0.6 C
United States of America
Friday, January 10, 2025

AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity


  • Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with artificial biology. Science 359, eaad1067 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, M. & Fussenegger, M. Designing cell perform: meeting of artificial gene circuits for cell biology functions. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cubillos-Ruiz, A. et al. Engineering dwelling therapeutics with artificial biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human scientific samples by way of amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra283 (2015).

    Article 

    Google Scholar
     

  • Chang, H.-J. et al. Programmable receptors allow bacterial biosensors to detect pathological biomarkers in scientific samples. Nat. Commun. 12, 5216 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwong, G. A. et al. Artificial biomarkers: a twenty-first century path to early most cancers detection. Nat. Rev. Most cancers 21, 655–668 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danino, T. et al. Programmable probiotics for detection of most cancers in urine. Sci. Transl. Med. 7, 289ra284–289ra284 (2015).

    Article 

    Google Scholar
     

  • Panteli, J. T., Van Dessel, N. & Forbes, N. S. Detection of tumors with fluoromarker-releasing micro organism. Int. J. Most cancers 146, 137–149 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, J. H., Collins, J. J. & Wong, W. W. Common chimeric antigen receptors for multiplexed and logical management of T cell responses. Cell 173, 1426–1438.e1411 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roybal, Ok. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaseniit, Ok. E. et al. Modular, programmable RNA sensing utilizing ADAR modifying in dwelling cells. Nat. Biotechnol. 41, 482–487 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawasaki, S., Fujita, Y., Nagaike, T., Tomita, Ok. & Saito, H. Artificial mRNA gadgets that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res. 45, e117–e117 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, T. E. et al. Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nat. Chem. Biol. 14, 1043–1050 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mc Cafferty, S. et al. In vivo validation of a reversible small molecule-based swap for artificial self-amplifying mRNA regulation. Mol. Ther. 29, 1164–1173 (2021).

    Article 

    Google Scholar
     

  • Vlahos, A. E. et al. Protease-controlled secretion and show of intercellular alerts. Nat. Commun. 13, 912 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. A programmable protease-based protein secretion platform for therapeutic functions. Nat. Chem. Biol. 20, 432–442 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in dwelling cells. Science 361, 1252–1258 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. De novo design of protein logic gates. Science 368, 78 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, B. A. & Kwong, G. A. Protease circuits for processing organic data. Nat. Commun. 11, 5021 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, B. A. et al. Dimensionless parameter predicts bacterial prodrug success. Mol. Syst. Biol. 18, e10495 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widen, J. C. et al. AND-gate distinction brokers for enhanced fluorescence-guided surgical procedure. Nat. Biomed. Eng. 5, 264–277 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holt, B. A. et al. Embracing enzyme promiscuity with activity-based compressed biosensing. Cell Rep. Strategies 3, 100372 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang, Q., Holt, B. A., Kwong, G. A. & Qiu, P. Deconvolving multiplexed protease signatures with substrate discount and exercise clustering. PLoS Comput. Biol. 15, e1006909 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection by way of nanosensors of granzyme B exercise. Nat. Biomed. Eng. 3, 281–291 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mac, Q. D. et al. Urinary detection of early responses to checkpoint blockade and of resistance to it by way of protease-cleaved antibody-conjugated sensors. Nat. Biomed. Eng. 6, 310–324 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werle, M. & Bernkop-Schnurch, A. Methods to enhance plasma half life time of peptide and protein medication. Amino Acids 30, 351–367 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diao, L. & Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet. 52, 855–868 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and remedy. Nanomedicine 6, 715–728 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwong, G. A. et al. Mass-encoded artificial biomarkers for multiplexed urinary monitoring of illness. Nat. Biotechnol. 31, 63–70 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dall, E. & Brandstetter, H. Mechanistic and structural research on legumain clarify its zymogenicity, distinct activation pathways, and regulation. Proc. Natl Acad. Sci. USA 110, 10940–10945 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, S. et al. Fibroblast activation protein peptide substrates recognized from human collagen I derived gelatin cleavage websites. Biochemistry 47, 1076–1086 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, S. H. Cyclic peptides as therapeutic brokers and biochemical instruments. Biomol. Ther. (Seoul) 20, 19–26 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, D. S. et al. Orally absorbed cyclic peptides. Chem. Rev. 117, 8094–8128 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKay, C. S. & Finn, M. G. Polyvalent catalysts working on polyvalent substrates: a mannequin for surface-controlled reactivity. Angew. Chem. Int. Ed. 55, 12643–12649 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Algar, W. R. et al. Proteolytic exercise at quantum dot-conjugates: kinetic evaluation reveals enhanced enzyme exercise and localized interfacial “hopping”. Nano Lett. 12, 3793–3802 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. L. et al. Evaluation of immune signatures in longitudinal tumor samples yields perception into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Most cancers Discov. 6, 827–837 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict most cancers immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessenbrock, Ok., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yap, T. A. et al. Improvement of immunotherapy mixture methods in most cancers. Most cancers Discov. 11, 1368–1397 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, A. et al. Granzyme B nanoreporter for early monitoring of tumor response to immunotherapy. Sci. Adv. 6, eabc2777 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, N. et al. In vivo measurement of granzyme proteolysis from activated immune cells with PET. ACS Cent. Sci. 7, 1638–1649 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Major, adaptive, and bought resistance to most cancers immunotherapy. Cell 168, 707–723 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, B. L. et al. Feasibility examine of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast most cancers in breast conserving surgical procedure. Ann. Surg. Oncol. 27, 1854–1861 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitley, M. J. et al. A mouse-human section 1 co-clinical trial of a protease-activated fluorescent probe for imaging most cancers. Sci. Transl. Med. 8, 320ra324 (2016).

