8.7 C
United States of America
Thursday, January 16, 2025

Chemistry, manufacturing and controls methods for utilizing novel excipients in lipid nanoparticles


  • Lewis, L. M., Badkar, A. V., Cirelli, D., Combs, R. & Lerch, T. F. The race to develop the Pfizer–BioNTech COVID-19 vaccine: from the pharmaceutical scientists’ perspective. J. Pharm. Sci. 112, 640–647 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorn, C. R. et al. The journey of a lifetime — growth of Pfizer’s COVID-19 vaccine. Curr. Opin. Biotechnol. 78, 102803 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warne, N. et al. Delivering 3 billion doses of Comirnaty in 2021. Nat. Biotechnol. 41, 183–188 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle techniques for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017). A foundational evaluation article that explains the basic design ideas for LNPs and their proposed mechanism of motion.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swaminathan, G. et al. A novel lipid nanoparticle adjuvant considerably enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine 34, 110–119 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Solar, C., Wang, C., Jankovic, Okay. E. & Dong, Y. Lipids and lipid derivatives for RNA supply. Chem. Rev. 121, 12181–12277 (2021). An exhaustive evaluation of lipids which have been utilized in LNPs for nucleic acid supply, with an outline of the design ideas for every lipid class.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hald Albertsen, C. et al. The position of lipid elements in lipid nanoparticles for vaccines and gene remedy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steering for Trade: Nonclinical Research for the Security Analysis of Pharmaceutical Excipients (US FDA, 2005); https://www.fda.gov/media/72260/obtain

  • Guideline on Excipients within the File for Utility for Advertising and marketing Authorisation of a Medicinal Product EMEA/CHMP/QWP/396951/2006 (EMA, 2007); https://www.ema.europa.eu/en/paperwork/scientific-guideline/guideline-excipients-dossier-application-marketing-authorisation-medicinal-product-revision-2_en.pdf

  • Elder, D. P., Kuentz, M. & Holm, R. Pharmaceutical excipients — high quality, regulatory and biopharmaceutical concerns. Eur. J. Pharm. Sci. 87, 88–99 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozarewicz, P. & Loftsson, T. Novel excipients – regulatory challenges and views – the EU perception. Int. J. Pharm. 546, 176–179 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koo, O. M. & Varia, S. A. Case research with new excipients: growth, implementation and regulatory approval. Ther. Deliv. 2, 949–956 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, Y. B., Taraban, M. B., Briggs, Okay. T., Brinson, R. G. & Marino, J. P. Excipient innovation by precompetitive analysis. Pharm. Res. 38, 2179–2184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, R., Monpara, J., Swaminathan, S. & Kalhapure, R. Chemistry and artwork of creating lipid nanoparticles for biologics supply: deal with growth and scale-up. Pharmaceutics 16, 131 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onpattro (Patisiran) Lipid Advanced Injection, for Intravenous Use [Package Insert] (US FDA, 2018); https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/210922s012lbl.pdf

  • Committee for Medicinal Merchandise for Human Use. Onpattro Evaluation Report EMA/554262/2018 (EMA, 2018); https://www.ema.europa.eu/en/paperwork/assessment-report/onpattro-epar-public-assessment-report_.pdf

  • Drug Approval Bundle: Onpattro (patisiran) (US FDA, 2018); https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000TOC.cfm. The drug approval package deal for Onpattro—an LNP permitted by the US FDA for business use, and the one one by way of the NDA pathway.

  • Abstract Foundation for Regulatory Motion: Comirnaty (US FDA, 2021); https://www.fda.gov/media/151733/obtain. The abstract foundation of approval for Comirnaty—the second LNP permitted (by way of emergency-use authorization) by the US FDA for business use, this time by way of the BLA pathway.

  • Comirnaty (COVID-19 Vaccine, mRNA) Suspension for Injection, for Intramuscular Use [Package Insert] (US FDA, 2021); https://www.fda.gov/media/151707/obtain

  • Committee for Medicinal Merchandise for Human Use. Comirnaty Evaluation Report EMA/707383/2020 Corr.2 (EMA, 2021); https://www.ema.europa.eu/en/paperwork/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

  • Spikevax (COVID-19 Vaccine, mRNA) Suspension for Injection, for Intramuscular Use [Package Insert] (US FDA, 2022); https://www.fda.gov/media/155675/obtain

  • Abstract Foundation for Regulatory Motion: Spikevax (US FDA, 2022); https://www.fda.gov/media/155931/obtain. The abstract foundation of approval for Spikevax—the third LNP permitted (by way of emergency-use authorization) by the US FDA for business use, and the second by way of the BLA pathway.

  • Committee for Medicinal Merchandise for Human Use. COVID-19 Vaccine Moderna Evaluation Report EMA/15689/2021 Corr.1 (EMA, 2021); https://www.ema.europa.eu/en/paperwork/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf

  • Hemmrich, E. & McNeil, S. Lively ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023). A perspective that highlights the inconsistency in how elements inside nanomedicines could also be categorized as excipients or part of the lively ingredient.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steering for Trade: Liposome Drug Merchandise (US FDA, 2018); https://www.fda.gov/media/70837/obtain. Probably the most complete regulatory steering doc on lipid excipients, with a deal with their use in liposome drug merchandise.

  • Committee for Medicinal Merchandise for Human Use. Guideline on the Chemistry of Lively Substances EMA/454576/2016 (EMA, 2016); https://www.ema.europa.eu/en/paperwork/scientific-guideline/guideline-chemistry-active-substances_en.pdf

  • Committee for Human Medicinal Merchandise. Reflection Paper on the Information Necessities for Intravenous Liposomal Merchandise Developed with Reference to an Innovator Liposomal Product EMA/CHMP/806058/2009/Rev. 02 (EMA, 2013); https://www.ema.europa.eu/en/paperwork/scientific-guideline/reflection-paper-data-requirements-intravenous-liposomal-products-developed-reference-innovator_en.pdf

  • Analysis of the High quality, Security and Efficacy of Messenger RNA Vaccines for the Prevention of Infectious Illnesses: Regulatory Concerns (World Well being Group, 2021); https://cdn.who.int/media/docs/default-source/biologicals/ecbs/post-ecbs-who-regulatory-considerations-document-for-mrna-vaccines—final-version—29-nov-2021_tz.pdf. The regulatory steering doc that the majority particularly outlines CMC expectations for LNPs, albeit not from a well being authority liable for the approval of scientific or business submitting purposes.

  • Qualification of Excipients for Use in Prescription drugs (Worldwide Pharmaceutical Excipients Council, 2020); https://www.ipec-europe.org/uploads/publications/20201026-eq-guide-revision-final-1615800052.pdf

  • The Joint Good Manufacturing Practices Information for Pharmaceutical Excipients Model 5 (Worldwide Pharmaceutical Excipients Council, Pharmaceutical High quality Group, 2022); https://www.ipec-europe.org/articles/ipec-pqg-gmp-guide.html

  • Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: construction and stability. Int. J. Pharm. 601, 120586 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oude Blenke, E. et al. The storage and in-use stability of mRNA vaccines and therapeutics: not a chilly case. J. Pharm. Sci. 112, 386–403 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musakhanian, J., Rodier, J.-D. & Dave, M. Oxidative stability in lipid formulations: a evaluation of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech 23, 151 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De, A. & Ko, Y. T. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Professional Opin. Drug Deliv. 20, 175–187 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Gamage, P. L., Jiang, W. & Mudalige, T. Excipient-related impurities in liposome drug merchandise. Int. J. Pharm. 657, 124164 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleintop, B. et al. GMPs for methodology validation in early growth: an {industry} perspective (half II). Pharm. Technol. https://www.pharmtech.com/view/gmps-method-validation-early-development-industry-perspective-part-ii (2012).

  • Harvey, J. et al. Administration of natural impurities in small molecule medicinal merchandise: deriving protected limits to be used in early growth. Regul. Toxicol. Pharmacol. 84, 116–123 (2017). A commentary that outlines impurity management methods which may be utilized in early scientific growth, which can be thought-about for lipid excipients in LNPs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steering for Trade: Q3A Impurities in New Drug Substances (US FDA, 2008); https://www.fda.gov/media/71727/obtain

  • Steering for Trade: M4Q: The CTD — High quality (US FDA, 2001); https://www.fda.gov/media/71581/obtain

  • Steering for Trade: Drug Grasp Recordsdata (US FDA, 2019); https://www.fda.gov/media/131861/obtain

  • Biologics license purposes and grasp recordsdata. Fed. Reg. 89, 9743–9757 (12 February 2024); https://www.govinfo.gov/content material/pkg/FR-2024-02-12/pdf/2024-02741.pdf

  • Steering for Trade: Q2(R2) Validation of Analytical Procedures (US FDA, 2022); https://www.fda.gov/media/161201/obtain

  • Steering for Trade: Q3C Impurities: Residual Solvents (US FDA, 1997); https://www.fda.gov/media/71736/obtain

  • Steering for Trade: Q3D(R2) Elemental Impurities (US FDA, 2022); https://www.fda.gov/media/148474/obtain

  • Steering for Trade: Management of Nitrosamine Impurities in Human Medication (US FDA, 2021); https://www.fda.gov/media/141720/obtain

  • Raffaele, J., Loughney, J. W. & Rustandi, R. R. Growth of a microchip capillary electrophoresis methodology for willpower of the purity and integrity of mRNA in lipid nanoparticle vaccines. Electrophoresis 43, 1101–1106 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the lack of mRNA exercise in lipid nanoparticle supply techniques. Nat. Commun. 12, 6777 (2021). An revolutionary analysis article that highlighted how reactions between a nucleic acid and lipid in an LNP can affect product high quality and manufacturing management methods.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinsey, C. et al. Willpower of lipid content material and stability in lipid nanoparticles utilizing extremely high-performance liquid chromatography together with a corona charged aerosol detector. Electrophoresis 43, 1091–1100 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle supply of CRISPR–Cas9 ribonucleoproteins for efficient tissue particular genome enhancing. Nat. Commun. 11, 3232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasiewicz, L. N. et al. GalNAc-Lipid nanoparticles allow non-LDLR dependent hepatic supply of a CRISPR base enhancing remedy. Nat. Commun. 14, 2776 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A. & Siegwart, D. J. Passive, lively and endogenous organ-targeted lipid and polymer nanoparticles for supply of genetic medication. Nat. Rev. Mater. 8, 282–300 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steering for Trade: Chemistry, Manufacturing, and Management (CMC) Data for Human Gene Remedy Investigational New Drug Purposes (INDs) (US FDA, 2020); https://www.fda.gov/media/113760/obtain

  • Steering for Trade: Drug Merchandise, Together with Organic Merchandise, that Include Nanomaterials (US FDA, 2022); https://www.fda.gov/media/157812/obtain

  • Guideline for the Growth of Liposome Drug Merchandise (Japan Ministry of Well being, Labour and Welfare, 2016); https://www.nihs.go.jp/drug/section4/160328_MHLW_liposome_guideline.pdf

  • Reflection Paper on Nucleic Acids (siRNA)-loaded Nanotechnology-based Drug Merchandise (Japan Ministry of Well being, Labour and Welfare, 2016); https://www.nihs.go.jp/drug/section4/160328_MHLW_siRNA_RP.pdf

  • Wasylaschuk, W. R. et al. Analysis of hydroperoxides in frequent pharmaceutical excipients. J. Pharm. Sci. 96, 106–116 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garner, J. et al. A protocol for assay of poly(lactide-co-glycolide) in scientific merchandise. Int. J. Pharm. 495, 87–92 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanez Arteta, M. et al. Profitable reprogramming of mobile protein manufacturing by mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, Y. & Ishihara, H. Distinction within the lipid nanoparticle know-how employed in three permitted siRNA (Patisiran) and mRNA (COVID-19 vaccine) medication. Drug. Metab. Pharmacokinet. 41, 100424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, X. & Lee, R. J. The position of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide supply. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the position of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. et al. Helper lipid construction influences protein adsorption and supply of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) supply of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, S. et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat. Commun. 11, 983 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paunovska, Okay. et al. Nanoparticles containing oxidized ldl cholesterol ship mRNA to the liver microenvironment at clinically related doses. Adv. Mater. 31, 1807748 (2019).

    Article 

    Google Scholar
     

  • Li, Z. et al. Acidification-induced construction evolution of lipid nanoparticles correlates with their in vitro gene transfections. ACS Nano 17, 979–990 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene remedy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang Thi, T. T. et al. The significance of poly(ethylene glycol) alternate options for overcoming PEG immunogenicity in drug supply and bioconjugation. Polymers 12, 298 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA supply. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shi, D. et al. To PEGylate or to not PEGylate: immunological properties of nanomedicine’s hottest element, polyethylene glycol and its alternate options. Adv. Drug Deliv. Rev. 180, 114079 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abu Lila, A. S., Kiwada, H. & Ishida, T. The accelerated blood clearance (ABC) phenomenon: scientific problem and approaches to handle. J. Management. Launch 172, 38–47 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, B.-M., Cheng, T.-L. & Roffler, S. R. Polyethylene glycol immunogenicity: theoretical, scientific, and sensible features of anti-polyethylene glycol antibodies. ACS Nano 15, 14022–14048 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju, Y. et al. Anti-PEG antibodies boosted in people by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bavli, Y. et al. Anti-PEG antibodies earlier than and after a primary dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Management. Launch 354, 316–322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Münter, R. et al. Investigating era of antibodies towards the lipid nanoparticle vector following COVID-19 vaccination with an mRNA vaccine. Mol. Pharm. 20, 3356–3366 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA supply. Nat. Biotechnol. 28, 172–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayaraman, M. et al. Maximizing the efficiency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. An ionizable lipid toolbox for RNA supply. Nat. Commun. 12, 7233 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles affect expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajj, Okay. A. et al. Branched-tail lipid nanoparticles potently ship mRNA in vivo because of enhanced ionization at endosomal pH. Small 15, 1805097 (2019).

    Article 

    Google Scholar
     

  • Han, X. et al. In situ combinatorial synthesis of degradable branched lipidoids for systemic supply of mRNA therapeutics and gene editors. Nat. Commun. 15, 1762 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, S. N. & Dahlman, J. E. RNA supply techniques. Proc. Natl Acad. Sci. USA 121, e2315789121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittrup, A. et al. Visualizing lipid-formulated siRNA launch from endosomes and goal gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle efficiency by particular interactions with mRNA. Adv. Func. Mater. 32, 2106727 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Da Silva Sanchez, A. J. et al. Substituting racemic ionizable lipids with stereopure ionizable lipids can improve mRNA supply. J. Management. Launch 353, 270–277 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jörgensen, A. M., Wibel, R. & Bernkop-Schnürch, A. Biodegradable cationic and ionizable cationic lipids: a roadmap for safer pharmaceutical excipients. Small 19, 2206968 (2023).

    Article 

    Google Scholar
     

  • Ci, L. et al. Biodistribution of Lipid 5, mRNA, and its translated protein following intravenous administration of mRNA-encapsulated lipid nanoparticles in rats. Drug Metab. Dispos. 51, 813–823 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burdette, D. et al. Systemic publicity, metabolism, and elimination of [14C]-labeled amino lipid, Lipid 5, after a single administration of mRNA encapsulating lipid nanoparticles to Sprague-Dawley rats. Drug Metab. Dispos. 51, 804–812 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the primary permitted RNA interference remedy in sufferers with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol. 60, 573–585 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregoriadis, G. (ed.) Liposome Know-how: Entrapment of Medication and Different Supplies into Liposomes third edn (CRC, 2006).

  • Allen, T. M. & Cullis, P. R. Liposomal drug supply techniques: from idea to scientific purposes. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes discovered. J. Management. Launch 160, 117–134 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Immordino, M. L., Dosio, F. & Cattel, L. Stealth liposomes: evaluation of the essential science, rationale, and scientific purposes, current and potential. Int. J. Nanomedicine 1, 297–315 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M.-L. Lipid excipients and supply techniques for pharmaceutical growth: a regulatory perspective. Adv. Drug Deliv. Rev. 60, 768–777 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mui, B. L. et al. Affect of polyethylene glycol lipid desorption charges on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ldl cholesterol. In US Pharmacopeia USP29–NF24, 3314 (United States Pharmacopeial Conference, 2007).

  • Ldl cholesterol. In Japanese Pharmacopeia 18th edn, 749 (The Prescription drugs and Medical Units Company, 2021).

  • Ldl cholesterol. In European Pharmacopoeia 7.0 1680–1681 (European Directorate for the High quality of Medicines & HealthCare (EDQM), 2008).

  • Ldl cholesterol for parenteral use. In European Pharmacopoeia 8.0 1874 (EDQM, 2012).

  • Ldl cholesterol for parenteral use. In European Pharmacopoeia 10.0 2397E (EDQM, 2020).

  • Ldl cholesterol for parenteral use. In European Pharmacopoeia 11.0 2397 (EDQM, 2023).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles