3.7 C
United States of America
Saturday, November 23, 2024

Speedy precision concentrating on of nanoparticles to lung through caveolae pumping system in endothelium


  • Schnitzer, J. E. Vascular concentrating on as a technique for most cancers remedy. N. Engl. J. Med. 339, 472–474 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shuvaev, V. V., Brenner, J. S. & Muzykantov, V. R. Focused endothelial nanomedicine for widespread acute pathological situations. J. Management. Launch 219, 576–595 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing supply methods. Nat. Nanotechnol. 15, 819–829 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. & Kataoka, Okay. Chemo-physical methods to advance the in vivo performance of focused nanomedicine: the subsequent era. J. Am. Chem. Soc. 143, 538–559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, O. S. & Weber, W. Overcoming physiological boundaries to nanoparticle supply—are we there but? Entrance. Bioeng. Biotechnol. 7, 415 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S., Olenyuk, B. Z., Okamoto, C. T. & Hamm-Alvarez, S. F. Focusing on receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 65, 121–138 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steichen, S. D., Caldorera-Moore, M. & Peppas, N. A. A assessment of present nanoparticle and concentrating on moieties for the supply of most cancers therapeutics. Eur. J. Pharm. Sci. 48, 416–427 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, Okay. Transcending nanomedicine to the subsequent stage: are we there but? J. Management. Launch 298, 213 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, D., Zhou, S. & Gao, W. What went flawed with anticancer nanomedicine design and the best way to make it proper. ACS Nano 14, 12281–12290 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Meel, R., Lammers, T. & Hennink, W. E. Most cancers nanomedicines: oversold or underappreciated? Knowledgeable Opin. Drug Deliv. 14, 1–5 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. M., Faix, P. H. & Schnitzer, J. E. Overcoming key organic boundaries to most cancers drug supply and efficacy. J. Management. Launch 267, 15–30 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schnitzer, J. E. Replace on the mobile and molecular foundation of capillary permeability. Tendencies Cardiovasc. Med. 3, 124–130 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, Okay. The start of the top of the nanomedicine hype. J. Management. Launch 305, 221–222 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Q. et al. Quantifying the ligand-coated nanoparticle supply to most cancers cells in strong tumors. ACS Nano 12, 8423–8435 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Y. H., He, C., Riviere, J. E., Monteiro-Riviere, N. A. & Lin, Z. Meta-analysis of nanoparticle supply to tumors utilizing a physiologically based mostly pharmacokinetic modeling and simulation strategy. ACS Nano 14, 3075–3095 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheth, V., Wang, L., Bhattacharya, R., Mukherjee, P. & Wilhelm, S. Methods for delivering nanoparticles throughout tumor blood vessels. Adv. Funct. Mater. 31, 2007363 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, L., Zhang, F., Wu, J. & Zhuge, Y. Nanotechnology in drug supply for liver fibrosis. Entrance. Mol. Biosci. 8, 804396 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Athanasopoulou, F., Manolakakis, M., Vernia, S. & Kamaly, N. Nanodrug supply methods for metabolic power liver ailments: advances and views. Nanomedicine 18, 67–84 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghitescu, L., Fixman, A., Simionescu, M. & Simionescu, N. Particular binding websites for albumin restricted to plasmalemmal vesicles of steady capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 102, 1304–1311 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: decreased transcytosis, scavenger endocytosis, and capillary permeability of choose macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin, N. M. et al. Label-free, normalized quantification of complicated mass spectrometry information for proteomic evaluation. Nat. Biotechnol. 28, 83–89 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durr, E. et al. Direct proteomic mapping of the lung microvascular endothelial cell floor in vivo and in cell tradition. Nat. Biotechnol. 22, 985–992 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massey, Okay. A. & Schnitzer, J. E. Focusing on and imaging signature caveolar molecules in lungs. Proc. Am. Thorac. Soc. 6, 419–430 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, P. et al. Subtractive proteomic mapping of the endothelial floor in lung and strong tumours for tissue-specific remedy. Nature 429, 629–635 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, P. et al. In vivo proteomic imaging evaluation of caveolae reveals pumping system to penetrate strong tumors. Nat. Med. 20, 1062–1068 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from related microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carver, L. A. & Schnitzer, J. E. Caveolae: mining little caves for brand new most cancers targets. Nat. Rev. Most cancers 3, 571–581 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnitzer, J. E., Oh, P., Jacobson, B. S. & Dvorak, A. M. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc. Natl Acad. Sci. USA 92, 1759–1763 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnitzer, J. E., Oh, P. & McIntosh, D. P. Function of GTP hydrolysis in fission of caveolae straight from plasma membranes. Science 274, 239–242 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin on the neck of caveolae mediates their budding to type transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnitzer, J. E. Caveolae: from fundamental trafficking mechanisms to concentrating on transcytosis for tissue-specific drug and gene supply in vivo. Adv. Drug Deliv. Rev. 49, 265–280 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, P. et al. Dwell dynamic imaging of caveolae pumping focused antibody quickly and particularly throughout endothelium within the lung. Nat. Biotechnol. 25, 327–337 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chrastina, A., Valadon, P., Massey, Okay. A. & Schnitzer, J. E. Lung vascular concentrating on utilizing antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic evaluation. J. Vasc. Res. 47, 531–543 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIntosh, D. P., Tan, X. Y., Oh, P. & Schnitzer, J. E. Focusing on endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to beat cell boundaries to drug and gene supply. Proc. Natl Acad. Sci. USA 99, 1996–2001 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carver, L. & Schnitzer, J. in Biomedical Features of Drug Focusing on (eds Muzykantov, V. R. & Torchilin, V. P.) 107–128 (Springer Science+Enterprise Media, 2002).

  • Valadon, P. et al. Designed auto-assembly of nanostreptabodies for fast tissue-specific concentrating on in vivo. J. Biol. Chem. 285, 713–722 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnitzer, J. E. in Entire Organ Approaches to Mobile Metabolism: Permeation, Mobile Uptake, and Product Formation (eds Bassingthwaighte, J. B. et al.) 31–69 (Springer New York, 1998).

  • Kadam, A. H. et al. Focusing on caveolae to pump bispecific antibody to TGF-beta into diseased lungs permits ultra-low dose therapeutic efficacy. PLoS ONE 17, e0276462 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallabhajosula, S., Killeen, R. P. & Osborne, J. R. Altered biodistribution of radiopharmaceuticals: function of radiochemical/pharmaceutical purity, physiological, and pharmacologic elements. Semin. Nucl. Med. 40, 220–241 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Cavina, L. et al. Design of radioiodinated prescribed drugs: structural options affecting metabolic stability in direction of in vivo deiodination. Eur. J. Org. Chem. 2017, 3387–3414 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nagarajah, J., Janssen, M., Hetkamp, P. & Jentzen, W. Iodine symporter concentrating on with (124)I/(131)I theranostics. J. Nucl. Med. 58, 34s–38s (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruns, R. R. & Palade, G. E. Research on blood capillaries. II. Transport of ferritin molecules throughout the wall of muscle capillaries. J. Cell Biol. 37, 277–299 (1968).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bundgaard, M. Vesicular transport in capillary endothelium: does it happen? Fed. Proc. 42, 2425–2430 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Severs, N. J. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J. Cell Sci. 90, 341–348 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Thomsen, P., Roepstorff, Okay., Stahlhut, M. & van Deurs, B. Caveolae are extremely motionless plasma membrane microdomains, which aren’t concerned in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIntosh, D. P. & Schnitzer, J. E. Caveolae require intact VAMP for focused transport in vascular endothelium. Am. J. Physiol. Coronary heart Circ. Physiol. 277, H2222–H2232 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Schnitzer, J. E., Allard, J. & Oh, P. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am. J. Physiol. 268, H48–H55 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Schnitzer, J. E., Liu, J. & Oh, P. Endothelial caveolae have the molecular transport equipment for vesicle budding, docking, and fusion together with VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14399–14404 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a element of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96, 13203–13207 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuvaev, V. V. et al. Spatially managed meeting of affinity ligand and enzyme cargo permits concentrating on ferritin nanocarriers to caveolae. Biomaterials 185, 348–359 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. & Zheng, J. Clearance pathways and tumor concentrating on of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • BioReady™ 40 nm Carboxyl Gold Covalent Conjugation Protocol (nanoComposix, Fortis Life Sciences, 2024); https://cdn.shopify.com/s/recordsdata/1/0257/8237/recordsdata/BioReady_40_nm_Carboxyl_Gold_Conjugation_Protocol_v2.1.pdf?v=1670554597

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles