jiang Z, Jiang Y, Luan Y, et al. Neutrophil Hitchhiking Biomimetic Nanozymes Prime Neuroprotective Results of Ischemic Stroke in a Tailor-made “Burning the Bridges” Method. Adv Func Mater. 2024;34:2315275.

    Article 
    CAS 

    Google Scholar
     

  • Kong J, Deng Y, Xu Y, Zhang P, Li L, Huang Y. A two-pronged supply technique disrupting constructive suggestions loop of neutrophil extracellular traps for metastasis suppression. ACS Nano. 2024;18(24):15432–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Hou S, Liang Q, He W, Li R, Wang H, et al. Localized degradation of neutrophil extracellular traps by photoregulated enzyme supply for most cancers immunotherapy and metastasis suppression. ACS Nano. 2022;16(2):2585–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin H, Lu H, Xiong Y, Ye L, Teng C, Cao X, et al. Tumor-associated neutrophil extracellular traps regulating nanocarrier-enhanced inhibition of malignant tumor progress and distant metastasis. ACS Appl Mater Interfaces. 2021;13(50):59683–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao Y, Li X, Liu Y, Liu D, Zhao X, Ji S, et al. Manganese doped nanosystem for degrading neutrophil extracellular traps and bettering chemotherapy effectivity to synergistically inhibit lung metastasis of breast most cancers. Chem Eng J. 2023;466: 142957.

    Article 
    CAS 

    Google Scholar
     

  • Zhu L, Li Z, Liu N, Solar H, Wang Y, Solar M. Dynamically deformable protein supply technique disassembles neutrophil extracellular traps to forestall liver metastasis. Adv Func Mater. 2021;31(42):2105089.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Chen C, Shi C, Zhao X, Gao L, Guo F, et al. Cell membrane derived liposomes loaded with DNase I goal neutrophil extracellular traps which inhibits colorectal most cancers liver metastases. J Management Launch. 2023;357:620–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y, Gong Y, Chen X, Zhang Q, Zhang X, He Y, et al. Injectable adhesive hemostatic gel with tumor acidity neutralizer and neutrophil extracellular traps lyase for enhancing adoptive NK cell remedy prevents post-resection recurrence of hepatocellular carcinoma. Biomaterials. 2022;284: 121506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou H, Zhu C, Zhao Q, Ni J, Zhang H, Yang G, et al. Wrecking neutrophil extracellular traps and antagonizing cancer-associated neurotransmitters by interpenetrating community hydrogels stop postsurgical most cancers relapse and metastases. Bioact Mater. 2024;39:14–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okeke EB, Louttit C, Fry C, Najafabadi AH, Han Ok, Nemzek J, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular entice formation and rescues mice from endotoxic shock. Biomaterials. 2020;238: 119836.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Liu S, Liu L, Xiu J, Zhang T, Chen D, et al. Nanoparticle-inhibited neutrophil elastase prevents neutrophil extracellular entice and alleviates rheumatoid arthritis in C57BL/6 mice. Nano At this time. 2023;50: 101880.

    Article 
    CAS 

    Google Scholar
     

  • Cruz MA, Bohinc D, Andraska EA, Alvikas J, Raghunathan S, Masters NA, et al. Nanomedicine platform for focusing on activated neutrophils and neutrophil-platelet complexes utilizing an α(1)-antitrypsin-derived peptide motif. Nat Nanotechnol. 2022;17(9):1004–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang H, Du Y, Zhu C, Zhang Z, Liao G, Liu L, et al. Nanoparticulate cationic poly(amino acid)s block most cancers metastases by destructing neutrophil extracellular traps. ACS Nano. 2023;17(3):2868–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu Z, Zhu Y, Gao W, Liu M, Wei Y, Xu C, et al. Tackling extreme neutrophilic irritation in airway issues with functionalized nanosheets. ACS Nano. 2024;18(9):7084–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Wang Y, Li J, Ying J, Mu Y, Zhang X, et al. Neutrophil extracellular traps-inhibiting and fouling-resistant polysulfoxides potently stop postoperative adhesion, tumor recurrence, and metastasis. Adv Mater. 2024;36(31): e2400894.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Li L, Yue M, Peng Q, Pu X, Zhou Y. Tracing immunological interplay in trimethylamine N-oxide hydrogel-derived zwitterionic microenvironment throughout promoted diabetic wound regeneration. Adv Mater. 2024;36: e2402738.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Liu M, Xiu J, Zhang T, Zhang B, Cun D, et al. Celastrol-loaded bovine serum albumin nanoparticles goal infected neutrophils for improved rheumatoid arthritis remedy. Acta Biomater. 2024;174:345–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di L, Thomas A, Switala L, Kalikasingh Ok, Lapping S, Nayak L, et al. Floor geometry of cargo-less gold nanoparticles is a driving drive for selective focusing on of activated neutrophils to cut back thrombosis in antiphospholipid syndrome. Nano Lett. 2023;23(21):9690–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei J, Zhou J, Kong L, Dai Y, Zhang X, Tune W, et al. An injectable photo-cross-linking silk hydrogel system augments diabetic wound therapeutic in orthopaedic surgical procedure by means of spatiotemporal immunomodulation. J Nanobiotechnol. 2022;20(1):232.

    Article 
    CAS 

    Google Scholar
     

  • Cai J, Tao H, Liu H, Hu Y, Han S, Pu W, et al. Intrinsically bioactive and biomimetic nanoparticle-derived therapies alleviate bronchial asthma by regulating a number of pathological cells. Bioact Mater. 2023;28:12–26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Ma Y, Hu Y, Wang P, Han S, Zhang X, et al. Web site-specific inhibition of neutrophilic irritation by low-dose nanotherapy for immunoregulatory therapy of bronchial asthma. Nano At this time. 2023;52: 101957.

    Article 
    CAS 

    Google Scholar
     

  • Yin N, Wang W, Pei F, Zhao Y, Liu C, Guo M, et al. A neutrophil hijacking nanoplatform reprograming NETosis for focused microglia polarizing mediated ischemic stroke therapy. Adv Sci (Weinh). 2024;11(17): e2305877.

    Article 
    PubMed 

    Google Scholar
     

  • Liu W, Lu H, Rao X, Li X, Lu H, Li F, et al. Enhanced therapy for cerebral ischemia-reperfusion damage of puerarin loading liposomes by means of neutrophils-mediated focused supply. Nano Res. 2021;14(12):4634–43.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes most cancers metastasis through CCDC25. Nature. 2020;583(7814):133–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Li T, Chen H, Yuan L, Ao H. Position and intervention of PAD4 in NETs in acute respiratory misery syndrome. Respir Res. 2024;25(1):63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, et al. Moonlighting chromatin: when DNA escapes nuclear management. Cell Demise Differ. 2023;30(4):861–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang CL, Wang Y, Jiang QL, Zeng Y, Yao QP, Liu X, et al. DNase I and sivelestat ameliorate experimental hindlimb ischemia-reperfusion damage by eliminating neutrophil extracellular traps. J Inflamm Res. 2023;16:707–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallberg LAE, Barlous Ok, Hawkins CL. Antioxidant methods to modulate NETosis and the discharge of neutrophil extracellular traps throughout power irritation. Antioxidants (Basel). 2023;12(2):478.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adelnia H, Blakey I, Little PJ, Ta HT. Poly(succinimide) nanoparticles as reservoirs for spontaneous and sustained synthesis of poly(aspartic acid) beneath physiological situations: potential for vascular calcification remedy and oral drug supply. J Mater Chem B. 2023;11(12):2650–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datla US, Vundurthy B, Hook JS, Menon N, Razmi Bagtash H, Shihabeddin T, et al. Quantifying neutrophil extracellular entice launch in a mixed infection-inflammation NET-array system. Lab Chip. 2024;24(3):615–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Hou Y. New kinds of magnetic nanoparticles for stimuli-responsive theranostic nanoplatforms. Adv Sci (Weinh). 2024;11(8): e2305459.

    Article 
    PubMed 

    Google Scholar
     

  • Najahi-Missaoui W, Arnold RD, Cummings BS. Protected nanoparticles: are we there but? Int J Mol Sci. 2020;22(1):385.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: a quantitative method for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev. 2023;194: 114708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, et al. A evaluate on microfluidic-assisted nanoparticle synthesis, and their purposes utilizing multiscale simulation strategies. Discov Nano. 2023;18(1):18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, et al. Harnessing nanomedicine for modulating microglial states within the central nervous system issues: challenges and alternatives. Biomed Pharmacother. 2024;177: 117011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrestha B, Tang L, Hood RL. Nanotechnology for personalised drugs. In: Gu N, editor. Nanomedicine. Singapore: Springer Nature Singapore; 2023. p. 555–603.

    Chapter 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles