Sposato LA, Hilz MJ, Aspberg S, Murthy SB, Bahit MC, Hsieh CY, Sheppard MN, Scheitz JF. Submit-stroke Cardiovascular problems and Neurogenic Cardiac Damage: JACC State-of-the-art evaluate. J Am Coll Cardiol. 2020;76(23):2768–85. https://doi.org/10.1016/j.jacc.2020.10.009.
Erdur H, Scheitz JF, Grittner U, Laufs U, Endres M, Nolte CH. Coronary heart price on admission independently predicts in-hospital mortality in acute ischemic stroke sufferers. Int J Cardiol. 2014;176(1):206–10. https://doi.org/10.1016/j.ijcard.2014.07.001.
Rizos T, Rasch C, Jenetzky E, Hametner C, Kathoefer S, Reinhardt R, Hepp T, Hacke W, Veltkamp R. Detection of paroxysmal atrial fibrillation in acute stroke sufferers. Cerebrovasc Dis. 2010;30(4):410–7. https://doi.org/10.1159/000316885.
Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Mind-Coronary heart Interplay: Cardiac problems after Stroke. Circ Res. 2017;121(4):451–68. https://doi.org/10.1161/circresaha.117.311170.
Scheitz JF, Sposato LA, Schulz-Menger J, Nolte CH, Backs J, Endres M. Stroke-heart syndrome: current advances and challenges. J Am Coronary heart Assoc. 2022;11(17):e026528. https://doi.org/10.1161/jaha.122.026528.
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, blood-brain barrier dysfunction, and Imaging modalities. Stroke. 2022;53(5):1473–86. https://doi.org/10.1161/strokeaha.122.036946.
Alsbrook DL, Di Napoli M, Bhatia Okay, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al. Neuroinflammation in Acute ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep. 2023;23(8):407–31. https://doi.org/10.1007/s11910-023-01282-2.
Wang H, Zhang S, Xie L, Zhong Z, Yan F. Neuroinflammation and peripheral immunity: give attention to ischemic stroke. Int Immunopharmacol. 2023;120:110332. https://doi.org/10.1016/j.intimp.2023.110332.
Yu H, Cai Y, Zhong A, Zhang Y, Zhang J, Xu S. The dialogue between Central and Peripheral Immunity after ischemic stroke: give attention to spleen. Entrance Immunol. 2021;12:792522. https://doi.org/10.3389/fimmu.2021.792522.
Ma Y, Yang S, He Q, Zhang D, Chang J. The function of Immune cells in Submit-stroke Angiogenesis and neuronal transforming: the identified and the unknown. Entrance Immunol. 2021;12:784098. https://doi.org/10.3389/fimmu.2021.784098.
Dorrance AM, Fink G. Results of Stroke on the autonomic nervous system. Compr Physiol. 2015;5(3):1241–63. https://doi.org/10.1002/cphy.c140016.
Higashikuni Y, Liu W, Numata G, Tanaka Okay, Fukuda D, Tanaka Y, Hirata Y, Imamura T, Takimoto E, Komuro I, et al. NLRP3 inflammasome activation by way of Coronary heart-Mind Interplay initiates cardiac irritation and hypertrophy throughout stress overload. Circulation. 2023;147(4):338–55. https://doi.org/10.1161/circulationaha.122.060860.
Pan J, Peng J, Li X, Wang H, Rong X, Peng Y. Transmission of NLRP3-IL-1β indicators in Cerebral Ischemia and Reperfusion Damage: from Microglia to adjoining neuron and endothelial cells through IL-1β/IL-1R1/TRAF6. Mol Neurobiol. 2023;60(5):2749–66. https://doi.org/10.1007/s12035-023-03232-y.
Magupalli VG, Negro R, Tian Y, Hauenstein AV, Di Caprio G, Skillern W, Deng Q, Orning P, Alam HB, Maliga Z, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science. 2020;369(6510). https://doi.org/10.1126/science.aas8995.
Han Y, Solar W, Ren D, Zhang J, He Z, Fedorova J, Solar X, Han F, Li J. SIRT1 agonism modulates cardiac NLRP3 inflammasome by way of pyruvate dehydrogenase throughout ischemia and reperfusion. Redox Biol. 2020;34:101538. https://doi.org/10.1016/j.redox.2020.101538.
Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc Okay, Genc S. Melatonin attenuates LPS-Induced Acute Depressive-Like behaviors and Microglial NLRP3 inflammasome activation by way of the SIRT1/Nrf2 pathway. Entrance Immunol. 2019;10:1511. https://doi.org/10.3389/fimmu.2019.01511.
Tang Y, Yu W. SIRT1 and p300/CBP regulate the reversible acetylation of serine-threonine kinase NDR2. Biochem Biophys Res Commun. 2019;518(2):396–401. https://doi.org/10.1016/j.bbrc.2019.08.069.
Yin J, Tu C, Zhao J, Ou D, Chen G, Liu Y, Xiao X. Exogenous hydrogen sulfide protects in opposition to international cerebral ischemia/reperfusion damage through its anti-oxidative, anti-inflammatory and anti-apoptotic results in rats. Mind Res. 2013;1491:188–96. https://doi.org/10.1016/j.brainres.2012.10.046.
Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J, Li Y, Li J, Yao H, Liu W, et al. Hydrogen sulfide attenuates mitochondrial dysfunction-induced mobile senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Growing older. 2019;11(24):11844–64. https://doi.org/10.18632/growing older.102454.
Li M, Hu W, Wang R, Li Z, Yu Y, Zhuo Y, Zhang Y, Wang Z, Qiu Y, Chen Okay, et al. Sp1 S-Sulfhydration Induced by Hydrogen Sulfide inhibits irritation through HDAC6/MyD88/NF-κB signaling pathway in Adjuvant-Induced Arthritis. Antioxid (Basel). 2022;11(4). https://doi.org/10.3390/antiox11040732.
Solar X, Wang Y, Wen S, Huang Okay, Huang J, Chu X, Wang F, Pang L. Novel managed and focused releasing hydrogen sulfide system exerts combinational cerebral and myocardial safety after cardiac arrest. J Nanobiotechnol. 2021;19(1):40. https://doi.org/10.1186/s12951-021-00784-w.
Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A. 2007;104(46):17977–82. https://doi.org/10.1073/pnas.0705710104.
Fang JH, Chiu TL, Huang WC, Lai YH, Hu SH, Chen YY, Chen SY. Twin-targeting lactoferrin-conjugated polymerized magnetic polydiacetylene-assembled nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for in vivo mind tumor remedy. Adv Healthc Mater. 2016;5(6):688–95. https://doi.org/10.1002/adhm.201500750.
Tang S, Wang A, Yan X, Chu L, Yang X, Music Y, Solar Okay, Yu X, Liu R, Wu Z, et al. Mind-targeted intranasal supply of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s illness. Drug Deliv. 2019;26(1):700–7. https://doi.org/10.1080/10717544.2019.1636420.
Zhang M, Asghar S, Tian C, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for concentrating on glioma. Carbohydr Polym. 2021;253:117194. https://doi.org/10.1016/j.carbpol.2020.117194.
Solar X, Kong B, Wang W, Chandran P, Selomulya C, Zhang H, Zhu Okay, Liu Y, Yang W, Guo C, et al. Mesoporous silica nanoparticles for glutathione-triggered long-range and secure launch of hydrogen sulfide. J Mater Chem B. 2015;3(21):4451–7. https://doi.org/10.1039/c5tb00354g.
Tan B, Jin S, Solar J, Gu Z, Solar X, Zhu Y, Huo Okay, Cao Z, Yang P, Xin X, et al. New technique for quantification of gasotransmitter hydrogen sulfide in organic matrices by LC-MS/MS. Sci Rep. 2017;7(1):46278. https://doi.org/10.1038/srep46278.
Solar X, Wang W, Dai J, Jin S, Huang J, Guo C, Wang C, Pang L, Wang Y. A protracted-term and slow-releasing hydrogen Sulfide Donor protects in opposition to Myocardial Ischemia/Reperfusion Damage. Sci Rep. 2017;7(1):3541. https://doi.org/10.1038/s41598-017-03941-0.
Scheitz JF, Nolte CH, Doehner W, Hachinski V, Endres M. Stroke-heart syndrome: scientific presentation and underlying mechanisms. Lancet Neurol. 2018;17(12):1109–20. https://doi.org/10.1016/s1474-4422(18)30336-3.
Ishikawa H, Tajiri N, Vasconcellos J, Kaneko Y, Mimura O, Dezawa M, Borlongan CV. Ischemic stroke mind sends oblique cell dying indicators to the guts. Stroke. 2013;44(11):3175–82. https://doi.org/10.1161/strokeaha.113.001714.
Buckley BJR, Harrison SL, Hill A, Underhill P, Lane DA, Lip GYH. Stroke-heart syndrome: incidence and scientific outcomes of Cardiac problems following stroke. Stroke. 2022;53(5):1759–63. https://doi.org/10.1161/strokeaha.121.037316.
Kallmünzer B, Breuer L, Kahl N, Bobinger T, Raaz-Schrauder D, Huttner HB, Schwab S, Köhrmann M. Severe cardiac arrhythmias after stroke: incidence, time course, and predictors–a scientific, potential evaluation. Stroke. 2012;43(11):2892–7. https://doi.org/10.1161/strokeaha.112.664318.
Jensen JK, Ueland T, Aukrust P, Antonsen L, Kristensen SR, Januzzi JL, Ravkilde J. Extremely delicate troponin T in sufferers with acute ischemic stroke. Eur Neurol. 2012;68(5):287–93. https://doi.org/10.1159/000341340.
Zhou Okay, Chen J, Wu J, Wu Q, Jia C, Xu YXZ, Chen L, Tu W, Yang G, Kong J, et al. Atractylenolide III ameliorates cerebral ischemic damage and neuroinflammation related to inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine. 2019;59:152922. https://doi.org/10.1016/j.phymed.2019.152922.
Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a goal for therapy of stroke utilizing mesenchymal stem cells and extracellular vesicles. J Neuroinflamm. 2019;16:1–17.
Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte activation in neurovascular injury and restore following ischaemic stroke. Int J Mol Sci. 2021;22(8). https://doi.org/10.3390/ijms22084280.
Santos Samary C, Pelosi P, Leme Silva P, Rieken Macedo Rocco P. Immunomodulation after ischemic stroke: potential mechanisms and implications for remedy. Crit Care. 2016;20(1):391. https://doi.org/10.1186/s13054-016-1573-1.
Yan T, Chen Z, Chopp M, Venkat P, Zacharek A, Li W, Shen Y, Wu R, Li L, Landschoot-Ward J, et al. Inflammatory responses mediate brain-heart interplay after ischemic stroke in grownup mice. J Cereb Blood Movement Metab. 2020;40(6):1213–29. https://doi.org/10.1177/0271678×18813317.
Veltkamp R, Uhlmann S, Marinescu M, Sticht C, Finke D, Gretz N, Gröne HJ, Katus HA, Backs J, Lehmann LH. Experimental ischaemic stroke induces transient cardiac atrophy and dysfunction. J Cachexia Sarcopenia Muscle. 2019;10(1):54–62. https://doi.org/10.1002/jcsm.12335.
Bieber M, Werner RA, Tanai E, Hofmann U, Higuchi T, Schuh Okay, Heuschmann PU, Frantz S, Ritter O, Kraft P, et al. Stroke-induced power systolic dysfunction pushed by sympathetic overactivity. Ann Neurol. 2017;82(5):729–43. https://doi.org/10.1002/ana.25073.
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo j. 2004;23(12):2369–80. https://doi.org/10.1038/sj.emboj.7600244.
Zhao Okay, Zhang Y, Xu X, Liu L, Huang L, Luo R, Li J, Zhang N, Lu B. (2019) Acetylation is required for NLRP3 self-aggregation and full activation of the inflammasome. BioRXiv:2019.2012. 2031.891556.
Malik A, Kanneganti TD. Inflammasome activation and meeting at a look. J Cell Sci. 2017;130(23):3955–63. https://doi.org/10.1242/jcs.207365.
Hu H, Guo L, Overholser J, Wang X. (2022) Mitochondrial VDAC1: A Potential Therapeutic Goal of Irritation-Associated Ailments and Medical Alternatives. Cells 11(19).https://doi.org/10.3390/cells11193174
Ren JD, Wu XB, Jiang R, Hao DP, Liu Y. Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by concentrating on the mitochondrial reactive oxygen species. Biochim Biophys Acta. 2016;1863(1):50–5. https://doi.org/10.1016/j.bbamcr.2015.10.012.
Shi M, Chen J, Liu T, Dai W, Zhou Z, Chen L, Xie Y. Protecting results of Remimazolam on Cerebral Ischemia/Reperfusion Damage in rats by inhibiting of NLRP3 inflammasome-dependent pyroptosis. Drug Des Devel Ther. 2022;16:413–23. https://doi.org/10.2147/dddt.S344240.
Liesz A, Zhou W, Na S-Y, Hämmerling GJ, Garbi N, Karcher S, Mracsko E, Backs J, Rivest S, Veltkamp R. Boosting regulatory T cells limits neuroinflammation in everlasting cortical stroke. J Neurosci. 2013;33(44):17350–62.
Liu X, Yamashita T, Shang J, Shi X, Morihara R, Huang Y, Sato Okay, Takemoto M, Hishikawa N, Ohta Y. Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke mannequin. J Cereb Blood Movement Metabolism. 2020;40(1):214–24.
Patnala R, Arumugam TV, Gupta N, Dheen ST. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective operate of microglia throughout ischemic stroke. Mol Neurobiol. 2017;54:6391–411.
Chen YT, Zang XF, Pan J, Zhu XL, Chen F, Chen ZB, Xu Y. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol. 2012;39(9):751–8.
Yan S, Wei X, Jian W, Qin Y, Liu J, Zhu S, Jiang F, Lou H, Zhang B. Pharmacological inhibition of HDAC6 attenuates NLRP3 inflammatory response and protects dopaminergic neurons in experimental fashions of Parkinson’s Illness. Entrance Growing older Neurosci. 2020;12:78. https://doi.org/10.3389/fnagi.2020.00078.
Zhou S, Qiao B, Chu X, Kong Q. Oxymatrine attenuates cognitive deficits by way of SIRT1-mediated autophagy in ischemic stroke. J Neuroimmunol. 2018;323:136–42. https://doi.org/10.1016/j.jneuroim.2018.06.018.
Hattori Y, Okamoto Y, Nagatsuka Okay, Takahashi R, Kalaria RN, Kinoshita M, Ihara M. SIRT1 attenuates extreme ischemic injury by preserving cerebral blood movement. NeuroReport. 2015;26(3):113–7. https://doi.org/10.1097/wnr.0000000000000308.
Takada Y, Singh S, Aggarwal BB. Identification of a p65 peptide that selectively inhibits NF-kappa B activation induced by numerous inflammatory stimuli and its function in down-regulation of NF-kappaB-mediated gene expression and up-regulation of apoptosis. J Biol Chem. 2004;279(15):15096–104. https://doi.org/10.1074/jbc.M311192200.
Zhu X, Guo F, Tang H, Huang C, Xie G, Huang T, Li Y, Liu C, Wang H, Chen B. Islet transplantation attenuating testicular Damage in Sort 1 Diabetic rats is Related to suppression of oxidative stress and irritation through Nrf-2/HO-1 and NF-κB pathways. J Diabetes Res. 2019;2019(8712492). https://doi.org/10.1155/2019/8712492.
Hernández-Jiménez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I, Moro MA. Silent info regulator 1 protects the mind in opposition to cerebral ischemic injury. Stroke. 2013;44(8):2333–7.
Tang H, Wen J, Qin T, Chen Y, Huang J, Yang Q, Jiang P, Wang L, Zhao Y, Yang Q. New insights into Sirt1: potential therapeutic targets for the therapy of cerebral ischemic stroke. Entrance Cell Neurosci. 2023;17:1228761. https://doi.org/10.3389/fncel.2023.1228761.
Zhou F, Wang YK, Zhang CG, Wu BY. miR-19a/b-3p promotes irritation throughout cerebral ischemia/reperfusion damage through SIRT1/FoxO3/SPHK1 pathway. J Neuroinflammation. 2021;18(1):122. https://doi.org/10.1186/s12974-021-02172-5.
Esmayel IM, Hussein S, Gohar EA, Ebian HF, Mousa MM. (2021) Plasma ranges of sirtuin-1 in sufferers with cerebrovascular stroke. Neurol Sci:1–8.
Chang P, Li H, Hu H, Li Y, Wang T. The function of HDAC6 in Autophagy and NLRP3 inflammasome. Entrance Immunol. 2021;12:763831. https://doi.org/10.3389/fimmu.2021.763831.
Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and non-canonical activation of NLRP3 inflammasome on the crossroad between Immune Tolerance and intestinal irritation. Entrance Immunol. 2017;8:36. https://doi.org/10.3389/fimmu.2017.00036.
Liu L, Zhou X, Shetty S, Hou G, Wang Q, Fu J. HDAC6 inhibition blocks inflammatory signaling and caspase-1 activation in LPS-induced acute lung damage. Toxicol Appl Pharmacol. 2019;370:178–83. https://doi.org/10.1016/j.taap.2019.03.017.
Chen H, Deng J, Gao H, Music Y, Zhang Y, Solar J, Zhai J. Involvement of the SIRT1-NLRP3 pathway within the inflammatory response. Cell Commun Sign. 2023;21(1):185. https://doi.org/10.1186/s12964-023-01177-2.
Lian L, Le Z, Wang Z, Chen YA, Jiao X, Qi H, Hejtmancik JF, Ma X, Zheng Q, Ren Y. SIRT1 inhibits excessive glucose-Induced TXNIP/NLRP3 inflammasome activation and cataract formation. Make investments Ophthalmol Vis Sci. 2023;64(3):16. https://doi.org/10.1167/iovs.64.3.16.
Yang MH, Laurent G, Bause AS, Spang R, German N, Haigis MC, Haigis KM. HDAC6 and SIRT2 regulate the acetylation state and oncogenic exercise of mutant Okay-RAS. Mol Most cancers Res. 2013;11(9):1072–7. https://doi.org/10.1158/1541-7786.Mcr-13-0040-t.
You H, Li Q, Kong D, Liu X, Kong F, Zheng Okay, Tang R. The interplay of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett. 2022;27(1):7. https://doi.org/10.1186/s11658-021-00305-5.
Liu P, Xiao J, Wang Y, Music X, Huang L, Ren Z, Kitazato Okay, Wang Y. Posttranslational modification and past: interaction between histone deacetylase 6 and heat-shock protein 90. Mol Med. 2021;27(1):110. https://doi.org/10.1186/s10020-021-00375-3.
Chen H, Deng J, Gao H, Music Y, Zhang Y, Solar J, Zhai J. Involvement of the SIRT1-NLRP3 pathway within the inflammatory response. Cell Commun Sign vol. 2023;21:20230728.
Smith KE, Hachinski VC, Gibson CJ, Ciriello J. Modifications in plasma catecholamine ranges after insula injury in experimental stroke. Mind Res. 1986;375(1):182–5.
Allen AM. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002;39(2):275–80.
Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Mind irritation and hypertension: the hen or the egg? J Neuroinflamm. 2015;12:1–7.
Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J. Cytokine blockade attenuates sympathoexcitation in coronary heart failure: cross-talk between nNOS, AT‐1R and cytokines within the hypothalamic paraventricular nucleus. Eur J Coronary heart Fail. 2008;10(7):625–34.
Haspula D, Clark M. Regulation of neuroinflammatory cytokines by angiotensin and cannabinoid programs in SHR astrocytes. FASEB J. 2017;31:lb554–554.
Biancardi V, Stern J. Compromised blood–mind barrier permeability: novel mechanism by which circulating angiotensin II indicators to sympathoexcitatory centres throughout hypertension. J Physiol. 2016;594(6):1591–600.
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: mechanisms and implications in hypertension. Auton Neurosci. 2018;210:10–7. https://doi.org/10.1016/j.autneu.2018.01.002.
Duck FA, Baker AC, Starritt HC. Ultrasound in medication. CRC; 2020.
Curra FP, Crum LA. Therapeutic ultrasound: surgical procedure and drug supply. Acoust Sci Technol. 2003;24(6):343–8.