Aluru, N. R. et al. Fluids and electrolytes underneath confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).
Faucher, S. et al. Essential data gaps in mass transport by way of single-digit nanopores: a assessment and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).
Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).
Ma, M. et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 10, 692–695 (2015).
Marbach, S., Dean, D. S. & Bocquet, L. Transport and dispersion throughout wiggling nanopores. Nat. Phys. 14, 1108–1113 (2018).
Lizée, M., Coquinot, B., Mariette, G., Siria, A. & Bocquet, L. Anomalous friction of supercooled glycerol on mica. Nat. Commun. 15, 6129 (2024).
Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).
Bui, A. T., Thiemann, F. L., Michaelides, A. & Cox, S. J. Classical quantum friction at water–carbon interfaces. Nano Lett. 23, 580–587 (2023).
Lizée, M. et al. Sturdy digital winds blowing underneath liquid flows on carbon surfaces. Phys. Rev. X 13, 011020 (2023).
Coquinot, B., Bocquet, L. & Kavokine, N. Quantum suggestions on the stable–liquid interface: flow-induced digital present and its damaging contribution to friction. Phys. Rev. X 13, 011019 (2023).
Rabinowitz, J., Cohen, C. & Shepard, Ok. L. An electrically actuated, carbon-nanotube-based biomimetic ion pump. Nano Lett. 20, 1148–1153 (2020).
Yin, J. et al. Producing electrical energy by shifting a droplet of ionic liquid alongside graphene. Nat. Nanotechnol. 9, 378–383 (2014).
Comtet, J. et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the function of digital screening. Nat. Mater. 16, 634–639 (2017).
Yu, X., Principi, A., Tielrooij, Ok.-J., Bonn, M. & Kavokine, N. Electron cooling in graphene enhanced by plasmon–hydron resonance. Nat. Nanotechnol. 18, 898–904 (2023).
Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced circulation in carbon nanotubes. Nature 438, 44–44 (2005).
Holt, J. Ok. et al. Quick mass transport by way of sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).
Maali, A., Cohen-Bouhacina, T. & Kellay, H. Measurement of the slip size of water circulation on graphite floor. Appl. Phys. Lett. 92, 053101 (2008).
Secchi, E. et al. Huge radius-dependent circulation slippage in carbon nanotubes. Nature 537, 210–213 (2016).
Xie, Q. et al. Quick water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).
Keerthi, A. et al. Water friction in nanofluidic channels created from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).
Coquinot, B., Becker, M., Netz, R. R., Bocquet, L. & Kavokine, N. Collective modes and quantum results in two-dimensional nanofluidic channels. Faraday Talk about. 249, 162–180 (2023).
Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio strategies: very totally different slippage regardless of very related interface constructions. Nano Lett. 14, 6872–6877 (2014).
Heyden, M. et al. Dissecting the THz spectrum of liquid water from first rules by way of correlations in time and house. Proc. Natl Acad. Sci. USA 107, 12068–12073 (2010).
Hafez, H. A. et al. Extraordinarily environment friendly terahertz high-harmonic technology in graphene by sizzling Dirac fermions. Nature 561, 507–511 (2018).
Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).
Coquinot, B., Bocquet, L. & Kavokine, N. Hydroelectric power conversion of waste flows by way of hydroelectronic drag. Proc. Natl Acad. Sci. USA 121, e2411613121 (2024).
Dean, D. S. & Gopinathan, A. Out-of-equilibrium conduct of Casimir-type fluctuation-induced forces without cost classical fields. Phys. Rev. E 81, 041126 (2010).
Chen, W., Andreev, A. V. & Levchenko, A. Boltzmann–Langevin concept of Coulomb drag. Phys. Rev. B 91, 245405 (2015).
Andreev, A. F. & Meierovich, A. E. Dragging of a liquid by a liquid by way of a stationary stable wall. JETP Lett. 15, 39 (1971).
Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: concept and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039 (2003).
Misra, R. P. & Blankschtein, D. Insights on the function of many-body polarization results within the wetting of graphitic surfaces by water. J. Phys. Chem. C 121, 28166–28179 (2017).
Kittel, C. Introduction to Strong State Physics (Wiley, 2004).
Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).
Ni, G. X. et al. Basic limits to graphene plasmonics. Nature 557, 530–533 (2018).
Ouyang, W., Hod, O. & Urbakh, M. Parity-dependent moiré superlattices in graphene/h-BN heterostructures: a path to mechanomutable metamaterials. Phys. Rev. Lett. 126, 216101 (2021).
Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).