Zhang N-Y, Qi M, Zhao L, Zhu M-Ok, Guo J, Liu J, Gu C-Q, Rajput SA, Krumm CS, Qi D-S, Solar L-H. Curcumin prevents aflatoxin B₁ hepatoxicity by inhibition of cytochrome P450 isozymes in Chick Liver. Toxins 2016;8.
Cheng L, Qin Y, Hu X, Ren L, Zhang C, Wang X, Wang W, Zhang Z, Hao J, Guo M, et al. Melatonin protects in vitro matured porcine oocytes from toxicity of aflatoxin B1. J Pineal Res. 2019;66:e12543.
Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Discovering the Protecting results of Resveratrol on aflatoxin B1-Induced toxicity: an entire transcriptomic research in a bovine hepatocyte cell line. Antioxidants; 2021. p. 10. (Basel, Switzerland).
Pang VF, Chiang C-F, Chang C-C. The in vitro results of aflatoxin B1 on physiological capabilities of swine alveolar macrophages. Veterinary Med Sci. 2020;6:919–25.
Yang C, Tune G, Lim W. Results of mycotoxin-contaminated feed on livestock. J Hazard Mater. 2020;389:122087.
Liew W-P-P, Mohd-Redzwan S. Mycotoxin: its influence on Intestine Well being and Microbiota. Entrance Cell Infect Microbiol. 2018;8:60.
Akbari P, Braber S, Varasteh S, Alizadeh A, Garssen J, Fink-Gremmels J. The intestinal barrier as an rising goal within the toxicological evaluation of mycotoxins. Arch Toxicol. 2017;91:1007–29.
Taranu I, Marin DE, Palade M, Pistol GC, Chedea VS, Gras MA, Rotar C. Evaluation of the efficacy of a grape seed waste in counteracting the adjustments induced by aflatoxin B1 contaminated food plan on efficiency, plasma, liver and intestinal tissues of pigs after weaning. Toxicon: Official J Int Soc Toxinology. 2019;162:24–31.
Contreras BG, De Vuyst L, Devreese B, Busanyova Ok, Raymaeckers J, Bosman F, Sablon E, Vandamme EJ. Isolation, purification, and amino acid sequence of lactobin A, one of many two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl Environ Microbiol. 1997;63:13–20.
Xu Z, He H, Zhang S, Guo T, Kong J. Characterization of Feruloyl Esterases produced by the 4 Lactobacillus species: L. Amylovorus, L. Acidophilus, L. Farciminis and L. Fermentum, remoted from Ensiled Corn Stover. Entrance Microbiol. 2017;8:941.
Sunmola AA, Ogbole OO, Faleye TOC, Adetoye A, Adeniji JA, Ayeni FA. Antiviral potentials of Lactobacillus plantarum, Lactobacillus amylovorus, and Enterococcus hirae towards chosen Enterovirus. Folia Microbiol. 2019;64:257–64.
Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli by way of modulation of the detrimental regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants. PLoS ONE. 2014;9:e94891.
Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes improve periodontal ligament cell capabilities and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.
Margolis L, Sadovsky Y. The biology of extracellular vesicles: the recognized unknowns. PLoS Biol. 2019;17:e3000363.
Rabiei N, Ahmadi Badi S, Ettehad Marvasti F, Nejad Sattari T, Vaziri F, Siadat SD. Induction results of Faecalibacterium prausnitzii and its extracellular vesicles on toll-like receptor signaling pathway gene expression and cytokine degree in human intestinal epithelial cells. Cytokine. 2019;121:154718.
Liang L, Yang C, Liu L, Mai G, Li H, Wu L, Jin M, Chen Y. Commensal bacteria-derived extracellular vesicles suppress ulcerative colitis by regulating the macrophages polarization and transforming the intestine microbiota. Microb Cell Reality. 2022;21:88.
Macia L, Nanan R, Hosseini-Beheshti E, Grau GE. Host- and microbiota-derived extracellular vesicles, Immune perform, and Illness Growth. Int J Mol Sci. 2019;21.
Shen Q, Huang Z, Ma L, Yao J, Luo T, Zhao Y, Xiao Y, Jin Y. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Intestine Microbes. 2022;14:2128604.
Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, Ye J, Fang D, Wu J, Jiang X, et al. Administration of Akkermansia muciniphila ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in mice. Entrance Microbiol. 2019;10:2259.
Singh R, Chandrashekharappa S, Bodduluri SR, Child BV, Hegde B, Kotla NG, Hiwale AA, Saiyed T, Patel P, Vijay-Kumar M, et al. Enhancement of the intestine barrier integrity by a microbial metabolite by the Nrf2 pathway. Nat Commun. 2019;10:89.
Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon receptor (AHR) as a possible goal for the Management of Intestinal Irritation: insights from an Immune and Micro organism sensor receptor. Clin Rev Allergy Immunol. 2020;59:382–90.
Solar M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates intestine homeostasis by way of aryl hydrocarbon receptor (AhR). Crit Rev Meals Sci Nutr. 2020;60:1760–8.
Lin L, Liu Y, Chen L, Dai Y, Xia Y. Discovery of Norisoboldine Analogue III11 as a Novel and Potent Aryl Hydrocarbon receptor agonist for the therapy of Ulcerative Colitis. J Med Chem. 2023;66:6869–88.
Wang J, Wang P, Tian H, Tian F, Zhang Y, Zhang L, Gao X, Wang X. Aryl hydrocarbon receptor/IL-22/Stat3 signaling pathway is concerned within the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice. Innate Immun. 2018;24:297–306.
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Concentrating on the aryl hydrocarbon receptor by intestine phenolic metabolites: a method in the direction of intestine irritation. Redox Biol. 2023;61:102622.
Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate intestine barrier perform by way of the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2020;117:19376–87.
Geng S, Cheng S, Li Y, Wen Z, Ma X, Jiang X, Wang Y, Han X. Faecal microbiota transplantation reduces susceptibility to Epithelial Harm and modulates Tryptophan Metabolism of the Microbial Group in a Piglet Mannequin. Quantity 12. Journal of Crohn’s & Colitis; 2018. pp. 1359–74.
Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental alerts. Annu Rev Pharmacol Toxicol. 2000;40:519–61.
Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M. AHR drives the event of intestine ILC22 cells and postnatal lymphoid tissues by way of pathways depending on and unbiased of Notch. Nat Immunol. 2011;13:144–51.
Qiu J, Heller JJ, Guo X, Chen Z-mE, Fish Ok, Fu Y-X, Zhou L. The aryl hydrocarbon receptor regulates intestine immunity by modulation of innate lymphoid cells. Immunity. 2012;36.
Grau KR, Zhu S, Peterson ST, Helm EW, Philip D, Phillips M, Hernandez A, Turula H, Frasse P, Graziano VR, et al. The intestinal regionalization of acute norovirus an infection is regulated by the microbiota by way of bile acid-mediated priming of sort III interferon. Nat Microbiol. 2020;5:84–92.
Shi Z, Li X, Zhang Y-M, Zhou Y-Y, Gan X-F, Fan Q-Y, He C-Q, Shi T, Zhang S-Y. Constitutive androstane receptor (CAR) mediates pyrene-induced inflammatory responses in mouse liver, with elevated serum amyloid A proteins and Th17 cells. Br J Pharmacol. 2022;179:5209–21.
Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ. Main phenylpropanoid-derived metabolites within the human intestine can come up from microbial fermentation of protein. Mol Nutr Meals Res. 2013;57:523–35.
Rodrigues I, Naehrer Ok. A 3-year survey on the worldwide prevalence of mycotoxins in feedstuffs and feed. Toxins. 2012;4:663–75.
Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C, Chen Y, Wei Y, He X, Zhao J, et al. Important function of caveolin-1 in aflatoxin B1-induced hepatotoxicity by way of the regulation of oxidation and autophagy. Cell Loss of life Dis. 2020;11:6.
Sergent T, Ribonnet L, Kolosova A, Garsou S, Schaut A, De Saeger S, Van Peteghem C, Larondelle Y, Pussemier L, Schneider Y-J. Molecular and mobile results of meals contaminants and secondary plant parts and their believable interactions on the intestinal degree. Meals Chem Toxicology: Int J Revealed Br Industrial Biol Res Affiliation. 2008;46:813–41.
Akinrinmade FJ, Akinrinde AS, Amid A. Modifications in serum cytokine ranges, hepatic and intestinal morphology in aflatoxin B1-induced damage: modulatory roles of melatonin and flavonoid-rich fractions from Chromolena odorata. Mycotoxin Res. 2016;32:53–60.
Chen J, Lv Z, Cheng Z, Wang T, Li P, Wu A, Nepovimova E, Lengthy M, Wu W, Kuca Ok. Bacillus amyloliquefaciens B10 inhibits aflatoxin B1-induced cecal irritation in mice by regulating their intestinal flora. Meals Chem Toxicology: Int J Revealed Br Industrial Biol Res Affiliation. 2021;156:112438.
Wang X, Yang F, Na L, Jia M, Ishfaq M, Zhang Y, Liu M, Wu C. Ferulic acid alleviates AFB1-induced duodenal barrier harm in rats by way of up-regulating tight junction proteins, down-regulating ROCK, competing CYP450 enzyme and activating GST. Ecotoxicol Environ Saf. 2022;241:113805.
Romero A, Ares I, Ramos E, Castellano V, Martínez M, Martínez-Larrañaga M-R, Anadón A, Martínez M-A. Mycotoxins modify the barrier perform of Caco-2 cells by differential gene expression of particular claudin isoforms: protecting impact of illite mineral clay. Toxicology. 2016;353–4:21–33.
Zhang M, Li Q, Wang J, Solar J, Xiang Y, Jin X. Aflatoxin B1 disrupts the intestinal barrier integrity by lowering junction protein and selling apoptosis in pigs and mice. Ecotoxicol Environ Saf. 2022;247:114250.
Morishita M, Horita M, Higuchi A, Marui M, Katsumi H, Yamamoto A. Characterizing totally different probiotic-derived extracellular vesicles as a Novel adjuvant for Immunotherapy. Mol Pharm. 2021;18:1080–92.
Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20.
Bitto NJ, Kaparakis-Liaskos M. The therapeutic advantage of bacterial membrane vesicles. Int J Mol Sci. 2017;18.
Hynönen U, Kant R, Lähteinen T, Pietilä TE, Beganović J, Smidt H, Uroić Ok, Avall-Jääskeläinen S, Palva A. Useful characterization of probiotic floor layer protein-carrying Lactobacillus amylovorus strains. BMC Microbiol. 2014;14:199.
Marti R, Dabert P, Ziebal C, Pourcher A-M. Analysis of Lactobacillus sobrius/L. Amylovorus as a brand new microbial marker of pig manure. Appl Environ Microbiol. 2010;76:1456–61.
Shen J, Zhang J, Zhao Y, Lin Z, Ji L, Ma X. Tibetan pig-derived probiotic Lactobacillus amylovorus SLZX20-1 improved intestinal perform by way of producing enzymes and regulating intestinal Microflora. Entrance Nutr. 2022;9:846991.
Inczefi O, Bacsur P, Resál T, Keresztes C, Molnár T. The affect of Diet on Intestinal Permeability and the Microbiome in Well being and Illness. Entrance Nutr. 2022;9:718710.
Liu S, Li J, Kang W, Li Y, Ge L, Liu D, Liu Y, Huang Ok. Aflatoxin B1 induces intestinal barrier dysfunction by regulating the FXR-Mediated MLCK Signaling Pathway in mice and in IPEC-J2 cells. J Agric Meals Chem. 2023;71:867–76.
Xu P, Dong S, Luo X, Wei B, Zhang C, Ji X, Zhang J, Zhu X, Meng G, Jia B, Zhang J. Humic acids alleviate aflatoxin B1-induced hepatic damage by reprogramming intestine microbiota and absorbing toxin. Ecotoxicol Environ Saf. 2023;259:115051.
Yang A-M, Lin C-Y, Liu S-H, Syu G-D, Solar H-J, Lee Ok-C, Lin H-C, Hou M-C. Saccharomyces Boulardii ameliorates non-alcoholic steatohepatitis in mice Induced by a methionine-choline-deficient Food regimen by Intestine-Liver Axis. Entrance Microbiol. 2022;13:887728.
Camilleri M, Madsen Ok, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier perform in well being and gastrointestinal illness. Neurogastroenterol Motil. 2012;24:503–12.
Groschwitz KR, Hogan SP. Intestinal barrier perform: molecular regulation and illness pathogenesis. J Allergy Clin Immunol. 2009;124.
Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal irritation prompts tumor necrosis issue receptor I and mediates alcoholic liver illness in mice. Hepatology (Baltimore MD). 2015;61:883–94.
Robert H, Payros D, Pinton P, Théodorou V, Mercier-Bonin M, Oswald IP. Affect of mycotoxins on the gut: are mucus and microbiota new targets? J Toxicol Environ Well being Half B Crit Evaluations. 2017;20:249–75.
Elmassry MM, Zayed A, Farag MA. Intestine homeostasis and microbiota beneath assault: influence of the various kinds of meals contaminants on intestine well being. Crit Rev Meals Sci Nutr. 2022;62:738–63.
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed components for progress promotion in poultry: results on efficiency and microbiota. Poult Sci. 2024;103:103604.
Liu S, Kang W, Mao X, Ge L, Du H, Li J, Hou L, Liu D, Yin Y, Liu Y, Huang Ok. Melatonin mitigates aflatoxin B1-induced liver damage by way of modulation of intestine microbiota/intestinal FXR/liver TLR4 signaling axis in mice. J Pineal Res. 2022;73:e12812.
Liu Y, Li J, Kang W, Liu S, Liu J, Shi M, Wang Y, Liu X, Chen X, Huang Ok. Aflatoxin B1 induces liver damage by disturbing intestine microbiota-bile acid-FXR axis in mice. Meals Chem Toxicology: Int J Revealed Br Industrial Biol Res Affiliation. 2023;176:113751.
Mao T, Su C-W, Ji Q, Chen C-Y, Wang R, Vijaya Kumar D, Lan J, Jiao L, Shi HN. Hyaluronan-induced alterations of the intestine microbiome protects mice towards Citrobacter rodentium an infection and intestinal irritation. Intestine Microbes. 2021;13:1972757.
Jin X, You L, Qiao J, Han W, Pan H. Autophagy in colitis-associated colon most cancers: exploring its potential function in lowering initiation and stopping IBD-Associated CAC improvement. Autophagy. 2024;20:242–58.
Roager HM, Licht TR. Microbial tryptophan catabolites in well being and illness. Nat Commun. 2018;9:3294.
Bansal T, Alaniz RC, Wooden TK, Jayaraman A. The bacterial sign indole will increase epithelial-cell tight-junction resistance and attenuates indicators of irritation. Proc Natl Acad Sci USA. 2010;107:228–33.
Shimada Y, Kinoshita M, Harada Ok, Mizutani M, Masahata Ok, Kayama H, Takeda Ok. Commensal bacteria-dependent indole manufacturing enhances epithelial barrier perform within the colon. PLoS ONE. 2013;8:e80604.
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver illness: pathophysiological foundation for remedy. J Hepatol. 2020;72:558–77.
Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang Ok, Solar Z. Mutual interplay between intestine microbiota and protein/amino acid metabolism for host mucosal immunity and well being. Anim Nutr (Zhongguo Xu Mu Shou Yi Xue Hui). 2021;7:11–6.
Lamas B, Richard ML, Leducq V, Pham H-P, Michel M-L, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, et al. CARD9 impacts colitis by altering intestine microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605.
Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC, Martin R, Michel M-L, Chong-Nguyen C, Roussel R, Straube M et al. Impaired aryl hydrocarbon receptor ligand manufacturing by the intestine microbiota is a key consider metabolic syndrome. Cell Metabol. 2018;28.
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, et al. Tryptophan catabolites from microbiota interact aryl hydrocarbon receptor and steadiness mucosal reactivity by way of interleukin-22. Immunity. 2013;39:372–85.