-6.4 C
United States of America
Tuesday, January 7, 2025

Advances in 3D printing mixed with tissue engineering for nerve regeneration and restore | Journal of Nanobiotechnology


  • Nelson DW, Gilbert RJ. Extracellular matrix-mimetic hydrogels for treating neural tissue Damage: a Give attention to Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater. 2021;10(22):e2101329.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu G, Cheng Y, Guo S, Feng Y, Li Q, Jia H, Wang Y, Tong L, Tong X. Transplantation of adipose-derived stem cells for peripheral nerve restore,Int. J Mol Med. 2011;28(4):565–72.


    Google Scholar
     

  • Guo J, Guo S, Wang Y, Yu Y. Selling potential of adipose derived stem cells on peripheral nerve regeneration. Mol Med Rep. 2017;16(5):7297–304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jallali N, James S, Elmiyeh B, Searle A, Ghattaura A, Dwivedi RC, Kazi R, Harris P. The present position of tissue engineering in head and neck reconstruction. Indian J Most cancers. 2010;47(3):274–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang CW, Huang WC, Qiu X, Fernandes Ferreira da Silva F, Wang A, Patel S, Nesti LJ, Poo MM, Li S. The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep. 2017;7(1):17401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clements IP, Kim YT, English AW, Lu X, Chung A, Bellamkonda RV. Skinny-film enhanced nerve steerage channels for peripheral nerve restore. Biomaterials. 2009;30(23–24):3834–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu Z, Cui J, Zhao B, Shen SG, Lin Ok. An summary of polyester/hydroxyapatite composites for bone tissue repairing. J Orthop Translation. 2021;28:118–30.

    Article 

    Google Scholar
     

  • Gu F, Yang X, Wang Z, Tan X, Xue T, Chen Z, Wang Z, Chen G. Diagnostic accuracy of intraoperative brainstem auditory evoked potential for predicting listening to loss after vestibular schwannoma surgical procedure. Entrance Neurol. 2022;13:1018324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh HH, Ko YG, Uyama H, Park WH, Cho D, Kwon OH. Fabrication and characterization of thermoresponsive polystyrene nanofibrous mats for aesthetic cell restoration. BioMed Res Int. 2014;2014:480694.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Xu B, Zhao S, Han S, Quan R, Liu W, Ji C, Chen B, Xiao Z, Yin M, Yin Y, Dai J, Zhao Y. Sci Adv. 2023;9(6):eade8829. Spinal twine tissue engineering by way of covalent interplay between biomaterials and cells.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM. M.C. McAlpine, 3D printed neural regeneration gadgets. Adv Funct Mater 30(1) (2020).

  • Foo CY, Lim HN, Mahdi MA, Wahid MH, Huang NM. Three-Dimensional Print Electrode Its Novel Appl Electron Units Sci Rep. 2018;8(1):7399.


    Google Scholar
     

  • Zhang M, An H, Wan T, Jiang HR, Yang M, Wen YQ, Zhang PX. Micron observe chitosan conduit fabricated by 3D-printed mannequin topography offers bionic microenvironment for peripheral nerve regeneration. Int J Bioprinting. 2023;9(5):770.

    Article 

    Google Scholar
     

  • Bianchini M, Zinno C, Micera S. E. Redolfi Riva, Improved Physiochemical properties of Chitosan@PCL nerve conduits by Pure Molecule Crosslinking. Biomolecules 13(12) (2023).

  • Smith SM, Kimyon RS, Watters JJ. Cell-type-specific Jumonji histone demethylase gene expression within the wholesome rat CNS: detection by a novel circulation cytometry methodology. ASN Neuro. 2014;6(3):193–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malko P, Syed Mortadza SA, McWilliam J, Jiang LH. TRPM2 Channel in Microglia as a New Participant in Neuroinflammation Related to a spectrum of Central Nervous System pathologies. Entrance Pharmacol. 2019;10:239.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao T, Huang F, Wang W, Xie Y, Wang B. Interleukin-10 genetically modified clinical-grade mesenchymal stromal cells markedly strengthened practical restoration after spinal twine damage by way of directing various activation of macrophages. Cell Mol Biol Lett. 2022;27(1):27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic check accuracy and cost-effectiveness of checks for codeletion of chromosomal arms 1p and 19q in individuals with glioma. Cochrane Database Syst Rev. 2022;3(3):Cd013387.

    PubMed 

    Google Scholar
     

  • Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, Turecki G. Astrocytic abnormalities and international DNA methylation patterns in despair and suicide. Mol Psychiatry. 2015;20(3):320–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma S, Bi W, Liu X, Li S, Qiu Y, Huang C, Lv R, Yin Q. Single-cell sequencing evaluation of the db/db mouse Hippocampus reveals cell-type-specific insights into the Pathobiology of Diabetes-Related Cognitive Dysfunction. Entrance Endocrinol. 2022;13:891039.

    Article 

    Google Scholar
     

  • Lu N, Wang B, Deng X, Zhao H, Wang Y, Li D. Autophagy happens inside an hour of adenosine triphosphate therapy after nerve cell injury: the neuroprotective results of adenosine triphosphate towards apoptosis. Neural Regen Res. 2014;9(17):1599–605.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou Z, Wang AP, Duan XM, Hu GH, Zuo ML, Yang ZB. Position of ALK5/SMAD2/3 signaling within the regulation of NOX expression in cerebral ischemia/reperfusion damage. Exp Ther Med. 2018;16(3):1671–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Huang J, Chen L, Ren W, Cai W. Human umbilical twine mesenchymal stem cells contribute to the reconstruction of bladder operate after acute spinal twine damage by way of p38 mitogen-activated protein kinase/nuclear factor-kappa B pathway. Bioengineered. 2022;13(3):4844–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krucoff MO, Miller JP, Saxena T, Bellamkonda R, Rahimpour S, Harward SC, Lad SP, Turner DA. Towards practical restoration of the Central Nervous System: a evaluate of Translational Neuroscience rules. Neurosurgery. 2019;84(1):30–40.

    Article 
    PubMed 

    Google Scholar
     

  • Martínez-Ramos C, Vallés-Lluch A, Verdugo JM, Ribelles JL, Barcia Albacar JA, Orts AB, Soria JM, López MM, Pradas. Channeled scaffolds implanted in grownup rat mind. J Biomed Mater Res A. 2012;100(12):3276–86.

    Article 
    PubMed 

    Google Scholar
     

  • Kazemi S, Baltzer W, Schilke Ok, Mansouri H, Mata JE. IKVAV-linked cell membrane-spanning peptide therapy induces neuronal reactivation following spinal twine damage. Future Sci OA. 2015;1(4):Fso81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdul-Muneer PM. MicroRNA within the pathophysiology of CNS Damage: implication in Neuroregenerative Drugs. CNS Neurosci Ther. 2016;22(7):543–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med. 2000;78(1):3–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Ma C, Xing R, Zhang W, Tian B, Li X, Li Q, Zhang Y. The calmodulin-dependent protein kinase II inhibitor KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced damage. Neural Regen Res. 2013;8(2):111–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uberti AF, Callai-Silva N, Grahl MVC, Piovesan AR, Nachtigall EG, Furini CRG, Carlini CR. Helicobacter pylori Urease: Potential Contributions to Alzheimer’s Illness, Int. J. Mol. Sci23(6) (2022).

  • Jankowska-Kulawy A, Klimaszewska-Łata J, Gul-Hinc S, Ronowska A, Szutowicz A. Metabolic and Mobile compartments of Acetyl-CoA within the wholesome and diseased mind. Int J Mol Sci23(17) (2022).

  • Schirmeier S, Matzat T, Klämbt C. Axon ensheathment and metabolic provide by glial cells in Drosophila. Mind Res. 2016;1641Pt A:122–9.

    Article 

    Google Scholar
     

  • Egawa N, Lok J, Washida Ok, Arai Ok. Mechanisms of axonal injury and restore after Central Nervous System Damage. Translational Stroke Res. 2017;8(1):14–21.

    Article 
    CAS 

    Google Scholar
     

  • Hewison M, Barker S, Brennan A, Katz DR, O’Riordan JL. Modulation of myelomonocytic U937 cells by vitamin D metabolites. Bone Miner. 1989;5(3):323–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winter AN, Brenner MC, Punessen N, Snodgrass M, Byars C, Arora Y, Linseman DA. Comparability of the neuroprotective and anti inflammatory results of the anthocyanin metabolites, Protocatechuic Acid and 4-Hydroxybenzoic acid. Oxidative Med Cell Longev. 2017;2017:6297080.

    Article 

    Google Scholar
     

  • Cui W, Solar C, Ma Y, Wang S, Wang X, Zhang Y. Inhibition of TLR4 induces M2 microglial polarization and offers Neuroprotection by way of the NLRP3 inflammasome in Alzheimer’s Illness. Entrance NeuroSci. 2020;14:444.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong H, Hwang I, Kang SH, Shin HC, Kwon SY. Tumor-Related macrophages as potential prognostic biomarkers of invasive breast Most cancers. J Breast most cancers. 2019;22(1):38–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological being pregnant. Entrance Immunol. 2019;10:792.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Zhang Y, Tang L, Zhong H, Danzeng D, Liang C, Liu S. The neuroprotective impact of Byu D Mar 25 in LPS-Induced Alzheimer’s Illness mice Mannequin. Proof-based Complement Altern Drugs: eCAM. 2021;2021:8879014.


    Google Scholar
     

  • Gorelenkova Miller O, Mieyal JJ. Sulfhydryl-mediated redox signaling in irritation: position in neurodegenerative ailments. Arch Toxicol. 2015;89(9):1439–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villalba N, Child S, Cha BJ, Yuan SY. Website-specific opening of the blood-brain barrier by extracellular histones. J Neuroinflamm. 2020;17(1):281.

    Article 
    CAS 

    Google Scholar
     

  • Nieuwenhuis B, Barber AC, Evans RS, Pearson CS, Fuchs J, MacQueen AR, van Erp S, Haenzi B, Hulshof LA, Osborne A, Conceicao R, Khatib TZ, Deshpande SS, Cave J, Ffrench-Fixed C, Smith PD, Okkenhaug Ok, Eickholt BJ, Martin KR, Fawcett JW, Eva R. PI 3-kinase delta enhances axonal PIP(3) to assist axon regeneration within the grownup CNS. EMBO Mol Med. 2020;12(8):e11674.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Q, Jin W, Xiao Z, Ni H, Wang J, Kong J, Wu J, Liang W, Chen L, Zhao Y, Chen B, Dai J. The promotion of neural regeneration in an excessive rat spinal twine damage mannequin utilizing a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials. 2010;31(35):9212–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting expertise for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniel S, Clark AF, McDowell CM. Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Demise Discovery. 2018;4:7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyata S, Kitagawa H. Formation and transforming of the mind extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan, Biochimica et biophysica acta. Gen Subj. 2017;1861(10):2420–34.

    Article 
    CAS 

    Google Scholar
     

  • Katoh H, Yokota Ok, Fehlings MG. Regeneration of spinal twine connectivity by stem cell transplantation and Biomaterial Scaffolds. Entrance Cell Neurosci. 2019;13:248.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obernier Ok, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation within the grownup mammalian mind. Improvement 146(4) (2019).

  • Xue X, Chen X, Fan W, Wang G, Zhang L, Chen Z, Liu P, Liu M, Zhao J. Excessive-mobility group field 1 facilitates migration of neural stem cells by way of receptor for superior glycation finish merchandise signaling pathway,Sci. Rep. 2018;8(1):4513.


    Google Scholar
     

  • Soman SS, Vijayavenkataraman S. Views on 3D bioprinting of peripheral nerve conduits. Int J Mol Sci21(16) (2020).

  • Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a evaluate of the physiological mechanisms for reaching practical restoration postinjury. Army Med Res. 2020;7(1):30.

    Article 

    Google Scholar
     

  • Fay AJ. Neuromuscular ailments of the New child. Semin Pediatr Neurol. 2019;32:100771.

    Article 
    PubMed 

    Google Scholar
     

  • Crago PE. Neuromodulation by mixed sensory and motor stimulation within the peripheral nerve: tendon organ afferent exercise. J Neural Eng. 2019;16(1):016015.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Q, Li J, Yang J, Xu Z. CUL3 and COPS5 associated to the ubiquitin-proteasome pathway are potential genes for muscle atrophy in mice. Proof-based Complement Altern Drugs: eCAM. 2022;2022:1488905.


    Google Scholar
     

  • Stecco C, Fantoni I, Macchi V, Del Borrello M, Porzionato A, Biz C, De Caro R. The position of fasciae in Civinini-Morton’s syndrome. J Anat. 2015;227(5):654–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riva N, Domi T, Lopez ID, Triolo D, Fossaghi A, Dina G, Podini P, Comi G, Quattrini A. The brachial plexus branches to the pectoral muscular tissues in grownup rats: morphological points and morphometric normative knowledge. Entrance Neuroanat. 2012;6:41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Fang Y, Jiang W. Vital cells and components from Tumor Microenvironment participated in Perineural Invasion. Cancers 15(5) (2023).

  • Madhu V, S Dighe A, Cui Q, N Deal D. Twin inhibition of Activin/Nodal/TGF-β and BMP signaling pathways by SB431542 and Dorsomorphin induces neuronal differentiation of human adipose derived stem cells. Stem Cells Int. 2016;2016:1035374.

    Article 
    PubMed 

    Google Scholar
     

  • Kuffler DP, Foy C. Restoration of neurological operate following peripheral nerve trauma. Int J Mol Sci21(5) (2020).

  • Elzinga Ok, Tyreman N, Ladak A, Savaryn B, Olson J, Gordon T. Temporary electrical stimulation improves nerve regeneration after delayed restore in Sprague Dawley rats. Exp Neurol. 2015;269:142–53.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang XX, Kou YH, Yin XF, Jiang BG, Zhang PX. Brief-term observations of the regenerative potential of injured proximal sensory nerves crossed with distal motor nerves. Neural Regen Res. 2017;12(7):1172–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang PX, Han N, Kou YH, Zhu QT, Liu XL, Quan DP, Chen JG, Jiang BG. Tissue engineering for the restore of peripheral nerve damage. Neural Regen Res. 2019;14(1):51–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P, Millesi F, Radtke C. How miRNAs regulate Schwann cells throughout peripheral nerve Regeneration-A systemic evaluate. Int J Mol Sci23(7) (2022).

  • Poon AD, McGill SH, Bhupanapadu Sunkesula SR, Burgess ZS, Dunne PJ, Kang EE, Bittner GD. Ca2+/calmodulin-dependent protein kinase II and Dimethyl Sulfoxide have an effect on the sealing frequencies of transected hippocampal neurons. J Neurosci Res. 2018;96(7):1208–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Fang J, Hu F, Li G, Hong HE. Seawater immersion aggravates sciatic nerve damage in rats. Exp Ther Med. 2015;9(4):1153–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya MR, Geisler S, Pittman SK, Doan RA, Weihl CC, Milbrandt J, DiAntonio A. TMEM184b promotes Axon Degeneration and Neuromuscular Junction upkeep. J Neuroscience: Official J Soc Neurosci. 2016;36(17):4681–9.

    Article 
    CAS 

    Google Scholar
     

  • Kneynsberg A, Collier TJ, Manfredsson FP, Kanaan NM. Quantitative and semi-quantitative measurements of axonal degeneration in tissue and first neuron cultures. J Neurosci Strategies. 2016;266:32–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae HW, Lee N, Seong GJ, Rho S, Hong S, Kim CY. Protecting impact of etanercept, an inhibitor of tumor necrosis factor-α, in a rat mannequin of retinal ischemia. BMC Ophthalmol. 2016;16:75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu D, Nicholls PK, Yin C, Kelman Ok, Yuan Q, Greene WK, Shi Z, Ma B. Immunofluorescent localization of non-myelinating Schwann Cells and their interactions with Immune cells in mouse Thymus. J Histochem Cytochemistry: Official J Histochem Soc. 2018;66(11):775–85.

    Article 
    CAS 

    Google Scholar
     

  • Angeloni NL, Bond CW, Tang Y, Harrington DA, Zhang S, Stupp SI, McKenna KE, Podlasek CA. Regeneration of the cavernous nerve by Sonic Hedgehog utilizing aligned peptide amphiphile nanofibers. Biomaterials. 2011;32(4):1091–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musumeci G, Leggio GM, Marzagalli R, Al-Badri G, Drago F, Castorina A. Identification of Dysregulated microRNA Networks in Schwann Cell-Like cultures uncovered to Immune Problem: potential crosstalk with the protecting VIP/PACAP Neuropeptide System. Int J Mol Sci19(4) (2018).

  • Rosenberg AF, Wolman MA, Franzini-Armstrong C, Granato M. In vivo nerve-macrophage interactions following peripheral nerve damage. J Neuroscience: Official J Soc Neurosci. 2012;32(11):3898–909.

    Article 
    CAS 

    Google Scholar
     

  • Belanger Ok, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Current methods in tissue Engineering for guided peripheral nerve regeneration. Macromol Biosci. 2016;16(4):472–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic low-intensity ultrasound for peripheral nerve regeneration – A Schwann Cell Perspective. Entrance Cell Neurosci. 2021;15:812588.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan XH, Cheng LN, Zhang F, Liu J, Guo RM, Zhong XM, Wen XH, Shen J. In vivo MRI monitoring nerve regeneration of acute peripheral nerve traction damage following mesenchymal stem cell transplantation. Eur J Radiol. 2012;81(9):2154–60.

    Article 
    PubMed 

    Google Scholar
     

  • Gisbert Roca F, Serrano Requena S, Monleón Pradas M, Martínez-Ramos C. Electrical stimulation will increase axonal development from dorsal Root Ganglia co-cultured with Schwann Cells in extremely aligned PLA-PPy-Au Microfiber substrates. Int J Mol Sci23(12) (2022).

  • Gong L, Wang D, Zhang L, Xie X, Solar H, Gu J. Genetic modifications in rat proximal nerve stumps after sciatic nerve transection. Annals Translational Med. 2019;7(23):763.

    Article 
    CAS 

    Google Scholar
     

  • Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic Design and fabrication of nerve Steerage conduits for peripheral nerve regeneration. Biotechnol J. 2018;13(7):e1700635.

    Article 
    PubMed 

    Google Scholar
     

  • Hromada C, Hartmann J, Oesterreicher J, Stoiber A, Daerr A, Schädl B, Priglinger E, Teuschl-Woller AH, Holnthoner W, Heinzel J, Hercher D. Incidence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro, Biomolecules 12(6) (2022).

  • Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering, Polymers 12(8) (2020).

  • Kemp SW, Walsh SK, Midha R. Progress issue and stem cell enhanced conduits in peripheral nerve regeneration and restore. Neurol Res. 2008;30(10):1030–8.

    Article 
    PubMed 

    Google Scholar
     

  • Pfister BJ, Iwata A, Taylor AG, Wolf JA, Meaney DF, Smith DH. Improvement of transplantable nervous tissue constructs comprised of stretch-grown axons. J Neurosci Strategies. 2006;153(1):95–103.

    Article 
    PubMed 

    Google Scholar
     

  • Bhandari PS. Administration of peripheral nerve damage. J Clin Orthop Trauma. 2019;10(5):862–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Guo W, Xu L, Li W, Cheng M, Hu Y, Xu W. 17β-Estradiol promotes Schwann Cell Proliferation and differentiation, accelerating early remyelination in a mouse peripheral nerve Damage Mannequin. Biomed Res Int. 2016;2016:7891202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qualmann B, Kessels MM. The position of protein arginine methylation as post-translational modification on actin Cytoskeletal Elements in neuronal construction and performance. Cells 10(5) (2021).

  • Hu BB, Chen M, Huang RC, Huang YB, Xu Y, Yin W, Li L, Hu B. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp Neurol. 2018;300:67–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Yu Z, Males Y, Chen X, Wang B. Laminin-chitosan-PLGA conduit co-transplanted with Schwann and neural stem cells to restore the injured recurrent laryngeal nerve. Exp Ther Med. 2018;16(2):1250–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gang F, Ye W, Ma C, Wang W, Xiao Y, Liu C. X. Solar, 3D Printing of PLLA/Biomineral Composite Bone tissue Engineering Scaffolds. Mater (Basel Switzerland) 15(12) (2022).

  • Zeng X, Zhang L, Solar L, Zhang D, Zhao H, Jia J, Wang W. Restoration from rat sciatic nerve damage in vivo by using differentiated MDSCs in vitro. Exp Ther Med. 2013;5(1):193–6.

    Article 
    PubMed 

    Google Scholar
     

  • Ji W, Zhang Y, Hu S, Zhang Y. Biocompatibility research of a silk fibroin-chitosan scaffold with adipose tissue-derived stem cells in vitro. Exp Ther Med. 2013;6(2):513–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasari A, Xue J, Deb S. Magnetic nanoparticles in bone tissue Engineering. Nanomaterials (Basel Switzerland) 12(5) (2022).

  • Boccafoschi F, Fusaro L, Botta M, Ramella M, Chevallier P, Mantovani D, Cannas M. Arginine-glycine-glutamine and serine-isoleucine-lysine-valine-alanine-valine modified poly(l-lactide) movies: bioactive molecules used for floor grafting to information mobile contractile phenotype. Biointerphases. 2014;9(2):029002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung S, King MW. Design ideas and methods for tissue engineering scaffolds. Biotechnol Appl Chem. 2011;58(6):423–38.

    CAS 

    Google Scholar
     

  • Wang P, Zhang S, Meng Q, Zhu P, Yuan W. Remedy and software of stem cells from completely different sources for cartilage damage: a literature evaluate. Annals Translational Med. 2022;10(10):610.

    Article 

    Google Scholar
     

  • Griffin MF, Butler PE, Seifalian AM, Kalaskar DM. Management of stem cell destiny by engineering their micro and nanoenvironment. World J stem Cells. 2015;7(1):37–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian C, Zhang Z, Zhao R, Wang D, Li H. Impact of acellular nerve scaffold containing human umbilical cord-derived mesenchymal stem cells on nerve restore and regeneration in rats with sciatic nerve defect. Annals Translational Med. 2022;10(8):483.

    Article 
    CAS 

    Google Scholar
     

  • Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, Lee I, Lee YS, Lee SH. Human embryonic stem cell-derived neural precursors as a steady, steady, and on-demand supply for human dopamine neurons. J Neurochem. 2007;103(4):1417–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisowski P, Kannan P, Mlody B, Prigione A. Mitochondria and the dynamic management of stem cell homeostasis. EMBO Rep 19(5) (2018).

  • Boote Jones EN, Mallapragada SK. Directed development and differentiation of stem cells in the direction of neural cell fates utilizing soluble and surface-mediated cues. J Biomater Sci Polym Ed. 2007;18(8):999–1015.

    Article 
    PubMed 

    Google Scholar
     

  • Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE. Mixture remedy of stem cell derived neural progenitors and drug supply of anti-inhibitory molecules for spinal twine damage. Acta Biomater. 2015;28:23–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa Ok, Brundin P, Eriksson PS, Li JY. Transplantation of human embryonic stem cell-derived cells to a rat mannequin of Parkinson’s illness: impact of in vitro differentiation on graft survival and teratoma formation, stem cells (Dayton. Ohio). 2006;24(6):1433–40.

    CAS 

    Google Scholar
     

  • Tee R, Lokmic Z, Morrison WA, Dilley RJ. Methods in cardiac tissue engineering. ANZ J Surg. 2010;80(10):683–93.

    Article 
    PubMed 

    Google Scholar
     

  • Alessandri M, Lizzo G, Gualandi C, Mangano C, Giuliani A, Focarete ML, Calzà L. Affect of organic matrix and synthetic electrospun scaffolds on proliferation, differentiation and trophic issue synthesis of rat embryonic stem cells. Matrix Biology: J Int Soc Matrix Biology. 2014;33:68–76.

    Article 
    CAS 

    Google Scholar
     

  • Aierken A, Li B, Liu P, Cheng X, Kou Z, Tan N, Zhang M, Yu S, Shen Q, Du X, Enkhbaatar BB, Zhang J, Zhang R, Wu X, Wang R, He X, Li N, Peng S, Jia W, Wang C, Hua J. Melatonin therapy improves human umbilical twine mesenchymal stem cell remedy in a mouse mannequin of kind II diabetes mellitus by way of the PI3K/AKT signaling pathway. Stem Cell Res Ther. 2022;13(1):164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: organic points and scientific functions, Journal of immunology analysis 2015 (2015) 394917.

  • Zhong XL, Huang Y, Du Y, He LZ, Chen YW, Cheng Y, Liu H. Unlocking the therapeutic potential of Exosomes Derived from nasal olfactory mucosal mesenchymal stem cells: restoring synaptic plasticity, neurogenesis, and Neuroinflammation in Schizophrenia. Schizophr Bull. 2024;50(3):600–14.

    Article 
    PubMed 

    Google Scholar
     

  • Vaithilingam V, Evans MDM, Lewy DM, Bean PA, Bal S, Tuch BE. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and performance when allografted,Sci. Rep. 2017;7(1):10059.


    Google Scholar
     

  • Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q, Kang T, Jiang S, Huang S, He J, Chen S, Du Y. Gou, 3D-engineering of Cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016;6:32184.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal twine Damage: pathophysiology, Multimolecular interactions, and underlying restoration mechanisms. Int J Mol Sci21(20) (2020).

  • López-Fagundo C, Mitchel JA, Ramchal TD, Dingle YT, Hoffman-Kim D. Navigating neurites make the most of mobile topography of Schwann cell somas and processes for optimum steerage. Acta Biomater. 2013;9(7):7158–68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou LN, Zhang JW, Liu XL, Zhou LH. Co-graft of bone marrow stromal cells and Schwann cells into acellular nerve Scaffold for sciatic nerve regeneration in rats. J oral Maxillofacial Surgical procedure: Official J Am Affiliation Oral Maxillofacial Surg. 2015;73(8):1651–60.

    Article 

    Google Scholar
     

  • Fan L, Yu Z, Li J, Dang X, Wang Ok. Schwann-like cells seeded in acellular nerve grafts enhance nerve regeneration. BMC Musculoskelet Disord. 2014;15:165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao Z, Fan B, Wang X, Huang X, Guan J, Solar Z, Xu B, Yang M, Chen Z, Jiang D, Yu J. A scientific evaluate of tissue Engineering Scaffold in Tendon Bone Therapeutic in vivo. Entrance Bioeng Biotechnol. 2021;9:621483.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Xu Z, Smith C, Sankar J. Current advances on the event of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge M, Xue L, Nie T, Ma H, Zhang J. The precision structural regulation of PLLA porous scaffold and its affect on the proliferation and differentiation of MC3T3-E1 cells. J Biomater Sci Polym Ed. 2016;27(17):1685–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faruq O, Kim B, Padalhin AR, Lee GH, Lee BT. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration. J Biomater Appl. 2017;32(4):433–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galperin A, Lengthy TJ, Ratner BD. Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with managed porosity for tissue engineering functions. Biomacromolecules. 2010;11(10):2583–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Ok, Yan L, Li R, Tune Z, Ding J, Liu B, Chen X. 3D printed customized nerve information conduits for Precision Restore of Peripheral nerve defects, Superior science (Weinheim, Baden-Wurttemberg. Germany). 2022;9(12):e2103875.


    Google Scholar
     

  • Seyedsalehi A, Daneshmandi L, Barajaa M, Riordan J, Laurencin CT. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds,Sci. Rep. 2020;10(1):22210.

    CAS 

    Google Scholar
     

  • Zhu H, Xue C, Yao M, Wang H, Zhang P, Qian T, Zhou S, Li S, Yu B, Wang Y, Gu X. miR-129 controls axonal regeneration by way of regulating insulin-like development factor-1 in peripheral nerve damage. Cell Demise Dis. 2018;9(7):720.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen QQ, Liu QY, Wang P, Qian TM, Wang XH, Yi S, Li SY. Potential software of let-7a antagomir in injured peripheral nerve regeneration. Neural Regen Res. 2023;18(7):1584–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei N, Wu Y, Chen B, Zhuang T, Yu X, Sui B, Ding T, Liu X. 3D-printed mesoporous bioactive glass/GelMA biomimetic scaffolds for osteogenic/cementogenic differentiation of periodontal ligament cells. Entrance Bioeng Biotechnol. 2022;10:950970.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porzionato A, Barbon S, Stocco E, Dalzoppo D, Contran M, De Rose E, Parnigotto PP, Macchi V, Grandi C, De Caro R. Improvement of oxidized polyvinyl alcohol-based nerve conduits coupled with the ciliary neurotrophic issue. Mater (Basel Switzerland) 12(12) (2019).

  • Superb EG, Decosterd I, Papaloïzos M, Zurn AD, Aebischer P. GDNF and NGF launched by artificial steerage channels assist sciatic nerve regeneration throughout a protracted hole. Eur J Neurosci. 2002;15(4):589–601.

    Article 
    PubMed 

    Google Scholar
     

  • Burdick JA, Ward M, Liang E, Younger MJ, Langer R. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials. 2006;27(3):452–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodla MC, Bellamkonda RV. Variations between the impact of anisotropic and isotropic laminin and nerve development issue presenting scaffolds on nerve regeneration throughout lengthy peripheral nerve gaps. Biomaterials. 2008;29(1):33–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prautsch KM, Schmidt A, Paradiso V, Schaefer DJ, Guzman R, Kalbermatten DF, Madduri S. Modulation of Human Adipose Stem Cells’ Neurotrophic Capability Utilizing a Number of Progress Components for Neural Tissue Engineering Purposes: Axonal Progress, Transcriptional, and Phosphoproteomic Analyses In Vitro. Cells 9(9) (2020).

  • Lin S, Teng J, Li J, Solar F, Yuan D, Chang J. Affiliation of Chemerin and vascular endothelial development issue (VEGF) with Diabetic Nephropathy, Medical science monitor. Int Med J Experimental Clin Res. 2016;22:3209–14.

    CAS 

    Google Scholar
     

  • Bin Z, Zhihu Z, Jianxiong M, Xinlong M. Repairing peripheral nerve defects with revascularized tissue-engineered nerve primarily based on a vascular endothelial development factor-heparin sustained launch system. J Tissue Eng Regen Med. 2020;14(6):819–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takaoka M, Kim SH, Okawa T, Michaylira CZ, Stairs DB, Johnstone CN, Andl CD, Rhoades B, Lee JJ, Klein-Szanto AJ, El-Deiry WS, Nakagawa H. IGFBP-3 regulates esophageal tumor development by IGF-dependent and impartial mechanisms. Most cancers Biol Ther. 2007;6(4):534–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slavin BR, Sarhane KA, von Guionneau N, Hanwright PJ, Qiu C, Mao HQ, Höke A, Tuffaha SH. Insulin-like development Issue-1: a promising therapeutic goal for peripheral nerve Damage. Entrance Bioeng Biotechnol. 2021;9:695850.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leeuwen FN, Kain HE, Kammen RA, Michiels F, Kranenburg OW, Collard JG. The guanine nucleotide trade issue Tiam1 impacts neuronal morphology; opposing roles for the small GTPases Rac and rho. J Cell Biol. 1997;139(3):797–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF. Retinal ganglion cell apoptosis in glaucoma is said to intraocular strain and IOP-induced results on extracellular matrix. Investig Ophthalmol Vis Sci. 2005;46(1):175–82.

    Article 

    Google Scholar
     

  • Cui H, Zhu W, Miao S, Sarkar Ok, Zhang LG. 4D printed nerve conduit with in situ Neurogenic Steerage for nerve regeneration, tissue engineering. Half A. 2024;30(11–12):293–303.

    CAS 

    Google Scholar
     

  • Nix WA, Hopf HC. Electrical stimulation of regenerating nerve and its impact on motor restoration. Mind Res. 1983;272(1):21–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Solar W. 3D printed conductive multiscale nerve Steerage Conduit with hierarchical fibers for peripheral nerve regeneration, Superior science (Weinheim, Baden-Wurttemberg. Germany). 2023;10(12):e2205744.


    Google Scholar
     

  • Pockett S, Gavin RM. Acceleration of peripheral nerve regeneration after crush damage in rat. Neurosci Lett. 1985;59(2):221–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenjin W, Wenchao L, Hao Z, Feng L, Yan W, Wodong S, Xianqun F, Wenlong D. Electrical stimulation promotes BDNF expression in spinal twine neurons by ca(2+)- and Erk-dependent signaling pathways. Cell Mol Neurobiol. 2011;31(3):459–67.

    Article 
    PubMed 

    Google Scholar
     

  • Brushart TM, Aspalter M, Griffin JW, Redett R, Hameed H, Zhou C, Wright M, Vyas A, Höke A. Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro. Exp Neurol. 2013;247:272–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • English AW, Schwartz G, Meador W, Sabatier MJ, Mulligan A. Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol. 2007;67(2):158–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Liu Y, Yushan M, Yusufu A. Enhanced nerve regeneration by Bionic Conductive nerve Scaffold below Electrical Stimulation. Entrance NeuroSci. 2022;16:810676.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Liang Y, Ding S, Zhang Ok, Mao HQ, Yang Y. Utility of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials. 2020;255:120164.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moges H, Wu X, McCoy J, Vasconcelos OM, Bryant H, Grunberg NE, Anders JJ. Impact of 810 nm gentle on nerve regeneration after autograft restore of severely injured rat median nerve. Lasers Surg Med. 2011;43(9):901–6.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang JL, Guo XD, Zhang SQ, Wang XG, Wu SF. Repetitive magnetic stimulation impacts the microenvironment of nerve regeneration and evoked potentials after spinal twine damage. Neural Regen Res. 2016;11(5):816–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stölting MN, Arnold AS, Haralampieva D, Handschin C, Sulser T, Eberli D. Magnetic stimulation helps muscle and nerve regeneration after trauma in mice. Muscle Nerve. 2016;53(4):598–607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JR, Oh SH, Kwon GB, Namgung U, Tune KS, Jeon BH, Lee JH. Acceleration of peripheral nerve regeneration by asymmetrically porous nerve information conduit utilized with organic/bodily stimulation, tissue engineering. Half A. 2013;19(23–24):2674–85.

    CAS 

    Google Scholar
     

  • Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for most cancers analysis. Tendencies Biotechnol. 2015;33(9):504–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and characterization of sorts a and B gelatin methacryloyl for Bioink Purposes. Mater (Basel Switzerland) 9(10) (2016).

  • Wang P, Solar Y, Shi X, Shen H, Ning H, Liu H. Bioscaffolds embedded with regulatory modules for cell development and tissue formation: a evaluate. Bioactive Mater. 2021;6(5):1283–307.

    Article 
    CAS 

    Google Scholar
     

  • Ratnamani MPC, Zhang X, Wang H. A Complete Evaluation on the pivotal position of Hydrogels in Scaffold-based bioprinting, gels (Basel. Switzerland) 8(4) (2022).

  • Grayson WL, Martens TP, Eng GM, Radisic M, Vunjak-Novakovic G. Biomimetic method to tissue engineering. Semin Cell Dev Biol. 2009;20(6):665–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 2006;12(12):3265–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 32(8) (2014) 773 – 85.

  • Steer DL, Nigam SK. Developmental approaches to kidney tissue engineering. Am J Physiol Renal Physiol. 2004;286(1):F1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zhang B, Li L, Yin J, Fu J. Additive-lathe 3D bioprinting of bilayered nerve conduits integrated with supportive cells. Bioactive Mater. 2021;6(1):219–29.

    Article 
    CAS 

    Google Scholar
     

  • Summers AJ, Devadhasan JP, Gu J, Montgomery DC, Fischer B, Gates-Hollingsworth MA, Pflughoeft KJ, Vo-Dinh T, AuCoin DP, Zenhausern F. Optimization of an antibody microarray Printing course of utilizing a designed experiment. ACS Omega. 2022;7(36):32262–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its functions, Superior supplies (Deerfield Seaside. Fla). 2010;22(6):673–85.

    CAS 

    Google Scholar
     

  • Guvendiren M, Molde J, Soares RM, Kohn J. Designing Biomaterials for 3D Printing. ACS Biomaterials Sci Eng. 2016;2(10):1679–93.

    Article 
    CAS 

    Google Scholar
     

  • Gu Z, Fu J, Lin H, He Y. Improvement of 3D bioprinting: from printing strategies to biomedical functions. Asian J Pharm Sci. 2020;15(5):529–57.

    Article 
    PubMed 

    Google Scholar
     

  • Grogan SP, Chung PH, Soman P, Chen P, Lotz MK, Chen S. D’Lima, Digital micromirror machine projection printing system for meniscus tissue engineering. Acta Biomater. 2013;9(7):7218–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, Tuan RS. Utility of seen light-based projection stereolithography for dwell cell-scaffold fabrication with designed structure. Biomaterials. 2013;34(2):331–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakraimi R, Abouchadi H, Janan MT, Chehri A, Saadane R. Thermal modeling of Polyamide 12 powder within the selective laser sintering course of utilizing the discrete factor Technique. Mater (Basel Switzerland) 16(2) (2023).

  • Dong H, Wang P, Yang Z, Xu X. 3D printing primarily based on meat supplies: challenges and alternatives. Curr Res meals Sci. 2023;6:100423.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azlin MNM, Ilyas RA, Zuhri MYM, Sapuan SM, Harussani MM, Sharma S, Nordin AH, Nurazzi NM. A.N. Afiqah, 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Assessment, Polymers 14(1) (2022).

  • Mai Z, Liu D, Chen Z, Lin D, Zheng W, Dong X, Gao Q. W. Zhou, Fabrication and Utility of Photocatalytic Composites and Water Remedy Facility primarily based on 3D Printing Expertise. Polymers 13(13) (2021).

  • Zhang Y, Dong Z, Li C, Du H, Fang NX, Wu L, Tune Y. Steady 3D printing from one single droplet. Nat Commun. 2020;11(1):4685.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Tang Y, Cao Q, Wu Y, Wang Y, Yuan B, Li X, Zhou Y, Chen X, Zhu X, Tu C, Zhang X. Fabrication and organic analysis of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries by digital gentle processing expertise. Regenerative Biomaterials. 2022;9:rbac005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of Polymer melts for implantable medical gadgets and scaffolds. Biofabrication. 2017;9(1):012002.

    Article 
    PubMed 

    Google Scholar
     

  • Solar YC, Wan Y, Nam R, Chu M. Naguib, 4D-printed hybrids with localized form reminiscence behaviour: implementation in a functionally graded construction,Sci. Rep. 2019;9(1):18754.

    CAS 

    Google Scholar
     

  • Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, Ameer GA, He TC, Reid RR. 3-D bioprinting applied sciences in tissue engineering and regenerative drugs: present and future tendencies. Genes Dis. 2017;4(4):185–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SC, Gillispie G, Prim P, Lee SJ. Bodily and chemical components influencing the printability of hydrogel-based Extrusion Bioinks. Chem Rev. 2020;120(19):10834–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for pores and skin tissue engineering: present standing and views. J Tissue Eng. 2021;12:20417314211028574.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci22(8) (2021).

  • Rothbauer M, Eilenberger C, Spitz S, Bachmann BEM, Kratz SRA, Reihs EI, Windhager R, Toegel S, Ertl P. Current advances in Additive Manufacturing and 3D bioprinting for Organs-On-A-Chip and Microphysiological methods. Entrance Bioeng Biotechnol. 2022;10:837087.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maan Z, Masri NZ, Willerth SM. Sensible Bioinks for the Printing of Human Tissue Fashions, Biomolecules 12(1) (2022).

  • Lyu SAJ, Johnson M, Creagh-Flynn J, Zhou D, Lara-Sáez I, Xu Q, Tai H, Wang W. Immediate Gelation System as Self-Healable and printable 3D cell tradition Bioink Primarily based on Dynamic Covalent Chemistry. ACS Appl Mater Interfaces. 2020;12(35):38918–24.

    Article 
    PubMed 

    Google Scholar
     

  • Chen J, Huang D, Wang L, Hou J, Zhang H, Li Y, Zhong S, Wang Y, Wu Y, Huang W. 3D bioprinted multiscale composite scaffolds primarily based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J Colloid Interface Sci. 2020;574:162–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benwood C, Chrenek J, Kirsch RL, Masri NZ, Richards H, Teetzen Ok, Willerth SM. Pure biomaterials and their use as Bioinks for Printing tissues. Bioeng (Basel Switzerland) 8(2) (2021).

  • Naghieh S, Sarker MD, Abelseth E, Chen X. Oblique 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering functions. J Mech Behav Biomed Mater. 2019;93:183–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Liu C, Ma X. Alginic acid sodium hydrogel co-transplantation with Schwann cells for rat spinal twine restore. Archives Med Science: AMS. 2012;8(3):563–8.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Carvalho CR, Wrobel S, Meyer C, Brandenberger C, Cengiz IF, López-Cebral R, Silva-Correia J, Ronchi G, Reis RL, Grothe C, Oliveira JM. Haastert-Talini, Gellan Gum-based luminal fillers for peripheral nerve regeneration: an in vivo research within the rat sciatic nerve restore mannequin. Biomaterials Sci. 2018;6(5):1059–75.

    Article 
    CAS 

    Google Scholar
     

  • Li G, Xue C, Wang H, Yang X, Zhao Y, Zhang L, Yang Y. Spatially featured porous chitosan conduits with micropatterned interior wall and seamless sidewall for bridging peripheral nerve regeneration. Carbohydr Polym. 2018;194:225–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing, tissue engineering. Half A. 2008;14(1):127–33.

    CAS 

    Google Scholar
     

  • Lynam DA, Shahriari D, Wolf KJ, Angart PA, Koffler J, Tuszynski MH, Chan C, Walton P, Sakamoto J. Mind derived neurotrophic issue launch from layer-by-layer coated agarose nerve steerage scaffolds. Acta Biomater. 2015;18:128–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neglect A, Blaeser A, Miessmer F, Köpf M, Campos DFD, Voelcker NH, Blencowe A, Fischer H, Shastri VP. Mechanically tunable Bioink for 3D bioprinting of human cells. Adv Healthc Mater 6(20) (2017).

  • Lin CM, Lin JW, Chen YC, Shen HH, Wei L, Yeh YS, Chiang YH, Shih R, Chiu PL, Hung KS, Yang LY, Chiu WT. Hyaluronic acid inhibits the glial scar formation after mind injury with tissue loss in rats. Surg Neurol. 2009;72(2):S50–4.

    Article 
    PubMed 

    Google Scholar
     

  • Kehoe S, Zhang XF, Boyd D. FDA authorized steerage conduits and wraps for peripheral nerve damage: a evaluate of supplies and efficacy. Damage. 2012;43(5):553–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harley-Troxell ME, Steiner R, Advincula RC, Anderson DE, Dhar M. Interactions of cells and biomaterials for nerve tissue Engineering: polymers and fabrication. Polymers 15(18) (2023).

  • Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Sensible biomaterials and their potential functions in tissue engineering. J Mater Chem B. 2022;10(36):6859–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1(1):31–8.

    Article 
    PubMed 

    Google Scholar
     

  • Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with excessive cell viability. Biomaterials. 2014;35(1):49–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin C, Ekblad-Nordberg Å, Michaëlsson J, Götherström C, Hsu CC, Ye H, Johansson J, Rising A, Sundström E, Åkesson E. In Vitro Examine of Human Immune responses to Hyaluronic Acid Hydrogels, recombinant spidroins and human neural progenitor cells of relevance to spinal twine Damage Restore. Cells 10(7) (2021).

  • Jiang JP, Liu XY, Zhao F, Zhu X, Li XY, Niu XG, Yao ZT, Dai C, Xu HY, Ma Ok, Chen XY, Zhang S. Three-dimensional bioprinting collagen/silk fibroin scaffold mixed with neural stem cells promotes nerve regeneration after spinal twine damage. Neural Regen Res. 2020;15(5):959–68.

    Article 
    PubMed 

    Google Scholar
     

  • Hussey GS, Cramer MC, Badylak SF. Extracellular Matrix Bioscaffolds for Constructing gastrointestinal tissue. Cell Mol Gastroenterol Hepatol. 2018;5(1):1–13.

    Article 
    PubMed 

    Google Scholar
     

  • Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ. Current growth and biomedical functions of decellularized extracellular matrix biomaterials, supplies science & engineering. C Mater Biol Appl. 2019;104:109942.

    CAS 

    Google Scholar
     

  • Qiu S, Rao Z, He F, Wang T, Xu Y, Du Z, Yao Z, Lin T, Yan L, Quan D, Zhu Q, Liu X. Decellularized nerve matrix hydrogel and glial-derived neurotrophic issue modifications assisted nerve restore with decellularized nerve matrix scaffolds. J Tissue Eng Regen Med. 2020;14(7):931–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu S, Deng PJ, He FL, Yan LW, Tu ZH, Liu XL, Quan DP, Bai Y, Zheng CB, Zhu QT. A decellularized nerve matrix scaffold inhibits neuroma formation within the stumps of transected peripheral nerve after peripheral nerve damage. Neural Regen Res. 2023;18(3):664–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Han Y, Wu Z, Qiu S, Rao Z, Zhao C, Zhu Q, Quan D, Bai Y, Liu X. Tissue-specific hydrogels for three-Dimensional Printing and potential software in peripheral nerve regeneration, tissue engineering. Half A. 2022;28(3–4):161–74.

    CAS 

    Google Scholar
     

  • Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama Ok, Matsuda S. A scaffold-free Bio 3D nerve conduit for restore of a 10-mm peripheral nerve defect within the rats. Microsurgery. 2020;40(2):207–16.

    Article 
    PubMed 

    Google Scholar
     

  • Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: present selections, supplies science & engineering. C Mater Biol Appl. 2017;77:1302–15.

    CAS 

    Google Scholar
     

  • Isaacs J, Klumb I, McDaniel C. Preliminary investigation of a polyethylene glycol hydrogel nerve glue. J Brachial Plexus Peripheral Nerve Damage. 2009;4:16.


    Google Scholar
     

  • Estrada V, Brazda N, Schmitz C, Heller S, Blazyca H, Martini R, Müller HW. Lengthy-lasting vital practical enchancment in power extreme spinal twine damage following scar resection and polyethylene glycol implantation. Neurobiol Dis. 2014;67:165–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Z, Li Q, Xie S, Shan X, Cai Z. In vitro and in vivo biocompatibility analysis of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. C Mater Biol Appl. 2020;109:110530. Supplies science & engineering

    CAS 

    Google Scholar
     

  • Zhu W, Tringale KR, Woller SA, You S, Johnson S, Shen H, Schimelman J, Whitney M, Steinauer J, Xu W, Yaksh TL, Nguyen QT, Chen S. Speedy steady 3D printing of customizable peripheral nerve steerage conduits. Mater Right this moment. 2018;21(9):951–9.

    Article 
    CAS 

    Google Scholar
     

  • Solar S, Lu D, Zhong H, Li C, Yang N, Huang B, Ni S, Li X. Donors for nerve transplantation in craniofacial gentle tissue accidents. Entrance Bioeng Biotechnol. 2022;10:978980.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riggio C, Calatayud MP, Giannaccini M, Sanz B, Torres TE, Fernández-Pacheco R, Ripoli A, Ibarra MR, Dente L, Cuschieri A, Goya GF, Raffa V. The orientation of the neuronal development course of could be directed by way of magnetic nanoparticles below an utilized magnetic discipline, Nanomedicine: nanotechnology, biology, and drugs 10(7) (2014) 1549-58.

  • Paviolo C, Haycock JW, Yong J, Yu A, Stoddart PR, McArthur SL. Laser publicity of gold nanorods can enhance neuronal cell outgrowth. Biotechnol Bioeng. 2013;110(8):2277–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymer-hydrogels for medical electrode functions. Sci Technol Adv Mater. 2010;11(1):014107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui H, Wang Y, Cui L, Zhang P, Wang X, Wei Y, Chen X. In vitro research on regulation of osteogenic actions by electrical stimulus on biodegradable electroactive polyelectrolyte multilayers. Biomacromolecules. 2014;15(8):3146–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durgam H, Sapp S, Deister C, Khaing Z, Chang E, Luebben S, Schmidt CE. Novel degradable co-polymers of polypyrrole assist cell proliferation and improve neurite out-growth with electrical stimulation. J Biomater Sci Polym Ed. 2010;21(10):1265–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayavenkataraman S, Kannan S, Cao T, Fuh JYH, Sriram G, Lu WF. 3D-Printed PCL/PPy conductive scaffolds as three-dimensional porous nerve information conduits (NGCs) for peripheral nerve Damage Restore. Entrance Bioeng Biotechnol. 2019;7:266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang DW, Solar F, Choi YJ, Zou F, Cho WH, Choi BK, Koh Ok, Lee J, Han IH. Enhancement of main neuronal cell proliferation utilizing printing-transferred carbon nanotube sheets. J Biomed Mater Res A. 2015;103(5):1746–54.

    Article 
    PubMed 

    Google Scholar
     

  • Roberts MJ, Leach MK, Bedewy M, Meshot ER, Copic D, Corey JM, Hart AJ. Progress of main motor neurons on horizontally aligned carbon nanotube skinny movies and striped patterns. J Neural Eng. 2014;11(3):036013.

    Article 
    PubMed 

    Google Scholar
     

  • Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Three-dimensional printing of high-content graphene scaffolds for digital and biomedical functions. ACS Nano. 2015;9(4):4636–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An built-in multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun. 2018;9(1):323.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding J, Ding X, Liao W, Lu Z. Purple blood cell-derived supplies for most cancers remedy: building, distribution, and functions, supplies right this moment. Bio. 2024;24:100913.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced warmth shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmcol. 2010;242(3):263–9.

    Article 
    CAS 

    Google Scholar
     

  • Philbrook NA, Walker VK, Afrooz AR, Saleh NB, Winn LM. Investigating the consequences of functionalized carbon nanotubes on replica and growth in Drosophila melanogaster and CD-1 mice, Reproductive toxicology (Elmsford. N Y). 2011;32(4):442–8.

    CAS 

    Google Scholar
     

  • Ke H, Yang H, Zhao Y, Li T, Xin D, Gai C, Jiang Z, Wang Z. 3D gelatin Microsphere Scaffolds promote practical restoration after spinal twine hemisection in rats, Superior science (Weinheim, Baden-Wurttemberg. Germany). 2023;10(3):e2204528.


    Google Scholar
     

  • Zhang J, Tao J, Cheng H, Liu H, Wu W, Dong Y, Liu X, Gou M, Yang S, Xu J. Nerve switch with 3D-printed department nerve conduits. Burns Trauma. 2022;10:tkac010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, Li R, Tao J, Li X, Liu X, Gou M. A 3D-Printed self‐adhesive bandage with drug launch for peripheral nerve restore. Adv Sci 7(23) (2020).

  • Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee Ok, Park JW, Jung Y. Improvement of a regenerative porous PLCL nerve steerage conduit with swellable hydrogel-based microgrooved floor sample by way of 3D printing. Acta Biomater. 2022;141:219–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Hao Y, Guo Ok, Liu L, Xia B, Gao X, Zheng X, Huang J. Quantitative biofabrication platform for collagen-based peripheral nerve grafts with structural and Chemical Steerage. Adv Healthc Mater 13(9) (2023).

  • Li XH, Zhu X, Liu XY, Xu HH, Jiang W, Wang JJ, Chen F, Zhang S, Li RX, Chen XY, Tu Y. The corticospinal tract construction of collagen/silk fibroin scaffold implants utilizing 3D printing promotes practical restoration after full spinal twine transection in rats. J Mater Sci: Mater Med. 2021;32(4):31.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu XY, Chen C, Xu HH, Zhang YS, Zhong L, Hu N, Jia XL, Wang YW, Zhong KH, Liu C, Zhu X, Ming D, Li XH. Built-in printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal twine damage. Regenerative Biomaterials. 2021;8(6):rbab047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu XY, Feng YH, Feng QB, Zhang JY, Zhong L, Liu P, Wang S, Huang YR, Chen XY, Zhou LX. Low-temperature 3D-printed collagen/chitosan scaffolds loaded with exosomes derived from neural stem cells pretreated with insulin development factor-1 improve neural regeneration after traumatic mind damage. Neural Regen Res. 2023;18(9):1990–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Wang J, Wang P, Zhong L, Wang S, Feng Q, Wei X, Zhou L. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic mind damage in canines. Entrance Bioeng Biotechnol. 2022;10:1025138.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Namhongsa M, Daranarong D, Sriyai M, Molloy R, Ross S, Ross GM, Tuantranont A, Tocharus J, Sivasinprasasn S, Topham PD, Tighe B, Punyodom W. Floor-modified polypyrrole-coated PLCL and PLGA nerve information conduits fabricated by 3D Printing and Electrospinning. Biomacromolecules. 2022;23(11):4532–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu W, Dong Y, Liu H, Jiang X, Yang L, Luo J, Hu Y. Gou, 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone launch for peripheral nerve restore, supplies right this moment. Bio. 2023;20:100652.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Yang Ok, Man W, Zheng J, Cao Z, Yang CY, Kim Ok, Yang S, Hou Z, Wang G, Wang X. 3D bio-printed dwelling nerve-like fibers refine the ecological area of interest for long-distance spinal twine damage regeneration. Bioactive Mater. 2023;25:160–75.

    Article 
    CAS 

    Google Scholar
     

  • Wu Z, Xie S, Kang Y, Shan X, Li Q, Cai Z. Biocompatibility analysis of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. C Mater Biol Appl. 2021;129:112393. Supplies science & engineering

    CAS 

    Google Scholar
     

  • Tune S, Li Y, Huang J, Cheng S, Zhang Z. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for restore of spinal twine damage. Biomaterials Adv. 2023;148:213385.

    Article 
    CAS 

    Google Scholar
     

  • Yurie H, Ikeguchi R, Aoyama T, Kaizawa Y, Tajino J, Ito A, Ohta S, Oda H, Takeuchi H, Akieda S, Tsuji M, Nakayama Ok, Matsuda S. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve mannequin. PLoS ONE. 2017;12(2):e0171448.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitsuzawa S, Ikeguchi R, Aoyama T, Takeuchi H, Yurie H, Oda H, Ohta S, Ushimaru M, Ito T, Tanaka M, Kunitomi Y, Tsuji M, Akieda S, Nakayama Ok, Matsuda S. The efficacy of a Scaffold-free Bio 3D Conduit developed from autologous dermal fibroblasts on peripheral nerve regeneration in a canine Ulnar nerve Damage Mannequin: a preclinical proof-of-Idea Examine. Cell Transplant. 2019;28(9–10):1231–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ando M, Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Miyazaki Y, Akieda S, Nakayama Ok, Matsuda S. Lengthy-term final result of sciatic nerve regeneration utilizing Bio3D Conduit fabricated from human fibroblasts in a rat sciatic nerve mannequin. Cell Transplant. 2021;30:9636897211021357.

    Article 
    PubMed 

    Google Scholar
     

  • Ikeguchi R, Aoyama T, Noguchi T, Ushimaru M, Amino Y, Nakakura A, Matsuyama N, Yoshida S, Nagai-Tanima M, Matsui Ok, Arai Y, Torii Y, Miyazaki Y, Akieda S, Matsuda S. Peripheral nerve regeneration following scaffold-free conduit transplant of autologous dermal fibroblasts: a non-randomised security and feasibility trial. Commun Med. 2024;4(1):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajtez J, Wesseler MF, Birtele M, Khorasgani FR, Rylander Ottosson D, Heiskanen A, Kamperman T, Leijten J, Martínez-Serrano A, Larsen NB, Angelini TE, Parmar M, Lind JU, Emnéus J. Embedded 3D Printing in Self-Therapeutic Annealable composites for Exact Patterning of functionally mature human neural constructs, Superior science (Weinheim, Baden-Wurttemberg. Germany). 2022;9(25):e2201392.


    Google Scholar
     

  • Rosemann A, Chaisinthop N. The pluralization of the worldwide: resistance and alter-standardization in regenerative stem cell drugs. Soc Stud Sci. 2016;46(1):112–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han L, Xu J, Wang S, Yuan N, Ding J. Multiresponsive actuators primarily based on modified electrospun movies. RSC Adv. 2018;8(19):10302–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonda-Turo C, Cipriani E, Gnavi S, Chiono V, Mattu C, Gentile P, Perroteau I, Zanetti M, Ciardelli G. Crosslinked gelatin nanofibres: preparation, characterisation and in vitro research utilizing glial-like cells. C Mater Biol Appl. 2013;33(5):2723–35. Supplies science & engineering

    CAS 

    Google Scholar
     

  • Girones Molera J, Mendez JA, San Roman J. Bioresorbable and nonresorbable polymers for bone tissue engineering. Curr Pharm Design. 2012;18(18):2536–57.

    Article 

    Google Scholar
     

  • Patel SM, Pikal MJ. Rising freeze-drying course of growth and scale-up points. AAPS PharmSciTech. 2011;12(1):372–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H. Impact of components on freeze-drying and storage of Yarrowia Lipolytica lipase. Appl Biochem Biotechnol. 2012;168(5):1101–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aramwit P, Ratanavaraporn J, Ekgasit S, Tongsakul D, Bang N. A inexperienced salt-leaching method to supply sericin/PVA/glycerin scaffolds with distinguished traits for wound-dressing functions. J Biomed Mater Res B. 2015;103(4):915–24.

    Article 

    Google Scholar
     

  • Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold supposed for nerve tissue engineering. Biomaterials. 2004;25(10):1891–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New era of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett. 2019;41(1):1–25.

    Article 
    PubMed 

    Google Scholar
     

  • Garg T, Singh O, Arora S, Murthy R. Scaffold: a novel provider for cell and drug supply. Crit Rev Ther Drug Carr Syst. 2012;29(1):1–63.

    Article 
    CAS 

    Google Scholar
     

  • Fregnan F, Ciglieri E, Tos P, Crosio A, Ciardelli G, Ruini F, Tonda-Turo C, Geuna S, Raimondo S. Chitosan crosslinked flat scaffolds for peripheral nerve regeneration, Biomedical supplies. (Bristol England). 2016;11(4):045010.

    Article 
    CAS 

    Google Scholar
     

  • Tang Y, Li N, Duan JA, Tao W. Construction, bioactivity, and chemical synthesis of OSW-1 and different steroidal glycosides within the genus Ornithogalum. Chem Rev. 2013;113(7):5480–514.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sempertegui ND, Narkhede AA, Thomas V, Rao SS. A mixed compression molding, heating, and leaching course of for fabrication of micro-porous poly(ε-caprolactone) scaffolds, Journal of biomaterials science. Polym Ed. 2018;29(16):1978–93.

    CAS 

    Google Scholar
     

  • Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Search engine marketing YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH. Exactly printable and biocompatible silk fibroin bioink for digital gentle processing 3D printing. Nat Commun. 2018;9(1):1620.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman Z, Barakh Ali SF, Ozkan T, Charoo NA, Reddy IK, Khan MA. Additive Manufacturing with 3D Printing: Progress from Bench to Bedside. AAPS J. 2018;20(6):101.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Lou Y. Tensile and Bending Energy Enhancements in PEEK Elements Utilizing Fused Deposition Modelling 3D Printing Contemplating Multi-Issue Coupling, Polymers 12(11) (2020).

  • Skowyra J, Pietrzak Ok, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets by way of fused deposition modelling (FDM) 3D printing. Eur J Pharm Sciences: Official J Eur Federation Pharm Sci. 2015;68:11–7.

    Article 
    CAS 

    Google Scholar
     

  • Bandari S, Nyavanandi D, Dumpa N, Repka MA. Coupling scorching soften extrusion and fused deposition modeling: essential properties for profitable efficiency. Adv Drug Deliv Rev. 2021;172:52–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharafeldin M, Kadimisetty Ok, Bhalerao KS, Chen T. J.F. Rusling, 3D-Printed Immunosensor arrays for Most cancers Diagnostics. Sensors 20(16) (2020).

  • Zhang H, Huang L, Tan M, Zhao S, Liu H, Lu Z, Li J, Liang Z. Overview of 3D-Printed silica glass. Micromachines 13(1) (2022).

  • Li J, Chen M, Fan X, Zhou H. Current advances in bioprinting strategies: approaches, functions and future prospects. J Translational Med. 2016;14:271.

    Article 

    Google Scholar
     

  • Melchels FP, Feijen J, Grijpma DW. A evaluate on stereolithography and its functions in biomedical engineering. Biomaterials. 2010;31(24):6121–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu W, Ma X, Gou M, Mei D, Zhang Ok, Chen S. 3D printing of practical biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A brand new chapter in pharmaceutical manufacturing: 3D-printed drug merchandise. Adv Drug Deliv Rev. 2017;108:39–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galati M, Minetola P, Rizza G. Floor roughness characterisation and evaluation of the Electron Beam Melting (EBM) course of, supplies. (Basel Switzerland) 12(13) (2019).

  • Günther J, Brenne F, Droste M, Wendler M, Volkova O, Biermann H, Niendorf T. Design of novel supplies for additive manufacturing – isotropic microstructure and excessive defect tolerance,Sci. Rep. 2018;8(1):1298.


    Google Scholar
     

  • Arias-González F, Rodríguez-Contreras A, Punset M, Manero JM, Barro Ó, Fernández-Arias M, Lusquiños F, Gil J, Pou J. Laser-deposited Beta kind Ti-42Nb Alloy with Anisotropic Mechanical Properties for Pioneering Biomedical Implants with a really low Elastic Modulus. Mater (Basel Switzerland) 15(20) (2022).

  • Abdelaal O, Hengsbach F, Schaper M, Hoyer KP. LPBF Manufactured Functionally Graded Lattice Constructions Obtained by Graded Density and Hybrid Poisson’s Ratio. Mater (Basel Switzerland) 15(12) (2022).

  • Ning L, Xu Y, Chen X, Schreyer DJ. Affect of mechanical properties of alginate-based substrates on the efficiency of Schwann cells in tradition. J Biomater Sci Polym Ed. 2016;27(9):898–915.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regulation N, Doney B, Glover H, Qin Y, Aman ZM, Sercombe TB, Liew LJ, Dilley RJ, Doyle BJ. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;77:389–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozkurt A, Boecker A, Tank J, Altinova H, Deumens R, Dabhi C, Tolba R, Weis J, Brook GA, Pallua N, van Neerven SGA. Environment friendly bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials. 2016;75:112–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles