-6.6 C
United States of America
Friday, January 10, 2025

Momentum tunnelling between nanoscale liquid flows


  • Aluru, N. R. et al. Fluids and electrolytes underneath confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faucher, S. et al. Essential data gaps in mass transport by way of single-digit nanopores: a assessment and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, M. et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 10, 692–695 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marbach, S., Dean, D. S. & Bocquet, L. Transport and dispersion throughout wiggling nanopores. Nat. Phys. 14, 1108–1113 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lizée, M., Coquinot, B., Mariette, G., Siria, A. & Bocquet, L. Anomalous friction of supercooled glycerol on mica. Nat. Commun. 15, 6129 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bui, A. T., Thiemann, F. L., Michaelides, A. & Cox, S. J. Classical quantum friction at water–carbon interfaces. Nano Lett. 23, 580–587 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lizée, M. et al. Sturdy digital winds blowing underneath liquid flows on carbon surfaces. Phys. Rev. X 13, 011020 (2023).


    Google Scholar
     

  • Coquinot, B., Bocquet, L. & Kavokine, N. Quantum suggestions on the stable–liquid interface: flow-induced digital present and its damaging contribution to friction. Phys. Rev. X 13, 011019 (2023).

    CAS 

    Google Scholar
     

  • Rabinowitz, J., Cohen, C. & Shepard, Ok. L. An electrically actuated, carbon-nanotube-based biomimetic ion pump. Nano Lett. 20, 1148–1153 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, J. et al. Producing electrical energy by shifting a droplet of ionic liquid alongside graphene. Nat. Nanotechnol. 9, 378–383 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Comtet, J. et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the function of digital screening. Nat. Mater. 16, 634–639 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X., Principi, A., Tielrooij, Ok.-J., Bonn, M. & Kavokine, N. Electron cooling in graphene enhanced by plasmon–hydron resonance. Nat. Nanotechnol. 18, 898–904 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced circulation in carbon nanotubes. Nature 438, 44–44 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt, J. Ok. et al. Quick mass transport by way of sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maali, A., Cohen-Bouhacina, T. & Kellay, H. Measurement of the slip size of water circulation on graphite floor. Appl. Phys. Lett. 92, 053101 (2008).

    Article 

    Google Scholar
     

  • Secchi, E. et al. Huge radius-dependent circulation slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Q. et al. Quick water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keerthi, A. et al. Water friction in nanofluidic channels created from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coquinot, B., Becker, M., Netz, R. R., Bocquet, L. & Kavokine, N. Collective modes and quantum results in two-dimensional nanofluidic channels. Faraday Talk about. 249, 162–180 (2023).

    Article 
    PubMed Central 

    Google Scholar
     

  • Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio strategies: very totally different slippage regardless of very related interface constructions. Nano Lett. 14, 6872–6877 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heyden, M. et al. Dissecting the THz spectrum of liquid water from first rules by way of correlations in time and house. Proc. Natl Acad. Sci. USA 107, 12068–12073 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafez, H. A. et al. Extraordinarily environment friendly terahertz high-harmonic technology in graphene by sizzling Dirac fermions. Nature 561, 507–511 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coquinot, B., Bocquet, L. & Kavokine, N. Hydroelectric power conversion of waste flows by way of hydroelectronic drag. Proc. Natl Acad. Sci. USA 121, e2411613121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean, D. S. & Gopinathan, A. Out-of-equilibrium conduct of Casimir-type fluctuation-induced forces without cost classical fields. Phys. Rev. E 81, 041126 (2010).

    Article 

    Google Scholar
     

  • Chen, W., Andreev, A. V. & Levchenko, A. Boltzmann–Langevin concept of Coulomb drag. Phys. Rev. B 91, 245405 (2015).

    Article 

    Google Scholar
     

  • Andreev, A. F. & Meierovich, A. E. Dragging of a liquid by a liquid by way of a stationary stable wall. JETP Lett. 15, 39 (1971).


    Google Scholar
     

  • Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: concept and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Misra, R. P. & Blankschtein, D. Insights on the function of many-body polarization results within the wetting of graphitic surfaces by water. J. Phys. Chem. C 121, 28166–28179 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kittel, C. Introduction to Strong State Physics (Wiley, 2004).

  • Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    Article 

    Google Scholar
     

  • Ni, G. X. et al. Basic limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang, W., Hod, O. & Urbakh, M. Parity-dependent moiré superlattices in graphene/h-BN heterostructures: a path to mechanomutable metamaterials. Phys. Rev. Lett. 126, 216101 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles