-0.1 C
United States of America
Thursday, January 16, 2025

Spatiotemporal imaging of nonlinear optics in van der Waals waveguides


  • Chai, Z. et al. Ultrafast all-optical switching. Adv. Decide. Mater. 5, 1600665 (2017).

    Article 

    Google Scholar
     

  • Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hohenleutner, M. et al. Actual-time statement of interfering crystal electrons in high-harmonic era. Nature 523, 572–575 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Ellipticity dependence of high-harmonic era in solids originating from coupled intraband and interband dynamics. Nat. Commun. 8, 745 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, 195 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Datta, I. et al. Low-loss composite photonic platform based mostly on 2D semiconductor monolayers. Nat. Photon. 14, 256–262 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Okay. et al. Steady wave sum frequency era and imaging of monolayer and heterobilayer two-dimensional semiconductors. ACS Nano 14, 708–714 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trovatello, C. et al. Optical parametric amplification by monolayer transition metallic dichalcogenides. Nat. Photon. 15, 6–10 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abdelwahab, I. et al. Large second-harmonic era in ferroelectric NbOI2. Nat. Photon. 16, 644–650 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Q. et al. Ultrathin quantum gentle supply with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. et al. Wafer-scale δ waveguides for built-in two-dimensional photonics. Science 381, 648–653 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zograf, G. et al. Combining ultrahigh index with distinctive nonlinearity in resonant transition metallic dichalcogenide nanodisks. Nat. Photon. 18, 751–757 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sortino, L. et al. Van der Waals heterostructure metasurfaces: atomic-layer meeting of ultrathin optical cavities. Preprint at https://arxiv.org/abs/2407.16480 (2024).

  • Busschaert, S. et al. Transition metallic dichalcogenide resonators for second harmonic sign enhancement. ACS Photon. 7, 2482–2488 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, W. T. et al. Second harmonic era from artificially stacked transition metallic dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, W.-T. et al. Dielectric affect on exciton binding power and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, M. et al. Atomically phase-matched second-harmonic era in a 2D crystal. Gentle. Sci. Appl. 5, e16131 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. In direction of compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors. Nat. Photon. 16, 698–706 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Trovatello, C. et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors. Nat. Photon. (within the press).

  • Li, Z. et al. Direct visualization of phase-matched environment friendly second harmonic and broadband sum frequency era in hybrid plasmonic nanostructures. Gentle. Sci. Appl. 9, 180 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caspani, L. et al. Built-in sources of photon quantum states based mostly on nonlinear optics. Gentle. Sci. Appl. 6, e17100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchizawa, T. et al. Microphotonics gadgets based mostly on silicon microfabrication expertise. IEEE J. Sel. Prime. Quantum Electron. 11, 232–240 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pu, M. et al. Extremely-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical sign processing. Laser Photon. Rev. 12, 1800111 (2018).

    Article 

    Google Scholar
     

  • Shi, J. et al. Distant dual-cavity enhanced second harmonic era in a hybrid plasmonic waveguide. Nano Lett. 22, 688–694 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoxall, E. et al. Direct statement of ultraslow hyperbolic polariton propagation with detrimental part velocity. Nat. Photon. 9, 674–678 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gersen, H. et al. Actual-space statement of ultraslow gentle in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics utilizing free electrons. Science 372, 1181–1186 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niemann, R. et al. Spectroscopic and interferometric sum-frequency imaging of strongly coupled phonon polaritons in SiC metasurfaces. Adv. Mater. 36, 2312507 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Autler, S. H. & Townes, C. H. Stark impact in quickly various fields. Phys. Rev. 100, 703–722 (1955).

    Article 

    Google Scholar
     

  • Hayat, A. et al. Dynamic Stark impact in strongly coupled microcavity exciton polaritons. Phys. Rev. Lett. 109, 033605 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • LaMountain, T. et al. Valley-selective optical Stark impact of exciton-polaritons in a monolayer semiconductor. Nat. Commun. 12, 4530 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pogna, E. A. A. A. et al. Photograph-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 10, 1182–1188 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trovatello, C. et al. Disentangling many-body results within the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. Ultrafast imaging of polariton propagation and interactions. Nat. Commun. 14, 3881 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renken, S. et al. Untargeted results in natural exciton-polariton transient spectroscopy: a cautionary story. J. Chem. Phys. 155, 154701 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delor, M., Weaver, H. L., Yu, Q. & Ginsberg, N. S. Imaging materials performance by three-dimensional nanoscale monitoring of power circulation. Nat. Mater. 19, 56–62 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics third edn (Tutorial Press, 2008).

  • Bringuier, E., Bourdon, A., Piccioli, N. & Chevy, A. Optical second-harmonic era in lossy media: utility to GaSe and InSe. Phys. Rev. B 49, 16971–16982 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Neuschafer, D., Preiswerk, H., Spahni, H., Konz, E. & Marowsky, G. Second-harmonic era utilizing planar waveguides with consideration of pump depletion and absorption. J. Decide. Soc. Am. B 11, 649 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. L. et al. Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations. Sci. Rep. 10, 15282 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stegeman, G. I. & Stolen, R. H. Waveguides and fibers for nonlinear optics. J. Decide. Soc. Am. B 6, 652 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Stegeman, G. I. & Seaton, C. T. Nonlinear built-in optics. J. Appl. Phys. 58, 57–78 (1985).

    Article 

    Google Scholar
     

  • Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Suhara, T. & Fujimura, M. Waveguide Nonlinear-Optic Gadgets (Springer Berlin Heidelberg, 2003).

  • Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and functions. Decide. Specific 15, 16604 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metallic dichalcogenides for environment friendly gentle absorption. ACS Photon. 6, 139–147 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chervy, T. et al. Excessive-efficiency second-harmonic era from hybrid gentle–matter states. Nano Lett. 16, 7352–7356 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmutzler, J. et al. Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity. Phys. Rev. B 90, 075103 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mennel, L. et al. Band nesting in two-dimensional crystals: an exceptionally delicate probe of pressure. Nano Lett. 20, 4242–4248 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshikawa, N. et al. Interband resonant high-harmonic era by valley polarized electron–gap pairs. Nat. Commun. 10, 3709 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choo, H. et al. Nanofocusing in a metallic–insulator–metallic hole plasmon waveguide with a three-dimensional linear taper. Nat. Photon. 6, 838–844 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mooshammer, F. et al. Enabling waveguide optics in rhombohedral-stacked transition metallic dichalcogenides with laser-patterned grating couplers. ACS Nano 18, 4118–4130 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Z. et al. Managed vapor development and nonlinear optical functions of large-area 3R part WS2 and WSe2 atomic layers. Adv. Funct. Mater. 29, 1806874 (2019).

    Article 

    Google Scholar
     

  • Li, X. et al. Rhombohedral-stacked bilayer transition metallic dichalcogenides for high-performance atomically skinny CMOS gadgets. Sci. Adv. 9, eade5706 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Moussa, H. et al. Remark of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 19, 863–868 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tulyagankhodjaev, J. A. et al. Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor. Science 382, 438–442 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, D. et al. Dataset for “Spatiotemporal imaging of nonlinear optics in van der Waals waveguides” Zenodo https://doi.org/10.5281/zenodo.14231910 (2024).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles