Aamir, M. A. et al. Ultrasensitive calorimetric measurements of the digital warmth capability of graphene. Nano Lett. 21, 5330 (2021).
Fong, Okay. C. et al. Measurement of the digital thermal conductance channels and warmth capability of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).
Betz, A. C. et al. Scorching electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).
Viljas, J. Okay. & Heikkilä, T. T. Electron–phonon warmth switch in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).
Kubakaddi, S. S. Interplay of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 79, 075417 (2009).
Massicotte, M., Soavi, G., Principi, A. & Tielrooij, Okay.-J. Interplay of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Nanoscale 13, 8376 (2021).
Koppens, F. H. L. et al. Photodetectors primarily based on graphene, different two-dimensional supplies and hybrid programs. Nat. Nanotechnol. 9, 780 (2014).
Bonaccorso, F., Solar, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611 (2010).
Mittendorff, M., Winnerl, S. & Murphy, T. E. 2D THz optoelectronics. Adv. Choose. Mater. 9, 2001500 (2021).
Wallbank, J. R. et al. Extra resistivity in graphene superlattices brought on by umklapp electron–electron scattering. Nat. Phys. 15, 32 (2019).
Shilov, A. L. et al. Excessive-mobility compensated semimetals, orbital magnetization, and umklapp scattering in bilayer graphene moire superlattices. ACS Nano 18, 11769–11777 (2024).
Efetov, D. Okay. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh service densities. Phys. Rev. Lett. 105, 256805 (2010).
Kumaravadivel, P. et al. Sturdy magnetophonon oscillations in extra-large graphene. Nat. Commun. 10, 3334 (2019).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614 (2013).
Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020).
Jung, M., Rickhaus, P., Zihlmann, S., Makk, P. & Schönenberger, C. Microwave photodetection in an ultraclean suspended bilayer graphene p–n junction. Nano Lett. 16, 6988 (2016).
Bandurin, D. A. et al. Twin origin of room temperature sub-terahertz photoresponse in graphene discipline impact transistors. Appl. Phys. Lett. 112, 141101 (2018).
Castilla, S. et al. Quick and delicate terahertz detection utilizing an antenna-integrated graphene pn junction. Nano Lett. 19, 2765 (2019).
Titova, E. et al. Ultralow-noise terahertz detection by p–n junctions in gapped bilayer graphene. ACS Nano 17, 8223 (2023).
Han, Q. et al. Extremely delicate sizzling electron bolometer primarily based on disordered graphene. Sci. Rep. 3, 3533 (2013).
Efetov, D. Okay. et al. Quick thermal rest in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797 (2018).
El Fatimy, A. et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335 (2016).
Riccardi, E. et al. Ultrasensitive photoresponse of graphene quantum dots within the Coulomb blockade regime to THz radiation. Nano Lett. 20, 5408 (2020).
Gurzhi, R. N. Hydrodynamic results in solids at low temperature. Sov. Phys. Uspekhi 11, 255 (1968).
de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron stream in high-mobility wires. Phys. Rev. B 51, 13389 (1995).
Lucas, A. & Fong, Okay. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).
Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Cost transport and hydrodynamics in supplies. Nat. Rev. Mater. 8, 726 (2023).
Crossno, J. et al. Commentary of the Dirac fluid and the breakdown of the Wiedemann–Franz regulation in graphene. Science 351, 1058 (2016).
Bandurin, D. A. et al. Detrimental native resistance brought on by viscous electron backflow in graphene. Science 351, 1055 (2016).
Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).
Levitov, L. & Falkovich, G. Electron viscosity, present vortices and unfavourable nonlocal resistance in graphene. Nat. Phys. 12, 672 (2016).
Berdyugin, A. I. et al. Measuring Corridor viscosity of graphene’s electron fluid. Science 364, 162 (2019).
Sulpizio, J. A. et al. Visualizing Poiseuille stream of hydrodynamic electrons. Nature 576, 75 (2019).
Ku, M. J. H. et al. Imaging viscous stream of the Dirac fluid in graphene. Nature 583, 537 (2020).
Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum essential transport in clear graphene. Phys. Rev. B 78, 085416 (2008).
Müller, M., Schmalian, J. & Fritz, L. Graphene: a virtually excellent fluid. Phys. Rev. Lett. 103, 025301 (2009).
Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158 (2019).
Nam, Y., Ki, D.-Okay., Soler-Delgado, D. & Morpurgo, A. F. Electron–gap collision restricted transport in charge-neutral bilayer graphene. Nat. Phys. 13, 1207 (2017).
Tan, C. et al. Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor. Sci. Adv. 8, eabi8481 (2022).
Bandurin, D. A. et al. Interlayer electron–gap friction in tunable twisted bilayer graphene semimetal. Phys. Rev. Lett. 129, 206802 (2022).
Block, A. et al. Commentary of big and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195 (2021).
Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic discipline impact transistor: new mechanism of plasma wave era by dc present. Phys. Rev. Lett. 71, 2465 (1993).
Zhao, W. et al. Commentary of hydrodynamic plasmons and power waves in graphene. Nature 614, 688 (2023).
Ruiz, D. B. et al. Experimental signatures of the transition from acoustic plasmon to digital sound in graphene. Sci. Adv. 9, eadi0415 (2023).
Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Larger-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068 (2017).
Krishna Kumar, R. et al. Superballistic stream of viscous electron fluid by means of graphene constrictions. Nat. Phys. 13, 1182 (2017).
Waissman, J. et al. Digital thermal transport measurement in low-dimensional supplies with graphene non-local noise thermometry. Nat. Nanotechnol. 17, 166 (2022).
Purdie, D. G. et al. Cleansing interfaces in layered supplies heterostructures. Nat. Commun. 9, 5387 (2018).
Sharvin, Y. V. On the doable technique for finding out Fermi surfaces. Zh. Eksperim. i Teor. Fiz. 48, 984 (1965).
Terrés, B. et al. Measurement quantization of Dirac fermions in graphene constrictions. Nat. Commun. 7, 11528 (2016).
Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).
Mylnikov, D. A. et al. Terahertz photoconductivity in bilayer graphene transistors: proof for tunneling at gate-induced junctions. Nano Lett. 23, 220 (2023).
Ludwig, F. et al. Terahertz detection with graphene FETs: photothermoelectric and resistive self-mixing contributions to the detector response. ACS Appl. Electron. Mater. 6, 2197 (2024).
Shein, Okay. et al. Elementary limits of few-layer NbSe2 microbolometers at terahertz frequencies. Nano Lett. 24, 2282 (2024).
Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103 (2013).
Messelot, S. et al. Tamm cavity within the terahertz spectral vary. ACS Photon. 7, 2906 (2020).
Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430 (2022).