-6.8 C
United States of America
Tuesday, February 4, 2025

Spin-torque-driven gigahertz magnetization dynamics within the non-collinear antiferromagnet Mn3Sn


  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kimel, A., Kirilyuk, A., Tsvetkov, A., Pisarev, R. & Rasing, T. Laser-induced ultrafast spin reorientation within the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baierl, S. et al. Nonlinear spin management by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kampfrath, T. et al. Coherent terahertz management of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kimel, A. et al. Ultrafast non-thermal management of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Manchon, A. et al. Present-induced spin–orbit torques in ferromagnetic and antiferromagnetic programs. Rev. Mod. Phys. 91, 035004 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kang, Okay., Lee, W.-B., Lee, D.-Okay., Lee, Okay.-J. & Choi, G.-M. Magnetization dynamics of antiferromagnetic metals of PtMn and IrMn pushed by a pulsed spin-transfer torque. Appl. Phys. Lett. 118, 252407 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Miwa, S. et al. Big efficient damping of octupole oscillation in an antiferromagnetic Weyl semimetal. Small Sci. 1, 2000062 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Research of the magnetic section transformation within the Mn3Sn section. Physica B+C 80, 226–230 (1975).

    Article 

    Google Scholar
     

  • Tomiyoshi, S. & Yamaguchi, Y. Magnetic construction and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Brown, P., Nunez, V., Tasset, F., Forsyth, J. & Radhakrishna, P. Dedication of the magnetic construction of Mn3Sn utilizing generalized neutron polarization evaluation. J. Phys. Condens. Matter 2, 9409 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Corridor impact. Europhys. Lett. 108, 67001 (2014).

    Article 

    Google Scholar
     

  • Yang, H. et al. Topological Weyl semimetals within the chiral antiferromagnetic supplies Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Giant anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ikhlas, M. et al. Giant anomalous Nernst impact at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kimata, M. et al. Magnetic and magnetic inverse spin Corridor results in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, S. et al. Environment friendly perpendicular magnetization switching by a magnetic spin Corridor impact in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Higo, T. et al. Giant magneto-optical Kerr impact and imaging of magnetic octupole domains in an antiferromagnetic metallic. Nat. Photon. 12, 73–78 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by present. Nature 607, 474–479 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet below spin–orbit torque. Nat. Mater. 22, 1106–1113 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Krishnaswamy, G. Okay. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pal, B. et al. Setting of the magnetic construction of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, S., Levy, P. & Fert, A. Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kovalev, A. A., Bauer, G. E. & Brataas, A. Perpendicular spin valves with ultrathin ferromagnetic layers: magnetoelectronic circuit investigation of finite-size results. Phys. Rev. B 73, 054407 (2006).

    Article 

    Google Scholar
     

  • Núnez, A. S., Duine, R., Haney, P. & MacDonald, A. Concept of spin torques and big magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article 

    Google Scholar
     

  • MacDonald, A. & Tsoi, M. Antiferromagnetic metallic spintronics. Philos. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Lengthy spin coherence size and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lim, Y. et al. Dephasing of transverse spin present in ferrimagnetic alloys. Phys. Rev. B 103, 024443 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Article 

    Google Scholar
     

  • Choi, G.-M. et al. Optical spin–orbit torque in heavy metal-ferromagnet heterostructures. Nat. Commun. 11, 1482 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, Y., Yu, S., Zhu, M., Hwang, J. & Yang, F. Tunable topological Corridor results in noncollinear antiferromagnet Mn3Sn/Pt bilayers. APL Mater. 9, 051121 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized present in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures pushed by spin present injection. Phys. Rev. B 100, 054415 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shukla, A. & Rakheja, S. Spin-torque-driven terahertz auto-oscillations in noncollinear coplanar antiferromagnets. Phys. Rev. Appl. 17, 034037 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Okuno, T. et al. Spin-transfer torques for area wall movement in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).

    Article 

    Google Scholar
     

  • Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jhuria, Okay. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical puses. Nat. Electron. 3, 680–686 (2020).

    Article 

    Google Scholar
     

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles