-4.1 C
United States of America
Wednesday, January 22, 2025

ON–OFF nanopores for optical management of transmembrane ionic communication


  • Bozovic, O., Jankovic, B. & Hamm, P. Utilizing azobenzene photocontrol to set proteins in movement. Nat. Rev. Chem. 6, 112–124 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emiliani, V. et al. Optogenetics for gentle management of organic techniques. Nat. Rev. Strategies Primers 2, 55 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer, R. H., Chambers, J. J. & Trauner, D. Photochemical instruments for distant management of ion channels in excitable cells. Nat. Chem. Biol. 1, 360–365 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koçer, A., Walko, M., Meijberg, W. & Feringa, B. L. Chemistry: a light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Banghart, M., Borges, Ok., Isacoff, E., Trauner, D. & Kramer, R. H. Mild-activated ion channels for distant management of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Distant management of ion channels and neurons via magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Catterall, W. A. Ion channel voltage sensors: construction, perform, and pathophysiology. Neuron 67, 915–928 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschi, S., Ward, T. R., Meier, W. P., Muller, D. J. & Fotiadis, D. Artificial biology: bottom-up meeting of molecular techniques. Chem. Rev. 122, 16294–16328 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ankenbruck, N., Courtney, T., Naro, Y. & Deiters, A. Optochemical management of organic processes in cells and animals. Angew. Chem. Int. Ed. 57, 2768–2798 (2018).

    Article 
    CAS 

    Google Scholar
     

  • SzymaŃski, W., Yilmaz, D., Koçer, A. & Feringa, B. L. Shiny ion channels and lipid bilayers. Acc. Chem. Res. 46, 2910–2923 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial rhodopsins: range, mechanisms, and optogenetic functions. Annu. Rev. Biochem. 86, 845–872 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. The microbial opsin household of optogenetic instruments. Cell 147, 1446–1457 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maltan, L., Najjar, H., Tiffner, A. & Derler, I. Deciphering molecular mechanisms and intervening in physiological and pathophysiological processes of Ca2+ signaling mechanisms utilizing optogenetic instruments. Cells 10, 3340 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, N. T. et al. CRAC channel-based optogenetics. Cell Calcium 75, 79–88 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, S., Wu, X., Rommelfanger, N. J., Ou, Z. & Hong, G. Shedding gentle on neurons: optical approaches for neuromodulation. Natl Sci. Rev. 9, nwac007 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X., Mee, T. & Jia, X. New period of optogenetics: from the central to peripheral nervous system. Crit. Rev. Biochem. Mol. Biol. 55, 1–16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyns, E. C. A. et al. An automatic hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci. Transl. Med. 11, 1–12 (2019).

    Article 

    Google Scholar
     

  • Tochitsky, I. et al. How azobenzene photoswitches restore visible responses to the blind retina. Neuron 92, 100–113 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volgraf, M. et al. Allosteric management of an ionotropic glutamate receptor with an optical change. Nat. Chem. Biol. 2, 47–52 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, P. Y. et al. TRPswitch—a step-function chemo-optogenetic ligand for the vertebrate trpa1 channel. J. Am. Chem. Soc. 142, 17457–17468 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fehrentz, T. et al. Optical management of L-type Ca2+ channels utilizing a diltiazem photoswitch. Nat. Chem. Biol. 14, 764–767 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Offenbartl‐Stiegert, D., Rottensteiner, A., Dorey, A. & Howorka, S. A light-weight‐triggered artificial nanopore for controlling molecular transport throughout organic membranes. Angew. Chem. Int. Ed. 61, e202210886 (2022).

    Article 

    Google Scholar
     

  • Kerckhoffs, A., Bo, Z., Penty, S. E., Duarte, F. & Langton, M. J. Purple-shifted tetra-ortho-halo-azobenzenes for photo-regulated transmembrane anion transport. Org. Biomol. Chem. 19, 9058–9067 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, T. G., Sadeghi-Kelishadi, A. & Langton, M. J. A photograph-responsive transmembrane anion transporter relay. J. Am. Chem. Soc. 144, 10455–10461 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutter, N. L., Volarić, J., Szymanski, W., Feringa, B. L. & Maglia, G. Reversible photocontrolled nanopore meeting. J. Am. Chem. Soc. 141, 14356–14363 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C., Niblack, B., Walker, B. & Bayley, H. A photogenerated pore-forming protein. Chem. Biol. 2, 391–400 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bléger, D., Schwarz, J., Brouwer, A. M. & Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches providing almost quantitative two-way isomerization with seen gentle. J. Am. Chem. Soc. 134, 20597–20600 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Calbo, J. et al. Tuning azoheteroarene photoswitch efficiency via heteroaryl design. J. Am. Chem. Soc. 139, 1261–1274 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weston, C. E., Richardson, R. D., Haycock, P. R., White, A. J. P. & Fuchter, M. J. Arylazopyrazoles: azoheteroarene photoswitches providing quantitative isomerization and lengthy thermal half-lives. J. Am. Chem. Soc. 136, 11878–11881 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, B. & Bayley, H. Key residues for membrane binding, oligomerization, and pore forming exercise of staphylococcal α-hemolysin recognized by cysteine scanning mutagenesis and focused chemical modification. J. Biol. Chem. 270, 23065–23071 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braha, O. et al. Designed protein pores as parts for biosensors. Chem. Biol. 4, 497–505 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maglia, G. et al. Droplet networks with included protein diodes present collective properties. Nat. Nanotechnol. 4, 437–440 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loudwig, S. & Bayley, H. Photoisomerization of a person azobenzene molecule in water: an on–off change triggered by gentle at a hard and fast wavelength. J. Am. Chem. Soc. 128, 12404–12405 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frank, J. A. et al. Photoswitchable fatty acids allow optical management of TRPV1. Nat. Commun. 6, 7118 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Schild, V. R. et al. Mild-patterned present era in a droplet bilayer array. Sci. Rep. 7, 46585 (2017).

    Article 

    Google Scholar
     

  • Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed materials. Science 340, 48–52 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sales space, M. J., Restrepo Schild, V., Field, S. J. & Bayley, H. Mild-patterning of artificial tissues with single droplet decision. Sci. Rep. 7, 9315 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Steel–natural frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles