-1.4 C
United States of America
Saturday, February 8, 2025

Unveiling the brand new chapter in nanobody engineering: advances in conventional development and AI-driven optimization | Journal of Nanobiotechnology


  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of sunshine chains. Nature. 1993;363:446–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dooley H, Flajnik MF. Antibody repertoire improvement in cartilaginous fish. Dev Comp Immunol. 2006;30:43–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal construction of a shark single-domain antibody V area in complicated with lysozyme. Science. 2004;305:1770–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salvador J-P, Vilaplana L, Marco M-P. Nanobody: excellent options for diagnostic and therapeutic functions. Anal Bioanal Chem. 2019;411:1703–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunz S, Durandy M, Seguin L, Feral CC. NANOBODY® Molecule, a Giga Medical Device in Nanodimensions. Int J Mol Sci. 2023;24:13229.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muyldermans S, Cambillau C, Wyns L. Recognition of antigens by single-domain antibody fragments: the superfluous luxurious of paired domains. Tendencies Biochem Sci. 2001;26:230–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B. Llama heavy-chain V areas encompass at the very least 4 distinct subfamilies revealing novel sequence options. Mol Immunol. 2000;37:579–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Genst E, Silence Ok, Decanniere Ok, Conrath Ok, Loris R, Kinne J, et al. Molecular foundation for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103:4586–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muyldermans S. A information to: era and design of nanobodies. FEBS J. 2021;288:2084–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies – an ongoing success story of small binders in organic analysis. J Cell Sci. 2023;136:jcs261395.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner TR, Rothbauer U. Nanobodies– Little helpers unravelling intracellular signaling. Free Radic Biol Med. 2021;176:46–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner TR, Blaess S, Leske IB, Frecot DI, Gramlich M, Traenkle B, et al. Two birds with one stone: human SIRPα nanobodies for purposeful modulation and in vivo imaging of myeloid cells. Entrance Immunol. 2023;14:1264179.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R C, S G, W C. Nanobody: the magic bullet. Mol Imaging? Theranostics. 2014;4.

  • Yang Y, Li F, Du L. Therapeutic nanobodies towards SARS-CoV-2 and different pathogenic human coronaviruses. J Nanobiotechnol. 2024;22:304.

    Article 

    Google Scholar
     

  • Minatel VM, Prudencio CR, Barraviera B, Ferreira RS. Nanobodies: a promising method to remedy of viral ailments. Entrance Immunol. 2023;14:1303353.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li D, Wang R, Liang T, Ren H, Park C, Tai C-H, et al. Camel nanobody-based B7-H3 CAR-T cells present excessive efficacy towards massive stable tumours. Nat Commun. 2023;14:5920.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aj ER-L. S. Transportation of single-domain antibodies by the blood-brain barrier. Biomolecules. 2021;11.

  • Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, et al. Choice, biophysical and structural evaluation of artificial nanobodies that successfully neutralize SARS-CoV-2. Nat Commun. 2020;11:5588.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, et al. Affinity maturation of antibody fragments: a assessment encompassing the event from random approaches to computational rational optimization. Int J Biol Macromol. 2023;247:125733.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincke C, Gutiérrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S. Technology of single area antibody fragments derived from camelids and era of manifold constructs. Strategies Mol Biol Clifton NJ. 2012;907:145–76.

    Article 
    CAS 

    Google Scholar
     

  • Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, et al. A common protocol for the era of Nanobodies for structural biology. Nat Protoc. 2014;9:674–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zupancic JM, Smith MD, Trzeciakiewicz H, Skinner ME, Ferris SP, Makowski EK, et al. Quantitative circulate cytometric choice of tau conformational nanobodies particular for pathological aggregates. Entrance Immunol. 2023;14:1164080.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor Ok, Rees R, et al. Neutralization of SARS-CoV-2 by extremely potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 2021;40:e107985.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rw RJSD, van HGPA, Jk R. S, Technology of heavy-chain-only antibodies in mice. Proc Natl Acad Sci U S A. 2006;103(41):15130–5.

  • Y T, Jl Y. B E, P H, L T, C J, Numerous human VH antibody fragments with bio-therapeutic properties from the Crescendo mouse. New Biotechnol. 2020;55:65–76.

  • Fan Q, Zhao R, Chen Y, Chi L, Huang Y, Liu M, et al. Affinity purification of mAb from serum-containing hybridoma tradition supernatant by a novel nanobody that discriminates mouse IgG from bovine IgG by recognizing the mouse kappa fixed area (mCK). J Chromatogr A. 2024;1724:464929.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabir JSM, Atef A, El-Domyati FM, Edris S, Hajrah N, Alzohairy AM, et al. Building of naïve camelids VHH repertoire in phage display-based library. C R Biol. 2014;337:244–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yan J, Wang P, Zhu M, Li G, Romão E, Xiong S, et al. Characterization and functions of nanobodies towards human procalcitonin chosen from a novel naïve Nanobody phage show library. J Nanobiotechnol. 2015;13:33.

    Article 

    Google Scholar
     

  • Olichon A, de Marco A. Preparation of a naïve library of camelid single area antibodies. Strategies Mol Biol Clifton NJ. 2012;911:65–78.

    Article 
    CAS 

    Google Scholar
     

  • Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T et al. Growth, high-throughput profiling, and Biopanning of a giant phage Show single-domain antibody Library. Int J Mol Sci. 2024;25(9):4791.

  • Ouyang Q, Wang L, Nasser IDE, Deng G, Zhang XK, You T, et al. [Preparation of interleukin-1β-targeted nanobodies and their effects on apoptosis in hypoxic cardiomyocytes of mice]. Zhonghua Yi Xue Za Zhi. 2024;104:2066–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Hoseinpoor R, Mousavi Gargari SL, Rasooli I, Rajabibazl M, Shahi B. Practical mutations in and characterization of VHH towards Helicobacter pylori urease. Appl Biochem Biotechnol. 2014;172:3079–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Y, Li Q, Fan H, Liao C, Zhang J, Hu H, et al. A multivalent and thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int J Nanomed. 2023;18:353–67.

    Article 
    CAS 

    Google Scholar
     

  • Kunz P, Flock T, Soler N, Zaiss M, Vincke C, Sterckx Y, et al. Exploiting sequence and stability data for steering nanobody stability engineering. Biochim Biophys Acta Gen Subj. 2017;1861:2196–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ms V-T, Me V-T, E M-A EM. NbThermo: a brand new thermostability database for nanobodies. Database J Biol Databases Curation. 2023;2023.

  • Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural insights into the design of artificial nanobody libraries. Mol Basel Switz. 2022;27:2198.


    Google Scholar
     

  • Liu B, Yang D. Simply established and multifunctional artificial nanobody libraries as Analysis Instruments. Int J Mol Sci. 2022;23:1482.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saerens D, Pellis M, Loris R, Pardon E, Dumoulin M, Matagne A, et al. Identification of a common VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J Mol Biol. 2005;352:597–607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju M-S, Min S-W, Lee SM, Kwon HS, Park JC, Lee JC, et al. An artificial library for fast isolation of humanized single-domain antibodies. Biotechnol Bioprocess Eng. 2017;22:239–47.

    Article 
    CAS 

    Google Scholar
     

  • Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, et al. NaLi-H1: a common artificial library of humanized nanobodies offering extremely purposeful antibodies and intrabodies. eLife. 2016;5:e16228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagoutte P, Bourhis J-M, Mariano N, Gueguen-Chaignon V, Vandroux D, Moali C, et al. Mono- and bi-specific nanobodies concentrating on the CUB domains of PCPE-1 scale back the Proteolytic Processing of Fibrillar Procollagens. J Mol Biol. 2024;436:168667.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Gentili M, Hacohen N, Regev A. A cell-free nanobody engineering platform quickly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun. 2021;12:5506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, et al. Yeast floor show platform for fast discovery of conformationally selective nanobodies. Nat Struct Mol Biol. 2018;25:289–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang H, Wilson PG, Sau M, Chawla U, Rodgers DW, Galperin E. Single-domain antibodies for purposeful concentrating on of the signaling scaffold Shoc2. Mol Immunol. 2020;118:110–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari D, Garrapa V, Locatelli M, Bolchi A. A Novel Nanobody Scaffold optimized for bacterial expression and appropriate for the development of Ribosome Show libraries. Mol Biotechnol. 2020;62:43–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contreras MA, Serrano-Rivero Y, González-Pose A, Salazar-Uribe J, Rubio-Carrasquilla M, Soares-Alves M, et al. Design and development of an artificial Nanobody Library: testing its potential with a single choice spherical technique. Mol Basel Switz. 2023;28:3708.

    CAS 

    Google Scholar
     

  • Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, et al. Artificial single area antibodies for the conformational trapping of membrane proteins. eLife. 2018;7:e34317.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan TZ, Garg P, Wang L, Willis JR, Kwan E, Hernandez AGL, et al. Speedy discovery of numerous neutralizing SARS-CoV-2 antibodies from large-scale artificial phage libraries. mAbs. 2022;14:2002236.

    Article 
    PubMed 

    Google Scholar
     

  • Kilisch M, Götzke H, Gere-Becker M, Crauel A, Opazo F, Frey S. Discovery and characterization of an ALFA-Tag-Particular Affinity Resin optimized for protein purification at low temperatures in physiological buffer. Biomolecules. 2021;11:269.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornish-Bowden A. Nomenclature for incompletely specified bases in nucleic acid sequences: suggestions 1984. Nucleic Acids Res. 1985;13:3021–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann I, Egloff P, Hutter CAJ, Kuhn BT, Bräuer P, Newstead S, et al. Technology of artificial nanobodies towards delicate proteins. Nat Protoc. 2020;15:1707–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Wang Y, Su W, Li S. Building of Artificial Nanobody Library in mammalian cells by dsDNA-Based mostly Methods*. Chembiochem Eur J Chem Biol. 2021;22:2957–65.

    Article 
    CAS 

    Google Scholar
     

  • Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, et al. Absolutely artificial platform to quickly generate tetravalent bispecific nanobody-based immunoglobulins. Proc Natl Acad Sci U S A. 2023;120:e2216612120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi X, Zhang X, Pan S, Yu Y, Shi Y, Lin T, et al. An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants. Sign Transduct Goal Ther. 2022;7:44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Huang H. Expression of single-domain antibody in several techniques. Appl Microbiol Biotechnol. 2018;102:539–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska Ok, Gaffke L, Węgrzyn G. Phage show and different peptide show applied sciences. FEMS Microbiol Rev. 2022;46:fuab052.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith GP. Filamentous Fusion Phage: Novel expression vectors that show cloned antigens on the Virion Floor. Science. 1985;228:1315–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sioud M. Phage show libraries: from binders to focused drug supply and human therapeutics. Mol Biotechnol. 2019;61:286–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin B-Ok, Odongo S, Radwanska M, Magez S, NANOBODIES®. A assessment of diagnostic and therapeutic functions. Int J Mol Sci. 2023;24:5994.

  • Castel G, Chtéoui M, Heyd B, Tordo N. Phage Show of combinatorial peptide libraries: software to Antiviral Analysis. Molecules. 2011;16:3499–518.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, et al. Advances in antibody phage show expertise. Drug Discov At this time. 2022;27:2151–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeboah M, Papagregoriou C, Jones DC, Chan HTC, Hu G, McPartlan JS, et al. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Perception. 2020;5:e141593.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Even-Desrumeaux Ok, Nevoltris D, Lavaut MN, Alim Ok, Borg J-P, Audebert S, et al. Masked choice: an easy and versatile method for the choice of binders towards particular epitopes and differentially expressed proteins by phage show. Mol Cell Proteom MCP. 2014;13:653–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasqualini R, Ruoslahti E. Organ concentrating on in vivo utilizing phage show peptide libraries. Nature. 1996;380:364–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hess KL, Jewell CM. Phage show as a device for vaccine and immunotherapy improvement. Bioeng Transl Med. 2020;5:e10142.

    Article 
    PubMed 

    Google Scholar
     

  • Marintcheva B. Harnessing the facility of viruses. London; San Diego, CA: Tutorial Press, an imprint of Elsevier; 2018.

  • Shim H. Antibody phage Show. In: Lim TS, editor. Recombinant antibodies for infectious ailments. Cham: Springer Worldwide Publishing; 2017. pp. 21–34.

    Chapter 

    Google Scholar
     

  • Qasemi M, Behdani M, Shokrgozar MA, Molla-Kazemiha V, Mohseni-Kuchesfahani H, Habibi-Anbouhi M. Building and expression of an anti-VEGFR2 Nanobody-Fc fusionbody in NS0 host cell. Protein Expr Purif. 2016;123:19–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malaquias ADM, Marques LEC, Pereira SS, de Freitas Fernandes C, Maranhão AQ, Stabeli RG, et al. A assessment of plant-based expression techniques as a platform for single-domain recombinant antibody manufacturing. Int J Biol Macromol. 2021;193:1130–7. Pt B.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weng D, Yang L, Xie Y. Engineering and characterization of GFP-targeting nanobody: expression, purification, and post-translational modification evaluation. Protein Expr Purif. 2024;221:106501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheehan J, Marasco WA. Phage and yeast Show. Microbiol Spectr. 2015;3:AID–0028.

    Article 
    PubMed 

    Google Scholar
     

  • Hoogenboom HR. Deciding on and screening recombinant antibody libraries. Nat Biotechnol. 2005;23:1105–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Fundamentals of antibody phage Show Know-how. Toxins. 2018;10:236.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wang X, Zhou N-Y, Ding J. Yeast floor show expertise: mechanisms, functions, and views. Biotechnol Adv. 2024;76:108422.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gera N, Hussain M, Rao BM. Protein choice utilizing yeast floor show. Strategies San Diego Calif. 2013;60:15–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mustafa MI, Alzebair AA, Mohammed A. Growth of recombinant antibody by yeast floor Show Know-how. Curr Res Pharmacol Drug Discov. 2024;6:100174.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei M, Zhou Y, Peng W, Yu C, Ma L, Zhang G, et al. Software of modified yeast floor show applied sciences for non-antibody protein engineering. Microbiol Res. 2017;196:118–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orfao A, Ruiz-Arguelles A. Basic ideas about cell sorting strategies. Clin Biochem. 1996;29:5–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Pourcq Ok, De Schutter Ok, Callewaert N. Engineering of glycosylation in yeast and different fungi: present state and views. Appl Microbiol Biotechnol. 2010;87:1617–31.

    Article 
    PubMed 

    Google Scholar
     

  • Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, et al. An summary on show techniques (phage, bacterial, and yeast show) for manufacturing of anticancer antibodies; benefits and drawbacks. Int J Biol Macromol. 2022;208:421–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Meyer T, Laukens B, Nolf J, Van Lerberge E, De Rycke R, De Beuckelaer A, et al. Comparability of VHH-Fc antibody manufacturing in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnol J. 2015;13:938–47.

    Article 
    PubMed 

    Google Scholar
     

  • Holland Ok, Blazeck J. Excessive throughput mutagenesis and screening for yeast engineering. J Biol Eng. 2022;16:37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrara F, Soluri MF, Sblattero D. Recombinant antibody alternatives by combining phage and yeast Show. Strategies Mol Biol Clifton NJ. 2019;1904:339–52.

    Article 
    CAS 

    Google Scholar
     

  • Salema V, Fernández LÁ. Escherichia coli floor show for the choice of nanobodies. Microb Biotechnol. 2017;10:1468–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salema V, Marín E, Martínez-Arteaga R, Ruano-Gallego D, Fraile S, Margolles Y, et al. Number of single area antibodies from immune libraries displayed on the floor of E. Coli cells with two β-domains of reverse topologies. PLoS ONE. 2013;8:e75126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francisco JA, Campbell R, Iverson BL, Georgiou G. Manufacturing and fluorescence-activated cell sorting of Escherichia coli expressing a purposeful antibody fragment on the exterior floor. Proc Natl Acad Sci U S A. 1993;90:10444–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang TH, Seong BL. Solubility, Stability, and avidity of recombinant antibody fragments expressed in microorganisms. Entrance Microbiol. 2020;11:1927.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Missiakas D, Betton JM, Raina S. New parts of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol. 1996;21:871–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shriver-Lake LC, Goldman ER, Zabetakis D, Anderson GP. Improved manufacturing of single area antibodies with two disulfide bonds by co-expression of chaperone proteins within the Escherichia coli periplasm. J Immunol Strategies. 2017;443:64–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Åslund F, Berndt KD, Holmgren A. Redox Potentials of Glutaredoxins and different Thiol-Disulfide oxidoreductases of the Thioredoxin Superfamily decided by Direct Protein-Protein Redox Equilibria. J Biol Chem. 1997;272:30780–6.

    Article 
    PubMed 

    Google Scholar
     

  • Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli expression system in producing antibody recombinant fragments. Int J Mol Sci. 2020;21:6324.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta SK, Shukla P. Microbial platform expertise for recombinant antibody fragment manufacturing: a assessment. Crit Rev Microbiol. 2017;43:31–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen T, Wang Ok, Chi X, Zhou L, Li J, Liu L, et al. Building of a bacterial floor show system based mostly on outer membrane protein F. Microb Cell Factories. 2019;18:70.

    Article 

    Google Scholar
     

  • Palma JA, Bunyatov MI, Hulbert SW, Jewett MC, DeLisa MP. Bacterial glycoengineering: cell-based and cell-free routes for producing biopharmaceuticals with custom-made glycosylation. Curr Opin Chem Biol. 2024;81:102500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, et al. Rising a round economic system with fungal biotechnology: a white paper. Fungal Biol Biotechnol. 2020;7:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevalainen H, Peterson R, Curach N. Overview of Gene expression utilizing filamentous Fungi. Curr Protoc Protein Sci. 2018;92:e55.

    Article 
    PubMed 

    Google Scholar
     

  • Deshpande N, Wilkins MR, Packer N, Nevalainen H. Protein glycosylation pathways in filamentous fungi. Glycobiology. 2008;18:626–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. Adv Appl Microbiol. 2012;81:1–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and extremely environment friendly methodology for genetic transformation of fungi using shock waves. Fungal Genet Biol FG B. 2013;56:9–16.

    Article 
    PubMed 

    Google Scholar
     

  • Solar Z, Wu Y, Lengthy S, Feng S, Jia X, Hu Y, et al. Aspergillus oryzae as a cell manufacturing facility: analysis and functions in Industrial Manufacturing. J Fungi Basel Switz. 2024;10:248.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Garrigues S, de Vries RP. Heterologous protein manufacturing in filamentous fungi. Appl Microbiol Biotechnol. 2023;107:5019–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Messer A, Butler DC. Optimizing intracellular antibodies (intrabodies/nanobodies) to deal with neurodegenerative problems. Neurobiol Dis. 2020;134:104619.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rashid MH. Full-length recombinant antibodies from Escherichia coli: manufacturing, characterization, effector perform (fc) engineering, and scientific analysis. mAbs. 2022;14:2111748.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Lu J, Zhang G, Liu S, Zhou J, Du G, et al. Latest advances within the improvement of aspergillus for protein manufacturing. Bioresour Technol. 2022;348:126768.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Den Hombergh JPTW, Van De Vondervoort PJI, Fraissinet-Tachet L, Visser J. Aspergillus as a bunch for heterologous protein manufacturing: the issue of proteases. Tendencies Biotechnol. 1997;15:256–63.

    Article 
    PubMed 

    Google Scholar
     

  • Fu H, Liang Y, Zhong X, Pan Z, Huang L, Zhang H, et al. Codon optimization with deep studying to reinforce protein expression. Sci Rep. 2020;10:17617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar X, Su X. Harnessing the data of protein secretion for enhanced protein manufacturing in filamentous fungi. World J Microbiol Biotechnol. 2019;35:54.

    Article 
    PubMed 

    Google Scholar
     

  • Driouch H, Roth A, Dersch P, Wittmann C. Optimized bioprocess for manufacturing of fructofuranosidase by recombinant aspergillus Niger. Appl Microbiol Biotechnol. 2010;87:2011–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aerts D, Hauer EE, Ohm RA, Arentshorst M, Teertstra WR, Phippen C, et al. The FlbA-regulated predicted transcription issue Fum21 of Aspergillus Niger is concerned in fumonisin manufacturing. Antonie Van Leeuwenhoek. 2018;111:311–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakekar AA, Gaikwad SR, Punekar NS. Protein expression and secretion by filamentous fungi. J Biosci. 2021;46:5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • SECRETERS – European Union’s Horizon 2020 Programme. Digital handle: l.rettenbacher@kent.ac.uk, SECRETERS – European Union’s Horizon 2020 Programme. Microbial protein cell factories struggle again? Tendencies Biotechnol. 2022;40:576–90.

  • Bandaranayake AD, Almo SC. Latest advances in mammalian protein manufacturing. FEBS Lett. 2014;588:253–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Developments in mammalian cell transient gene expression (TGE) expertise for accelerated manufacturing of biologics. Crit Rev Biotechnol. 2018;38:918–40.

    Article 
    PubMed 

    Google Scholar
     

  • O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, et al. Mammalian cell tradition for manufacturing of recombinant proteins: a assessment of the crucial steps of their biomanufacturing. Biotechnol Adv. 2020;43:107552.

    Article 
    PubMed 

    Google Scholar
     

  • Xu W-J, Lin Y, Mi C-L, Pang J-Y, Wang T-Y. Progress in fed-batch tradition for recombinant protein manufacturing in CHO cells. Appl Microbiol Biotechnol. 2023;107:1063–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritter A, Voedisch B, Wienberg J, Wilms B, Geisse S, Jostock T, et al. Deletion of a telomeric area on chromosome 8 correlates with larger productiveness and stability of CHO cell traces. Biotechnol Bioeng. 2016;113:1084–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, et al. Manipulating gene expression ranges in mammalian cell factories: a top level view of artificial molecular toolboxes to realize multiplexed management. New Biotechnol. 2024;79:1–19.

    Article 
    CAS 

    Google Scholar
     

  • Tejwani V, Andersen MR, Nam JH, Sharfstein ST. Glycoengineering in CHO cells: advances in Programs Biology. Biotechnol J. 2018;13:e1700234.

    Article 
    PubMed 

    Google Scholar
     

  • Rattanapisit Ok, Phakham T, Buranapraditkun S, Siriwattananon Ok, Boonkrai C, Pisitkun T, et al. Structural and in Vitro purposeful analyses of Novel Plant-Produced Anti-human PD1 antibody. Sci Rep. 2019;9:15205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobhal S, Chaudhary VK, Singh A, Pandey D, Kumar A, Agrawal S. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum Cv. Xanthi Mol Biol Rep. 2013;40:7027–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satheeshkumar PK. Expression of single chain variable fragment (scFv) molecules in crops: a Complete Replace. Mol Biotechnol. 2020;62:151–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, et al. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol. 2009;9:79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D, Ma J, Solar D, Li H, Jiang C, Li X. Expression of bioactive anti-CD20 antibody fragments and induction of ER stress response in Arabidopsis seeds. Appl Microbiol Biotechnol. 2015;99:6753–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rech E, Vianna G, Murad A, Cunha N, Lacorte C, Araujo A, et al. Recombinant proteins in crops. BMC Proc. 2014;8:O1.

    Article 
    PubMed Central 

    Google Scholar
     

  • De Greve H, Virdi V, Bakshi S, Depicker A. Simplified monomeric VHH-Fc antibodies present new alternatives for passive immunization. Curr Opin Biotechnol. 2020;61:96–101.

    Article 
    PubMed 

    Google Scholar
     

  • Hanania U, Ariel T, Tekoah Y, Fux L, Sheva M, Gubbay Y, et al. Institution of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the manufacturing of biotherapeutic proteins. Plant Biotechnol J. 2017;15:1120–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SR, Lee J-H, Kim Ok, Kim TM, Lee SH, Choo Y-Ok, et al. Expression and in Vitro perform of Anti-breast Most cancers Llama-based single area antibody VHH expressed in Tobacco crops. Int J Mol Sci. 2020;21:1354.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgue G, Twyman RM, Beiss V, Fischer R, Sack M. Antibodies from crops for bionanomaterials. WIREs Nanomed Nanobiotechnol. 2017;9:e1462.

    Article 

    Google Scholar
     

  • Harrison RL, Jarvis DL. Protein N-glycosylation within the baculovirus-insect cell expression system and engineering of insect cells to provide mammalianized recombinant glycoproteins. Adv Virus Res. 2006;68:159–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geisler C, Jarvis DL. Modern use of a bacterial enzyme concerned in sialic acid degradation to provoke sialic acid biosynthesis in glycoengineered insect cells. Metab Eng. 2012;14:642–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell protein expression: from darkish horse to mainstream expertise. J Gen Virol. 2015;96:6–23.

    Article 
    PubMed 

    Google Scholar
     

  • Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, et al. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol. 2006;151:1257–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitts PA, Possee RD. A way for producing recombinant baculovirus expression vectors at excessive frequency. Biotechniques. 1993;14:810–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Pijlman GP, van den Born E, Martens DE, Vlak JM. Autographa californica baculoviruses with massive genomic deletions are quickly generated in contaminated insect cells. Virology. 2001;283:132–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pijlman GP, van Schijndel JE, Vlak JM. Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol. 2003;84:2669–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Possee RD, Hitchman RB, Richards KS, Mann SG, Siaterli E, Nixon CP, et al. Technology of baculovirus vectors for the high-throughput manufacturing of proteins in insect cells. Biotechnol Bioeng. 2008;101:1115–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundhada H, Seoane JM, Schneider Ok, Koza A, Christensen HB, Klein T, et al. Elevated manufacturing of L-serine in Escherichia coli by Adaptive Laboratory Evolution. Metab Eng. 2017;39:141–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein manufacturing utilizing the baculovirus-insect cell expression system. Biotechnol Prog. 2014;30:1–18.

    Article 
    PubMed 

    Google Scholar
     

  • Aucoin MG, Mena JA, Kamen AA. Bioprocessing of baculovirus vectors: a assessment. Curr Gene Ther. 2010;10:174–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox MMJ. Improvements within the insect cell expression system for industrial recombinant vaccine Antigen Manufacturing. Vaccines. 2021;9:1504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Z, Deng J, Fan D. Inexperienced biomanufacturing in recombinant collagen biosynthesis: tendencies and choice in numerous expression techniques. Biomater Sci. 2023;11:5439–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contreras-Llano LE, Tan C. Excessive-throughput screening of biomolecules utilizing cell-free gene expression techniques. Synth Biol. 2018;3:ysy012.

    Article 
    CAS 

    Google Scholar
     

  • Kunamneni A, Ogaugwu C, Bradfute S, Durvasula R. Ribosome Show Know-how: functions in Illness prognosis and management. Antibodies Basel Switz. 2020;9:28.

    Article 
    CAS 

    Google Scholar
     

  • Li R, Kang G, Hu M, Huang H. Ribosome Show: a potent Show Know-how used for choosing and evolving particular binders with Desired Properties. Mol Biotechnol. 2019;61:60–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome show and mRNA show. J Immunol Strategies. 2004;290:51–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan R, Jewett MC. Evolution of translation initiation sequences utilizing in vitro yeast ribosome show. Biotechnol Bioeng. 2016;113:1777–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Douthwaite JA, Jackson RH, editors. Ribosome Show and Associated applied sciences: strategies and protocols. New York, NY: Springer New York; 2012.


    Google Scholar
     

  • Dreier B, Plückthun A. Speedy Number of Excessive-Affinity antibody scFv fragments utilizing Ribosome Show. In: Nevoltris D, Chames P, editors. Antibody Engineering. New York, NY: Springer New York; 2018. pp. 235–68.

    Chapter 

    Google Scholar
     

  • Cong C, Yu X, He Y, Dai Y, Zhang Y, Wang M, et al. Cell-free ribosome show and choice of antibodies on arrayed antigens. Proteomics. 2016;16:1291–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee Ok, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free biosynthesis of Peptidomimetics. Biotechnol Bioprocess Eng BBE. 2023;28:905–21.

  • Probability R, Kang AS. Eukaryotic ribosome show for antibody discovery: a assessment. Hum Antibodies. 2024;32:107–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahnd C, Amstutz P, Plückthun A. Ribosome show: choosing and evolving proteins in vitro that particularly bind to a goal. Nat Strategies. 2007;4:269–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harel Inbar N, Benhar I. Number of antibodies from artificial antibody libraries. Arch Biochem Biophys. 2012;526:87–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheedy C, MacKenzie CR, Corridor JC. Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv. 2007;25:333–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The manufacturing of the primary purposeful antibody mimetic in larger crops: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res. 2022;55:32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanes J, Schaffitzel C, Knappik A, Plückthun A. Picomolar affinity antibodies from a completely artificial naive library chosen and advanced by ribosome show. Nat Biotechnol. 2000;18:1287–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Currin A, Swainston N, Day PJ, Kell DB. Artificial biology for the directed evolution of protein biocatalysts: navigating sequence house intelligently. Chem Soc Rev. 2015;44:1172–239.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi TT, Austin RJ, Roberts RW. mRNA show: ligand discovery, interplay evaluation and past. Tendencies Biochem Sci. 2003;28:159–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golynskiy MV, Haugner JC, Morelli A, Morrone D, Seelig B. In vitro evolution of enzymes. Strategies Mol Biol Clifton NJ. 2013;978:73–92.

    Article 
    CAS 

    Google Scholar
     

  • Gold L. mRNA show: variety issues throughout in vitro choice. Proc Natl Acad Sci U S A. 2001;98:4825–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H. In vitro virus: bonding of mRNA bearing puromycin on the 3’-terminal finish to the C-terminal finish of its encoded protein on the ribosome in vitro. FEBS Lett. 1997;414:405–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. Phage show as a expertise delivering on the promise of peptide drug discovery. Drug Discov At this time. 2013;18:1144–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J-H, Tune HS, Park TH, Lee S-G, Kim B-G. Screening of cell-penetrating peptides utilizing mRNA show. Biotechnol J. 2012;7:387–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cotham VC, Horton AP, Lee J, Georgiou G, Brodbelt JS. Center-Down 193-nm Ultraviolet Photodissociation for unambiguous antibody identification and its implications for immunoproteomic evaluation. Anal Chem. 2017;89:6498–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egloff P, Zimmermann I, Arnold FM, Hutter CAJ, Morger D, Opitz L, et al. Engineered peptide barcodes for in-depth analyses of binding protein libraries. Nat Strategies. 2019;16:421–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutter CAJ, Timachi MH, Hürlimann LM, Zimmermann I, Egloff P, Göddeke H, et al. The extracellular gate shapes the power profile of an ABC exporter. Nat Commun. 2019;10:2260.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, et al. A strong pipeline for fast manufacturing of versatile nanobody repertoires. Nat Strategies. 2014;11:1253–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TYK, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011;333:1633–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jovčevska I, Muyldermans S. The therapeutic potential of Nanobodies. BioDrugs Clin Immunother Biopharm Gene Ther. 2020;34:11–26.


    Google Scholar
     

  • Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP. Animal immunization, in Vitro Show Applied sciences, and machine studying for antibody Discovery. Tendencies Biotechnol. 2021;39:1263–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeCun Y, Bengio Y, Hinton G. Deep studying. Nature. 2015;521:436–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Cui P, Zhu W. Deep studying on Graphs: a Survey. IEEE Trans Knowl Information Eng. 2022;34:249–70.

    Article 

    Google Scholar
     

  • Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A common SNP and small-indel variant caller utilizing deep neural networks. Nat Biotechnol. 2018;36:983–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep studying in genomics. Nat Genet. 2019;51:12–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of pores and skin most cancers with deep neural networks. Nature. 2017;542:115–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wainberg M, Merico D, Delong A, Frey BJ. Deep studying in biomedicine. Nat Biotechnol. 2018;36:829–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tunyasuvunakool Ok, Adler J, Wu Z, Inexperienced T, Zielinski M, Žídek A, et al. Extremely correct protein construction prediction for the human proteome. Nature. 2021;596:590–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper J, Evans R, Pritzel A, Inexperienced T, Figurnov M, Ronneberger O, et al. Extremely correct protein construction prediction with AlphaFold. Nature. 2021;596:583–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagdonas H, Fogarty CA, Fadda E, Agirre J. The case for post-predictional modifications within the AlphaFold protein construction database. Nat Struct Mol Biol. 2021;28:869–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, et al. Rethinking drug design within the synthetic intelligence period. Nat Rev Drug Discov. 2020;19:353–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stokes JM, Yang Ok, Swanson Ok, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep Studying Strategy to Antibiotic Discovery. Cell. 2020;180:688–e70213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muyldermans S. Nanobodies: pure single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Zhang J, Fang L. Subsequent-generation sequencing and Proteomics-Enabled Strategy for Speedy and Excessive-Throughput isolation of Virus-Neutralizing Nanobodies. Strategies Mol Biol Clifton NJ. 2024;2824:135–46.

    Article 

    Google Scholar
     

  • Cohen T, Halfon M, Schneidman-Duhovny D, NanoNet. Speedy and correct end-to-end nanobody modeling by deep studying. Entrance Immunol. 2022;13:958584.

  • Alexander E, Leong KW. Discovery of nanobodies: a complete assessment of their functions and potential over the previous 5 years. J Nanobiotechnol. 2024;22:661.

    Article 

    Google Scholar
     

  • Li S, Meng X, Li R, Huang B, Wang X. NanoBERTa-ASP: predicting nanobody paratope based mostly on a pretrained RoBERTa mannequin. BMC Bioinformatics. 2024;25:122.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hacisuleyman A, Erman B, ModiBodies:. A computational methodology for modifying nanobodies in nanobody-antigen complexes to enhance binding affinity and specificity. J Biol Phys. 2020;46:189–208.

  • Sardar U, Ali S, Ayub MS, Shoaib M, Bashir Ok, Khan IU et al. Sequence-based nanobody-antigen binding prediction. 2023.

  • De Keyser P, Kalichuk V, Zögg T, et al. A biosensor-based phage show choice methodology for automated, high-throughput Nanobody discovery. Biosens Bioelectron. 2025;271:116951.

  • Gallo E. The rise of massive knowledge: deep sequencing-driven computational strategies are reworking the panorama of artificial antibody design. J Biomed Sci. 2024;31:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo J, Li J, Zhang R, Xu L, Chen H, Jia X, et al. Institute assortment and evaluation of Nanobodies (iCAN): a complete database and evaluation platform for nanobodies. BMC Genomics. 2017;18:797.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deszyński P, Młokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, et al. INDI—built-in nanobody database for immunoinformatics. Nucleic Acids Res. 2022;50:D1273–81.

    Article 
    PubMed 

    Google Scholar
     

  • Xiong S, Liu Z, Yi X, Liu Ok, Huang B, Wang X. NanoLAS: a complete nanobody database with knowledge integration, consolidation and software. Database. 2024;2024:baae003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdés-Tresanco MS, Valdés-Tresanco ME, Molina-Abad E, Moreno E. NbThermo: a brand new thermostability database for nanobodies. Database J Biol Databases Curation. 2023;2023:baad021.


    Google Scholar
     

  • Schneider C, Raybould MIJ, Deane CM. SAbDab within the age of biotherapeutics: updates together with SAbDab-nano, the nanobody construction tracker. Nucleic Acids Res. 2022;50:D1368–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilton EE, Opyr MP, Kailasam S, Kothe RF, Wieden H-J. sdAb-DB: the one area antibody database. ACS Synth Biol. 2018;7:2480–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gło N. Statistical mechanics of protein folding, unfolding and fluctuation. Adv Biophys. 1976;7:65–113.

  • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones DT. GenTHREADER: an environment friendly and dependable protein fold recognition methodology for genomic sequences1. J Mol Biol. 1999;287:797–815.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghouzam Y, Postic G, de Brevern AG, Gelly J-C. Enhancing protein fold recognition with hybrid profiles combining sequence and construction evolution. Bioinforma Oxf Engl. 2015;31:3782–9.

    Article 
    CAS 

    Google Scholar
     

  • Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein construction prediction utilizing Rosetta. Strategies Enzymol. 2004;383:66–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein construction and performance prediction. Nat Strategies. 2015;12:7–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bystroff C, Shao Y. Absolutely automated ab initio protein construction prediction utilizing I-SITES, HMMSTR and ROSETTA. Bioinforma Oxf Engl. 2002;18(Suppl 1):S54–61.

    Article 

    Google Scholar
     

  • Xu J. Distance-based protein folding powered by deep studying. Proc Natl Acad Sci U S A. 2019;116:16856–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A et al. Transformers: state-of-the-art pure language processing. In: Liu Q, Schlangen D, editors. Proceedings of the 2020 Convention on Empirical Strategies in Pure Language Processing: System Demonstrations. On-line: Affiliation for Computational Linguistics; 2020. pp. 38–45.

  • Mitchell LS, Colwell LJ. Evaluation of nanobody paratopes reveals better variety than classical antibodies. Protein Eng Des Sel PEDS. 2018;31:267–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zavrtanik U, Lukan J, Loris R, Lah J, Hadži S. Structural foundation of Epitope Recognition by Heavy-Chain Camelid Antibodies. J Mol Biol. 2018;430:4369–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto Ok, Nagatoishi S, Nakakido M, Kuroda D, Tsumoto Ok. Conformational options and interplay mechanisms of VHH antibodies with β-hairpin-like CDR-H3: a case of Nb8-HigB2 interplay. 2023;32(12):e4827.

  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Correct prediction of protein buildings and interactions utilizing a three-track neural community. Science. 2021;373:871–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu R, Ding F, Wang R, Shen R, Zhang X, Luo S et al. Excessive-resolution de novo construction prediction from main sequence. bioRxiv. 2022:500999.

  • Lin Z, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein construction with a language mannequin. Science. 2023;379(6637):1123–30.

  • Ahdritz G, Bouatta N, Floristean C, et al. OpenFold: retraining AlphaFold2 yields new insights into its studying mechanisms and capability for generalization. Nat Strategies. 2024;21(8):1514–24.

  • Ruffolo JA, Chu L-S, Mahajan SP, Grey JJ. Quick, correct antibody construction prediction from deep studying on large set of pure antibodies. Nat Commun. 2023;14:2389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenlay H, Dreyer FA, Chopping D, Nissley D, Deane CM. ABodyBuilder3: improved and scalable antibody construction predictions. 2024.

  • Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: deep-learning fashions for predicting the buildings of immune proteins. Commun Biol. 2023;6:575.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sircar A, Sanni KA, Shi J, Grey JJ. Evaluation and modeling of the Variable Area of Camelid single-domain antibodies. J Immunol. 2011;186:6357–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Qin X, Mi L-Z. Nanobodies: from construction to functions in non-injectable and bispecific biotherapeutic improvement. Nanoscale. 2022;14:7110–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A brand new antigen receptor gene household that undergoes rearrangement and intensive somatic diversification in sharks. Nature. 1995;374:168–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eshak F, Pion L, Scholler P, Nevoltris D, Chames P, Rondard P, et al. Epitope identification of an mGlu5 receptor Nanobody utilizing physics-based molecular modeling and deep studying strategies. J Chem Inf Mannequin. 2024;64:4436–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valdés-Tresanco MS, Valdés-Tresanco ME, Jiménez-Gutiérrez DE, Moreno E. Structural modeling of nanobodies: a Benchmark of State-of-the-art Synthetic Intelligence Packages. Mol Basel Switz. 2023;28:3991.


    Google Scholar
     

  • Chen H, Fan X, Zhu S, Pei Y, Zhang X, Zhang X, et al. Correct prediction of CDR-H3 loop buildings of antibodies with deep studying. eLife. 2024;12:RP91512.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody construction and performance: the idea for Engineering therapeutics. Antibodies Basel Switz. 2019;8:55.

    Article 
    CAS 

    Google Scholar
     

  • Xiang Y, Sang Z, Bitton L, Xu J, Liu Y, Schneidman-Duhovny D, et al. Integrative proteomics identifies hundreds of distinct, multi-epitope, and high-affinity nanobodies. Cell Syst. 2021;12:220–e2349.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozakov D, Corridor DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro net server for protein–protein docking. Nat Protoc. 2017;12:255–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 net server: user-friendly integrative modeling of Biomolecular complexes. J Mol Biol. 2016;428:720–5.

    Article 
    PubMed 

    Google Scholar
     

  • Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Inexperienced T, et al. Protein complicated prediction with AlphaFold-Multimer. bioRxiv. 2021:463034.

  • Yin R, Pierce BG. Analysis of AlphaFold antibody-antigen modeling with implications for bettering predictive accuracy. Protein Sci Publ Protein Soc. 2024;33:e4865.

    Article 
    CAS 

    Google Scholar
     

  • Muyldermans S. Single area camel antibodies: present standing. Rev Mol Biotechnol. 2001;74:277–302.

    Article 
    CAS 

    Google Scholar
     

  • Mitchell LS, Colwell LJ. Comparative evaluation of nanobody sequence and construction knowledge. Proteins. 2018;86:697–706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk Ok. Noticed Antibody Area: a useful resource for knowledge mining next-generation sequencing of antibody repertoires. J Immunol Baltim Md. 1950. 2018;201:2502–9.

  • Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D et al. RoBERTa: a robustly optimized BERT pretraining method. 2019.

  • Moonens Ok, Gideonsson P, Subedi S, Bugaytsova J, Romaõ E, Mendez M, et al. Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe. 2016;19:55–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sela-Culang I, Kunik V, Ofran Y. The structural foundation of antibody-antigen recognition. Entrance Immunol. 2013;4:302.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tam C, Kumar A, Zhang KYJ. NbX: machine learning-guided re-ranking of Nanobody-Antigen binding poses. Pharm Basel Switz. 2021;14:968.

    CAS 

    Google Scholar
     

  • Wang X, Terashi G, Christoffer CW, Zhu M, Kihara D. Protein docking mannequin analysis by 3D deep convolutional neural networks. Bioinforma Oxf Engl. 2020;36:2113–8.

    Article 
    CAS 

    Google Scholar
     

  • Cunningham O, Scott M, Zhou ZS, Finlay WJJ. Polyreactivity and polyspecificity in therapeutic antibody improvement: danger elements for failure in preclinical and scientific improvement campaigns. mAbs. 2021;13:1999195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigounas G, Harindranath N, Donadel G, Notkins AL. Half-life of polyreactive antibodies. J Clin Immunol. 1994;14:134–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly RL, Solar T, Jain T, Caffry I, Yu Y, Cao Y, et al. Excessive throughput cross-interaction measures for human IgG1 antibodies correlate with clearance charges in mice. mAbs. 2015;7:770–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA-Ok, et al. A genecentric human protein atlas for expression profiles based mostly on antibodies. Mol Cell Proteom MCP. 2008;7:2019–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey EP, Shin J-E, Skiba MA, Nemeth GR, Hurley JD, Wellner A, et al. An in silico methodology to evaluate antibody fragment polyreactivity. Nat Commun. 2022;13:7554.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez Ok, Urrutia M, et al. Single area antibodies: promising experimental and therapeutic instruments in an infection and immunity. Med Microbiol Immunol (Berl). 2009;198:157–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human fixed area domains. Proc Natl Acad Sci U S A. 1984;81:6851–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baca M, Presta LG, O’Connor SJ, Wells JA. Antibody humanization utilizing monovalent phage show. J Biol Chem. 1997;272:10678–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones PT, Pricey PH, Foote J, Neuberger MS, Winter G. Changing the complementarity-determining areas in a human antibody with these from a mouse. Nature. 1986;321:522–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kashmiri SVS, De Pascalis R, Gonzales NR, Schlom J. SDR grafting–a brand new method to antibody humanization. Strategies San Diego Calif. 2005;36:25–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Pascalis R, Iwahashi M, Tamura M, Padlan EA, Gonzales NR, Santos AD, et al. Grafting of abbreviated complementarity-determining areas containing specificity-determining residues important for ligand contact to engineer a much less immunogenic humanized monoclonal antibody. J Immunol Baltim Md 1950. 2002;169:3076–84.


    Google Scholar
     

  • Dall’Acqua WF, Damschroder MM, Zhang J, Woods RM, Widjaja L, Yu J, et al. Antibody humanization by framework shuffling. Strategies San Diego Calif. 2005;36:43–60.

    Article 
    PubMed 

    Google Scholar
     

  • Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, et al. Humanization of murine monoclonal antibodies by variable area resurfacing. Proc Natl Acad Sci U S A. 1994;91:969–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padlan EA. A attainable process for lowering the immunogenicity of antibody variable domains whereas preserving their ligand-binding properties. Mol Immunol. 1991;28:489–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Z, Li X, Wang L, Solar Z, Zhang H, Chen X, et al. Structural foundation of nanobodies neutralizing SARS-CoV-2 variants. Struct Lond Engl 1993. 2022;30:707–e7205.

    CAS 

    Google Scholar
     

  • Zhao L, Meng F, Li Y, Liu S, Xu M, Chu F, et al. Multivalent Nanobody conjugate with inflexible, reactive oxygen species scavenging Scaffold for Multi-target Remedy of Alzheimer’s Illness. Adv Mater Deerfield Seaside Fla. 2023;35:e2210879.

    Article 

    Google Scholar
     

  • Solar Z, Wang L, Li L, Solar Y, Zhang D, Zhou S, et al. Construction foundation of two nanobodies neutralizing SARS-CoV-2 Omicron variant by concentrating on ultra-conservative epitopes. J Struct Biol. 2023;215:107996.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Chen J, Zhang S, Jiang H, Zhu J, Jiang G, et al. Bispecific Nanobody-Aptamer conjugates for enhanced Most cancers remedy in stable tumors. Small Weinh Bergstr Ger. 2024;20:e2308265.

    Article 

    Google Scholar
     

  • Liao X, Zhang Y, Liang Y, Zhang L, Wang P, Wei J, et al. Enhanced sandwich immunoassay based mostly on bivalent nanobody as an environment friendly immobilization method for foodborne pathogens detection. Anal Chim Acta. 2024;1289:342209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tam C, Kukimoto-Niino M, Miyata-Yabuki Y, Tsuda Ok, Mishima-Tsumagari C, Ihara Ok, et al. Focusing on ras-binding area of ELMO1 by computational nanobody design. Commun Biol. 2023;6:284.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidari MM, Shirazi EA, Cheraghi SF, Shahshahani R, Rahnama T, Khatami M. CDR grafting and site-directed mutagenesis method for the era and affinity maturation of Anti-CD20 nanobody. Mol Biol Rep. 2024;51:751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Kang G, Lu H, de Marco A, Yuan H, Feng Z, et al. Novel bispecific nanobody mitigates experimental intestinal irritation in mice by concentrating on TNF-α and IL-23p19 bioactivities. Clin Transl Med. 2024;14:e1636.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Wang R, An D, Liu H, Ye F, Li B et al. An engineered IL-21 with half-life extension enhances anti-tumor immunity as a monotherapy or together with PD-1 or TIGIT blockade. Int Immunopharmacol. 2021;101 Pt A:108307.

  • Dinesen A, Andersen VL, Elkhashab M, Pilati D, Bech P, Fuchs E, et al. An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and extended circulation. Bioconjug Chem. 2024;35:214–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vascon F, Gasparotto M, Giacomello M, Cendron L, Bergantino E, Filippini F, et al. Protein electrostatics: from computational and structural evaluation to discovery of purposeful fingerprints and biotechnological design. Comput Struct Biotechnol J. 2020;18:1774–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan SP, Meksiriporn B, Waraho-Zhmayev D, Weyant KB, Kocer I, Butler DC, et al. Computational affinity maturation of camelid single-domain intrabodies towards the nonamyloid element of alpha-synuclein. Sci Rep. 2018;8:17611.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng X, Wang J, Kang G, Hu M, Yuan B, Zhang Y, et al. Homology modeling-based in Silico Affinity Maturation improves the Affinity of a Nanobody. Int J Mol Sci. 2019;20:4187.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadsund JT, Satława T, Janusz B, Shan L, Zhou L, Röttger R, et al. nanoBERT: a deep studying mannequin for gene agnostic navigation of the nanobody mutational house. Bioinforma Adv. 2024;4:vbae033.

    Article 

    Google Scholar
     

  • Bai Z, Wang J, Li J, Yuan H, Wang P, Zhang M, et al. Design of nanobody-based bispecific constructs by in silico affinity maturation and umbrella sampling simulations. Comput Struct Biotechnol J. 2023;21:601–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez JAE, Dean SN. TEMPRO: nanobody melting temperature estimation mannequin utilizing protein embeddings. Sci Rep. 2024;14:19074.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S, Kumar S, et al. Computational approaches to therapeutic antibody design: established strategies and rising tendencies. Transient Bioinform. 2020;21:1549–67.

    Article 
    PubMed 

    Google Scholar
     

  • Leem J, Dunbar J, Georges G, Shi J, Deane CM. ABodyBuilder: automated antibody construction prediction with data-driven accuracy estimation. mAbs. 2016;8:1259–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding ideas for scientific knowledge administration and stewardship. Sci Information. 2016;3:160018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández LA. Prokaryotic expression of antibodies and affibodies. Curr Opin Biotechnol. 2004;15:364–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles