Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal wire harm. Nat Rev Dis Primers. 2017;3:17018.
Singh PL, Agarwal N, Barrese JC, Heary RF. Present therapeutic methods for irritation following traumatic spinal wire harm. Neural Regen Res. 2012;7(23):1812–21.
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, et al. Traumatic and nontraumatic spinal wire harm: pathological insights from neuroimaging. Nat Rev Neurol. 2019;15(12):718–31.
Prüss H, Tedeschi A, Thiriot A, Lynch L, Loughhead SM, Stutte S, et al. Spinal wire injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nat Neurosci. 2017;20(11):1549–59.
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, et al. Macrophage polarization in spinal wire harm restore and the potential function of microRNAs: a overview. Heliyon. 2023;9(12): e22914.
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen A. Macrophage phagocytosis after spinal wire harm: when associates turn into foes. Mind. 2021;144(10):2933–45.
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, getting older, and illnesses. Clin Interv Growing old. 2018;13:757–72.
Dasuri Okay, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the stability of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170–85.
James ND, McMahon SB, Area-Fote EC, Bradbury EJ. Neuromodulation within the restoration of operate after spinal wire harm. Lancet Neurol. 2018;17(10):905–17.
Yin Z, Wan B, Gong G, Yin J. ROS: executioner of regulating cell loss of life in spinal wire harm. Entrance Immunol. 2024;15:1330678.
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal wire harm. Nat Rev Neurosci. 2011;12(7):388–99.
Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, et al. Customized cerium oxide nanoparticles defend in opposition to a free radical mediated autoimmune degenerative illness within the mind. ACS Nano. 2013;7(12):10582–96.
Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, exercise regulation, and purposes. Chem Rev. 2019;119(6):4357–412.
Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, et al. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj. 2017;1861(2):386–95.
Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin Okay, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s illness. ACS Nano. 2016;10(2):2860–70.
He L, Huang G, Liu H, Sang C, Liu X, Chen T. Extremely bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for environment friendly reversal of reperfusion-induced harm in ischemic stroke. Sci Adv. 2020;6(12):eaay9751.
Rahimi B, Behroozi Z, Motamednezhad A, Jafarpour M, Hamblin MR, Moshiri A, et al. Research of nerve cell regeneration on nanofibers containing cerium oxide nanoparticles in a spinal wire harm mannequin in rats. J Mater Sci Mater Med. 2023;34(2):9.
Zeng F, Wu Y, Li X, Ge X, Guo Q, Lou X, et al. Customized-made ceria nanoparticles present a neuroprotective impact by modulating phenotypic polarization of the microglia. Angew Chem Int Ed Engl. 2018;57(20):5808–12.
Yu G, Zhao Q, Wu W, Wei X, Lu Q. A facile and sensible biosensor for choline primarily based on manganese dioxide nanoparticles synthesized in-situ on the floor of electrode by one-step electrodeposition. Talanta. 2016;146:707–13.
Luo XL, Xu JJ, Zhao W, Chen HY. A novel glucose ENFET primarily based on the particular reactivity of MnO2 nanoparticles. Biosens Bioelectron. 2004;19(10):1295–300.
Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, et al. Multifunctional albumin-MnO₂ nanoparticles modulate strong tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial development issue and improve radiation response. ACS Nano. 2014;8(4):3202–12.
Li L, Xiao B, Mu J, Zhang Y, Zhang C, Cao H, et al. A MnO (2) nanoparticle-dotted hydrogel promotes spinal wire restore through regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano. 2019;13(12):14283–93.
Dong CY, Huang QX, Cheng H, Zheng DW, Hong S, Yan Y, et al. Neisseria meningitidis Opca protein/MnO (2) hybrid nanoparticles for overcoming the blood-brain barrier to deal with glioblastoma. Adv Mater. 2022;34(12): e2109213.
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, et al. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by lowering oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci (Weinh). 2021;8(20): e2101526.
Nguyen TT, Nguyen-Thi PT, Nguyen THA, Ho TT, Tran NM, Van Vo T, et al. Latest developments in nanomaterials: a promising approach to handle neurodegenerative issues. Mol Diagn Ther. 2023;27(4):457–73.
Aloe L, Rocco ML, Bianchi P, Manni L. Nerve development issue: from the early discoveries to the potential scientific use. J Transl Med. 2012;10:239.
Lindsey S, Piatt JH, Worthington P, Sönmez C, Satheye S, Schneider JP, et al. Beta hairpin peptide hydrogels as an injectable strong car for neurotrophic development issue supply. Biomacromol. 2015;16(9):2672–83.
Hu X, Li R, Wu Y, Li Y, Zhong X, Zhang G, et al. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to deal with spinal wire harm. J Cell Mol Med. 2020;24(14):8166–78.
Gao X, Cheng W, Zhang X, Zhou Z, Ding Z, Zhou X, et al. Nerve development factor-laden anisotropic silk nanofiber hydrogels to control neuronal/astroglial differentiation for scarless spinal wire restore. ACS Appl Mater Interfaces. 2022;14(3):3701–15.
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a look. J Cell Sci. 2010;123(Pt 24):4195–200.
Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22020684.
Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, et al. Ceria nanoparticles that may defend in opposition to ischemic stroke. Angew Chem Int Ed Engl. 2012;51(44):11039–43.
Zeng F, Shi Y, Wu C, Liang J, Zhong Q, Briley Okay, et al. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel illness. J Nanobiotechnology. 2022;20(1):107.
Deshpande S, Patil S, Kuchibhatla SVNT, Seal S. Dimension dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett. 2005;87(13): 133113.
Zhou L, Li X, Yao Z, Chen Z, Hong M, Zhu R, et al. Transition-metal doped ceria microspheres with nanoporous buildings for CO oxidation. Sci Rep. 2016;6:23900.
Chen Okay, Wang M, Li G, He Q, Liu J, Li F. Spherical α-MnO₂ supported on N-KB as environment friendly electrocatalyst for oxygen discount in Al-air battery. Supplies (Basel). 2018. https://doi.org/10.3390/ma11040601.
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-based therapeutic antioxidants for biomedical purposes. Adv Mater. 2024;36(10): e2210819.
Soh M, Kang DW, Jeong HG, Kim D, Kim DY, Yang W, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis remedy. Angew Chem Int Ed Engl. 2017;56(38):11399–403.
Fernandez-Garcia S, Perez-Carrero B, Hernandez C, Lopez-Rodriguez R, Santos-Vizcaino E, Goni-de-Cerio F. Enhanced hydroxyl radical scavenging exercise by doping lanthanum in ceria nanocubes. J Mater Chem B. 2016;4(38):6457–68.
Singh S, Ly A, Das S, Sakthivel TS, Barkam S, Seal S. Cerium oxide nanoparticles on the nano-bio interface: size-dependent mobile uptake. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S956–63.
Chauhan D, Sri S, Kumar R, Panda AK, Solanki PR. Analysis of dimension, form, and cost impact on the organic interplay and mobile uptake of cerium oxide nanostructures. Nanotechnology. 2021;32(35).
Gessner A, Lieske A, Paulke B, Müller R. Affect of floor cost density on protein adsorption on polymeric nanoparticles: evaluation by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54(2):165–70.
Hirsch V, Kinnear C, Moniatte M, Rothen-Rutishauser B, Clift MJ, Fink A. Floor cost of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interplay in vitro. Nanoscale. 2013;5(9):3723–32.
Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle-biomolecular corona. Nanoscale Adv. 2022;4(16):3300–8.
Zhao YZ, Jiang X, Xiao J, Lin Q, Yu WZ, Tian FR, et al. Utilizing NGF heparin-poloxamer thermosensitive hydrogels to boost the nerve regeneration for spinal wire harm. Acta Biomater. 2016;29:71–80.
Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. Quantitative evaluation of mobile irritation after traumatic spinal wire harm: proof for a multiphasic inflammatory response within the acute to continual surroundings. Mind. 2010;133(Pt 2):433–47.
Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases forestall the induction of sort I interferons by mitochondrial DNA. Cell. 2014;159(7):1563–77.
Jiang GL, Yang XL, Zhou HJ, Lengthy J, Liu B, Zhang LM, et al. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Mind Res Bull. 2021;171:183–95.
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal wire harm restore: an replace on latest preclinical and scientific advances. Mind. 2024;147(3):766–93.
Keefe KM, Sheikh IS, Smith GM. Concentrating on neurotrophins to particular populations of neurons: NGF, BDNF, and NT-3 and their relevance for remedy of spinal wire harm. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18030548.
Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine improvements in spinal wire harm administration: bridging the hole. Environ Res. 2023;235: 116563.
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, et al. Engineered exosomes enriched in netrin-1 modRNA promote axonal development in spinal wire harm by attenuating irritation and pyroptosis. Biomater Res. 2023;27(1):3.
Qin C, Qi Z, Pan S, Xia P, Kong W, Solar B, et al. Advances in conductive hydrogel for spinal wire harm restore and regeneration. Int J Nanomed. 2023;18:7305–33.
Chen Okay, Li B, Xu H, Wu J, Li J, Solar W, et al. Zeolitic imidazole framework-8 loaded gelatin methacryloyl microneedles: a transdural and controlled-release drug supply system attenuates neuroinflammation after spinal wire harm. Int J Biol Macromol. 2024;256(Pt 1): 128388.
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing actions and their working rules. Adv Colloid Interface Sci. 2024;327: 103155.
LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS harm biomechanics and experimental fashions. Prog Mind Res. 2007;161:13–26.
Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR. Contusion, dislocation, and distraction: major hemorrhage and membrane permeability in distinct mechanisms of spinal wire harm. J Neurosurg Backbone. 2007;6(3):255–66.
Barde YA. The nerve development issue household. Prog Progress Issue Res. 1990;2(4):237–48.
Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270(5236):593–8.
Levi-Montalcini R, Hamburger V. Selective development stimulating results of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool. 1951;116(2):321–61.
Bao T, Li N, Chen H, Zhao Z, Fan J, Tao Y, et al. Drug-loaded Zwitterion-based nanomotors for the remedy of spinal wire harm. ACS Appl Mater Interfaces. 2023;15(27):32762–71.
Fu Y, Solar L, Zhu F, Xia W, Wen T, Xia R, et al. Ectopic expression of Nav1.7 in spinal dorsal horn neurons induced by NGF contributes to neuropathic ache in a mouse spinal wire harm mannequin. Entrance Mol Neurosci. 2023;16:1091096.
Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, et al. Improvement of BDNF/NGF/IKVAV peptide modified and gold nanoparticle conductive PCL/PLGA nerve steerage conduit for regeneration of the rat spinal wire harm. Macromol Biosci. 2024. https://doi.org/10.1002/mabi.202300453.
Ni J, Suzuki T, Karnup SV, Gu B, Yoshimura N. Nerve development factor-mediated Na (+) channel plasticity of bladder afferent neurons in mice with spinal wire harm. Life Sci. 2022;298: 120524.
Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal wire harm and antioxidant-based intervention. Spinal Twine. 2012;50(4):264–74.
Corridor ED, Springer JE. Neuroprotection and acute spinal wire harm: a reappraisal. NeuroRx. 2004;1(1):80–100.
Xu GY, Xu S, Zhang YX, Yu ZY, Zou F, Ma XS, et al. Cell-free extracts from human fats tissue with a hyaluronan-based hydrogel attenuate irritation in a spinal wire harm mannequin by way of M2 microglia/microphage polarization. Small. 2022;18(17): e2107838.
Solar Y, Music X, Geng Z, Xu Y, Xiao L, Chen Y, et al. IL-11 ameliorates oxidative stress injury in neurons after spinal wire harm by activating the JAK/STAT signaling pathway. Int Immunopharmacol. 2024;127: 111367.
Jaffer H, Andrabi SS, Petro M, Kuang Y, Steinmetz MP, Labhasetwar V. Catalytic antioxidant nanoparticles mitigate secondary harm development and promote practical restoration in spinal wire harm mannequin. J Management Launch. 2023;364:109–23.
Shen Okay, Li X, Huang G, Yuan Z, Xie B, Chen T, et al. Excessive rapamycin-loaded hole mesoporous Prussian blue nanozyme targets lesion space of spinal wire harm to get well locomotor operate. Biomaterials. 2023;303: 122358.
Liu D, Lu G, Shi B, Ni H, Wang J, Qiu Y, et al. ROS-scavenging hydrogels synergize with neural stem cells to boost spinal wire harm restore through regulating microenvironment and facilitating nerve regeneration. Adv Healthc Mater. 2023;12(18): e2300123.
Fang X, Music H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative capacity and biocompatibility for the spinal wire harm restore. J Photochem Photobiol B. 2019;191:83–7.
Fitch MT, Silver J. CNS harm, glial scars, and irritation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209(2):294–301.
Donnelly DJ, Popovich PG. Irritation and its function in neuroprotection, axonal regeneration and practical restoration after spinal wire harm. Exp Neurol. 2008;209(2):378–88.
Takami T, Oudega M, Bethea JR, Wooden PM, Kleitman N, Bunge MB. Methylprednisolone and interleukin-10 scale back grey matter injury within the contused Fischer rat thoracic spinal wire however don’t enhance practical consequence. J Neurotrauma. 2002;19(5):653–66.
Shen H, Xu B, Yang C, Xue W, You Z, Wu X, et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor operate restoration after spinal wire harm. Biomaterials. 2022;280: 121279.
Yang L, Cao J, Du Y, Zhang X, Hong W, Peng B, et al. Preliminary IL-10 manufacturing dominates the remedy of mesenchymal stem cell scaffold in spinal wire harm. Theranostics. 2024;14(2):879–91.
Smith DR, Dumont CM, Park J, Ciciriello AJ, Guo A, Tatineni R, et al. Polycistronic supply of IL-10 and NT-3 promotes oligodendrocyte myelination and practical restoration in a mouse spinal wire harm mannequin. Tissue Eng Half A. 2020;26(11–12):672–82.
Locati M, Curtale G, Mantovani A. Range, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.
Mills CD, Kincaid Okay, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.
Chen G, Tong Okay, Li S, Huang Z, Liu S, Zhu H, et al. Extracellular vesicles launched by remodeling development factor-beta 1-preconditional mesenchymal stem cells promote restoration in mice with spinal wire harm. Bioact Mater. 2024;35:135–49.
Guo J, Tang X, Deng P, Hui H, Chen B, An J, et al. Interleukin-4 from curcumin-activated OECs emerges as a central modulator for rising M2 polarization of microglia/macrophage in OEC anti-inflammatory exercise for practical restore of spinal wire harm. Cell Commun Sign. 2024;22(1):162.
Zhu D, Peng T, Zhang Z, Guo S, Su Y, Zhang Okay, et al. Mesenchymal stem cells overexpressing XIST induce macrophage M2 polarization and enhance neural stem cell homeostatic microenvironment, assuaging spinal wire harm. J Tissue Eng. 2024;15:20417314231219280.
Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is related to an infection and autoinflammatory illness. Cell Host Microbe. 2015;18(2):157–68.
Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019–31.
Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, et al. Triggering the interferon response: the function of IRF-3 transcription issue. J Interferon Cytokine Res. 1999;19(1):1–13.
Ma R, Ji T, Chen D, Dong W, Zhang H, Yin X, et al. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor development. Oncoimmunology. 2016;5(4): e1118599.
Greene LA, Tischler AS. Institution of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which reply to nerve development issue. Proc Natl Acad Sci U S A. 1976;73(7):2424–8.
Spicer Z, Millhorn DE. Oxygen sensing in neuroendocrine cells and different cell varieties: pheochromocytoma (PC12) cells as an experimental mannequin. Endocr Pathol. 2003;14(4):277–91.
Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol. 1990;27(2–3):229–37.
Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M. The suitability of BV2 cells as various mannequin system for major microglia cultures or for animal experiments inspecting mind irritation. Altex. 2009;26(2):83–94.
Plemel JR, Duncan G, Chen KW, Shannon C, Park S, Sparling JS, et al. A graded forceps crush spinal wire harm mannequin in mice. J Neurotrauma. 2008;25(4):350–70.