    Article 

    Google Scholar
     

  • Steinkamp, P. J. et al. A standardized framework for fluorescence-guided margin evaluation for head and neck most cancers utilizing a tumor acidosis delicate optical imaging agent. Mol. Imaging Biol. 23, 809–817 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a pure born killer. Immunol. Rev. 193, 31–38 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trapani, J. A. & Sutton, V. R. Granzyme B: pro-apoptotic, antiviral and antitumor features. Curr. Opin. Immunol. 15, 533–543 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Q. et al. Immune checkpoint remedy for stable tumours: scientific dilemmas and future tendencies. Sign Transduct. Goal. Ther. 8, 320 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaddepally, R. Ok., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Evaluation of indications of FDA-approved immune checkpoint inhibitors per NCCN tips with the extent of proof. Cancers (Basel) 12, 738 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune, B. X. J. et al. Matrix metalloproteinases in chemoresistance: regulatory roles, molecular interactions, and potential inhibitors. J. Oncol. 2022, 3249766 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vyas, D., Laput, G. & Vyas, A. Ok. Chemotherapy-enhanced irritation could result in the failure of remedy and metastasis. OncoTargets Ther. 7, 1015–1023 (2014).

    Article 

    Google Scholar
     

  • Goodwin, R. A. & Asmis, T. R. Overview of systemic remedy for colorectal most cancers. Clin. Colon Rectal Surg. 22, 251–256 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Hepatitis B virus reactivation in most cancers sufferers with constructive hepatitis B floor antigen present process PD-1 inhibition. J. Immunother. Most cancers 7, 322 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutchinson, J. A. et al. Virus-specific reminiscence T cell responses unmasked by immune checkpoint blockade trigger hepatitis. Nat. Commun. 12, 1439 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esfahani, Ok. et al. Shifting in direction of personalised remedies of immune-related adversarial occasions. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kyi, C., Hellmann, M. D., Wolchok, J. D., Chapman, P. B. & Postow, M. A. Opportunistic infections in sufferers handled with immunotherapy for most cancers. J. Immunother. Most cancers 2, 19 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Castillo, M. et al. The spectrum of significant infections amongst sufferers receiving immune checkpoint blockade for the therapy of melanoma. Clin. Infect. Dis. 63, 1490–1493 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, I. et al. Modular design of artificial receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443.e1416 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: growth and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, F.-Y. et al. In vivo mRNA supply to virus-specific T cells by light-induced ligand change of MHC class I antigen-presenting nanoparticles. Sci. Adv. 8, eabm7950 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells utilizing artificial DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for efficient remedy. Nat. Med. 24, 541–550 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fridman, W. H., Zitvogel, L., Sautès–Fridman, C. & Kroemer, G. The immune contexture in most cancers prognosis and therapy. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, S., Cheng, P. & Pu, Ok. Activatable near-infrared probes for the detection of particular populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kratochwil, C. et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 totally different sorts of most cancers. J. Nucl. Med. 60, 801–805 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galluzzi, L., Guilbaud, E., Schmidt, D., Kroemer, G. & Marincola, F. M. Focusing on immunogenic cell stress and demise for most cancers remedy. Nat. Rev. Drug Discov. 23, 445–460 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J.-H. et al. Magnetic iron oxide nanoworms for tumor focusing on and imaging. Adv. Mater. 20, 1630–1635 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles