7.1 C
United States of America
Sunday, November 24, 2024

Organoids and organoid extracellular vesicles-based illness therapy methods | Journal of Nanobiotechnology


  • Schutgens F, Clevers H. Human organoids: instruments for understanding Biology and Treating ailments. Annu Rev Pathol. 2020;15:211–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling improvement and illness utilizing organoid applied sciences. Science. 2014;345:1247125.

    Article 
    PubMed 

    Google Scholar
     

  • Clevers H. Modeling Growth and Illness with Organoids. Cell. 2016;165:1586–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska Okay. 2D and 3D cell cultures – a comparability of various kinds of most cancers cell cultures. Arch Med Sci. 2018;14:910–9.

    PubMed 

    Google Scholar
     

  • HogenEsch H, Nikitin AY. Challenges in pre-clinical testing of anti-cancer medication in cell tradition and in animal fashions. J Management Launch. 2012;164:183–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiklander OPB, Brennan M, Lötvall J, Breakefield XO. El Andaloussi S: advances in therapeutic functions of extracellular vesicles. Sci Transl Med. 2019;11:492.

  • Witwer KW, Goberdhan DC, O’Driscoll L, Théry C, Welsh JA, Blenkiron C, Buzás EI, Di Vizio D, Erdbrügger U, Falcón-Pérez JM, et al. Updating MISEV: evolving the minimal necessities for research of extracellular vesicles. J Extracell Vesicles. 2021;10:e12182.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura Okay, Lötvall J, Nakagama H, Ochiya T. Mind metastatic most cancers cells launch microRNA-181c-containing extracellular vesicles able to destructing blood-brain barrier. Nat Commun. 2015;6:6716.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bock C, Boutros M, Camp JG, Clarke L, Clevers H, Knoblich JA, Liberali P, Regev A, Rios AC, Stegle O, et al. The Organoid Cell Atlas. Nat Biotechnol. 2021;39:13–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garreta E, Kamm RD, Chuva de Sousa Lopes SM, Lancaster MA, Weiss R, Trepat X, Hyun I, Montserrat N. Rethinking organoid expertise by bioengineering. Nat Mater. 2021;20:145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandenberg N, Hoehnel S, Kuttler F, Homicsko Okay, Ceroni C, Ringel T, Gjorevski N, Schwank G, Coukos G, Turcatti G, Lutolf MP. Excessive-throughput automated organoid tradition through stem-cell aggregation in microcavity arrays. Nat Biomed Eng. 2020;4:863–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Guo F, Jin Y, Ma Y. Functions of human organoids within the personalised therapy for digestive ailments. Sign Transduct Goal Ther. 2022;7:336.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drost J, Clevers H. Organoids in most cancers analysis. Nat Rev Most cancers. 2018;18:407–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corrò C, Novellasdemunt L, Li VSW. A short historical past of organoids. Am J Physiol Cell Physiol. 2020;319:C151–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert Okay, Vance RE. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 launch through activation of Caspase-1 and – 8. Immunity. 2017;46:649–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, Mallajosyula V, Jatt LP, Adamska JZ, Blum LK, Gupta N, et al. Modeling human adaptive immune responses with tonsil organoids. Nat Med. 2021;27:125–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huch M, Gehart H, van Boxtel R, Hamer Okay, Blokzijl F, Verstegen MM, Ellis E, van Wenum M, Fuchs SA, de Ligt J, et al. Lengthy-term tradition of genome-stable bipotent stem cells from grownup human liver. Cell. 2015;160:299–312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H. Lengthy-term enlargement of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Lullo E, Kriegstein AR. The usage of mind organoids to research neural improvement and illness. Nat Rev Neurosci. 2017;18:573–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, Koike H, Maezawa M, Zhang RR, Dunn A, et al. Excessive-Constancy Drug-Induced Liver Damage display screen utilizing human pluripotent stem cell-derived Organoids. Gastroenterology. 2021;160:831–e846810.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Uchimura Okay, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. Comparative evaluation and refinement of human PSC-Derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 2018;23:869–e881868.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Koo BK, Knoblich JA. Human organoids: mannequin methods for human biology and medication. Nat Rev Mol Cell Biol. 2020;21:571–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Lopes SM, Little MH. Kidney organoids from human iPS cells comprise a number of lineages and mannequin human nephrogenesis. Nature. 2016;536:238.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, et al. Modelling kidney illness with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: a perspective on development and software. Bioact Mater. 2022;18:15–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wu Y, Li G, Zhou F, Wu X, Wang M, Liu X, Tang H, Bai L, Geng Z et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired Hydroxyapatite Hybrid Bioinks. Adv Mater 2024;36:2309875.

  • Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Sensible Hydrogels for Bone Reconstruction through modulating the Microenvironment. Res (Wash D C). 2023;6:0089.

    CAS 

    Google Scholar
     

  • Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, Su J. Bone/cartilage organoid on-chip: development technique and software. Bioact Mater. 2023;25:29–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Wang L, Cui J, Wang S, Han Y, Shao H, Wang C, Hu Y, Li X, Zhou Q, et al. Sustaining hypoxia atmosphere of subchondral bone alleviates osteoarthritis development. Sci Adv. 2023;9:eabo7868.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man Okay, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: sensible nanomaterials for bone regeneration. J Nanobiotechnol. 2023;21:137.

    Article 

    Google Scholar
     

  • Hu Y, Chen X, Wang S, Jing Y, Su J. Subchondral bone microenvironment in osteoarthritis and ache. Bone Res. 2021;9:20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of bodily and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao Q, Wang L, Wang S, Huang B, Jing Y, Su J. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation. Entrance Cell Dev Biol. 2021;9:787118.

    Article 
    PubMed 

    Google Scholar
     

  • Xie C, Liang R, Ye J, Peng Z, Solar H, Zhu Q, Shen X, Hong Y, Wu H, Solar W, et al. Excessive-efficient engineering of osteo-callus organoids for speedy bone regeneration inside one month. Biomaterials. 2022;288:121741.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya Okay, et al. Practical engraftment of colon epithelium expanded in vitro from a single grownup Lgr5⁺ stem cell. Nat Med. 2012;18:618–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jgamadze D, Lim JT, Zhang Z, Harary PM, Germi J, Mensah-Brown Okay, Adam CD, Mirzakhalili E, Singh S, Gu JB, et al. Structural and purposeful integration of human forebrain organoids with the injured grownup rat visible system. Cell Stem Cell. 2023;30:137–e152137.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Seashore TE, Godfrey EM, Upponi SS, Brevini T, Wesley BT, Garcia-Bernardo J, et al. Cholangiocyte organoids can restore bile ducts after transplantation within the human liver. Science. 2021;371:839–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neurath M. Present and rising therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14:688.

    Article 
    PubMed 

    Google Scholar
     

  • Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu Okay, Zhang H, Liu H, Bo L, Lv S, et al. Exosome-based bone-targeting drug supply alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel ailments. Cell Rep Med. 2023;4:100881.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamoto R, Mizutani T, Shimizu H. Growth and software of Regenerative Medication in Inflammatory Bowel Illness. Digestion. 2023;104:24–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ. In depth cortical rewiring after mind damage. J Neurosci. 2005;25:10167–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kempermann G, Gage FH, Aigner L, Track H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, et al. Human grownup neurogenesis: proof and remaining questions. Cell Stem Cell. 2018;23:25–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic mind damage in the USA: a public well being perspective. J Head Trauma Rehabil. 1999;14:602–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaillard A, Prestoz L, Dumartin B, Cantereau A, Morel F, Roger M, Jaber M. Reestablishment of broken grownup motor pathways by grafted embryonic cortical neurons. Nat Neurosci. 2007;10:1294–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girman SV, Golovina IL. Electrophysiological properties of embryonic neocortex transplants changing the first visible cortex of grownup rats. Mind Res. 1990;523:78–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y. Self-organization of axial polarity, inside-out layer sample, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A. 2013;110:20284–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O’Rourke NA, Nguyen KD, et al. Practical cortical neurons and astrocytes from human pluripotent stem cells in 3D tradition. Nat Strategies. 2015;12:671–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian X, Nguyen HN, Track MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, et al. Mind-region-specific Organoids utilizing mini-bioreactors for modeling ZIKV publicity. Cell. 2016;165:1238–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su Okay, Li S, Lu L, Jacob F, et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26:766–e781769.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tysoe OC, Justin AW, Brevini T, Chen SE, Mahbubani KT, Frank AK, Zedira H, Melum E, Saeb-Parsy Okay, Markaki AE, et al. Isolation and propagation of major human cholangiocyte organoids for the technology of bioengineered biliary tissue. Nat Protoc. 2019;14:1884–925.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, Gieseck RL third, de Brito MC, Berntsen NL, Gómez-Vázquez MJ, et al. Reconstruction of the mouse extrahepatic biliary tree utilizing major human extrahepatic cholangiocyte organoids. Nat Med. 2017;23:954–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, Thompson W, Karns RA, Mayhew CN, McGrath PS, et al. Modeling steatohepatitis in people with pluripotent stem cell-derived Organoids. Cell Metab. 2019;30:374–e384376.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giandomenico SL, Sutcliffe M, Lancaster MA. Era and long-term tradition of superior cerebral organoids for learning later phases of neural improvement. Nat Protoc. 2021;16:579–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li X, Wang S, Cui J, Ren X, Su J. Bone-targeted exosomes: methods and functions. Adv Healthc Mater. 2023;12:2203361.

  • Track H, Li X, Zhao Z, Qian J, Wang Y, Cui J, Weng W, Cao L, Chen X, Hu Y, Su J. Reversal of osteoporotic exercise by endothelial cell-secreted bone concentrating on and biocompatible exosomes. Nano Lett. 2019;19:3040–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Z, Hu E, Shen H, Tan J, Zeng S. The purposeful and medical roles of liquid biopsy in patient-derived fashions. J Hematol Oncol. 2023;16:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas Okay, Casal E, Cappello F, Carvalho J, et al. Organic properties of extracellular vesicles and their physiological features. J Extracell Vesicles. 2015;4:27066.

    Article 
    PubMed 

    Google Scholar
     

  • Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, Organic relevance, and strategies of examine. Bioscience. 2015;65:783–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zha QB, Yao YF, Ren ZJ, Li XJ, Tang JH. Extracellular vesicles: an summary of biogenesis, operate, and function in breast most cancers. Tumour Biol. 2017;39:1010428317691182.

    Article 
    PubMed 

    Google Scholar
     

  • Bashyal S, Thapa C, Lee S. Latest progresses in exosome-based methods for focused drug supply to the mind. J Management Launch. 2022;348:723–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding gentle on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: Distinctive Intercellular Supply automobiles. Tendencies Cell Biol. 2017;27:172–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chivet M, Javalet C, Laulagnier Okay, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation particularly work together with neurons. J Extracell Vesicles. 2014;3:24722.

    Article 
    PubMed 

    Google Scholar
     

  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, et al. Mechanism of switch of purposeful microRNAs between mouse dendritic cells through exosomes. Blood. 2012;119:756–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • File M, Carayon Okay, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters concerned in cell-cell communication and varied pathophysiologies. Biochim Biophys Acta. 2014;1841:108–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen A, Yaffe MB. Proteomics and methods biology approaches to sign transduction in sepsis. Crit Care Med. 2003;31:S1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes by receptor-mediated endocytosis. Mol Most cancers Res. 2019;17:337–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy DE, de Jong OG, Brouwer M, Wooden MJ, Lavieu G, Schiffelers RM, Vader P. Extracellular vesicle-based therapeutics: pure versus engineered concentrating on and trafficking. Exp Mol Med. 2019;51:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, Wang Y, Fu C, Jiang Y, He C, Wei Q. Signaling pathways and focused remedy for myocardial infarction. Sign Transduct Goal Ther. 2022;7:78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong L, Liao D, Li J, Liu W, Wang J, Zeng C, Wang X, Cao Z, Zhang R, Li M, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis by its secretion into exosomes. Sign Transduct Goal Ther. 2021;6:59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimiz-Gebologlu I, Oncel SS. Exosomes: large-scale manufacturing, isolation, drug loading effectivity, and biodistribution and uptake. J Management Launch. 2022;347:533–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batrakova EV, Kim MS. Utilizing exosomes, naturally-equipped nanocarriers, for drug supply. J Management Launch. 2015;219:396–405.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic methods for bone and tender tissue tumors remedy. Theranostics. 2022;12:6576–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Lin Q, Zhang H, Wang S, Cui J, Hu Y, Liu J, Li M, Zhang Okay, Zhou F, et al. M2 macrophage-derived exosomes promote diabetic fracture therapeutic by appearing as an immunomodulator. Bioact Mater. 2023;28:273–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Y, Zhao J, Wang J, Jiang Y, Jing Y, Xu Okay, Su J. Osteoblast-derived extracellular vesicles exert bone formation results by WIF1-mediated regulation of mitophagy. Med Plus. 2024;1:100033.

  • Gao H, Zeng Y, Huang X, Liang AL, Xie Q, Lin J, Gong X, Fan J, Zou X, Xu T. Extracellular vesicles from organoid-derived human retinal progenitor cells forestall lipid overload-induced retinal pigment epithelium damage by regulating fatty acid metabolism. J Extracell Vesicles. 2024;13:e12401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi T, Lombaert IM, Hauser BR, Patel VN, Hoffman MP. Exosomal MicroRNA Transport from Salivary Mesenchyme regulates epithelial progenitor enlargement throughout Organogenesis. Dev Cell. 2017;40:95–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chansaenroj A, Adine C, Charoenlappanit S, Roytrakul S, Sariya L, Osathanon T, Rungarunlert S, Urkasemsin G, Chaisuparat R, Yodmuang S, et al. Magnetic bioassembly platforms in the direction of the technology of extracellular vesicles from human salivary gland purposeful organoids for epithelial restore. Bioact Mater. 2022;18:151–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Applied sciences for Evaluation of Extracellular Vesicles. Chem Rev. 2018;118:1917–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Coffey RJ. Complete isolation of extracellular vesicles and nanoparticles. Nat Protoc. 2023;18:1462–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwai Okay, Minamisawa T, Suga Okay, Yajima Y, Shiba Okay. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles. 2016;5:30829.

    Article 
    PubMed 

    Google Scholar
     

  • Ikeda G, Santoso MR, Tada Y, Li AM, Vaskova E, Jung JH, O’Brien C, Egan E, Ye J, Yang PC. Mitochondria-Wealthy Extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77:1073–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornilov R, Puhka M, Mannerström B, Hiidenmaa H, Peltoniemi H, Siljander P, Seppänen-Kaijansinkko R, Kaur S. Environment friendly ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2018;7:1422674.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasui T, Paisrisarn P, Yanagida T, Konakade Y, Nakamura Y, Nagashima Okay, Musa M, Thiodorus IA, Takahashi H, Naganawa T, et al. Molecular profiling of extracellular vesicles through charge-based seize utilizing oxide nanowire microfluidics. Biosens Bioelectron. 2021;194:113589.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo J, Wu C, Lin X, Zhou J, Zhang J, Zheng W, Wang T, Cui Y. Institution of a simplified dichotomic size-exclusion chromatography for isolating extracellular vesicles towards medical functions. J Extracell Vesicles. 2021;10:e12145.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan X, Solar L, Jeske R, Nkosi D, York SB, Liu Y, Grant SC, Meckes DG Jr., Li Y. Engineering extracellular vesicles by three-dimensional dynamic tradition of human mesenchymal stem cells. J Extracell Vesicles. 2022;11:e12235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalilian E, Massoumi H, Bigit B, Amin S, Katz EA, Guaiquil VH, Anwar KN, Hematti P, Rosenblatt MI, Djalilian AR. Bone marrow mesenchymal stromal cells in a 3D system produce greater focus of extracellular vesicles (EVs) with elevated complexity and enhanced neuronal development properties. Stem Cell Res Ther. 2022;13:425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter Okay, Lee HJ, Na KS, Fernandes-Cunha GM, Blanco IJ, Djalilian A, Myung D. Characterizing the influence of 2D and 3D tradition circumstances on the therapeutic results of human mesenchymal stem cell secretome on corneal wound therapeutic in vitro and ex vivo. Acta Biomater. 2019;99:247–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, Walter N, Khanduri R, Sanchez JC, Keller A, et al. 3D Mobile Structure impacts MicroRNA and Protein Cargo of Extracellular vesicles. Adv Sci (Weinh). 2019;6:1800948.

    Article 
    PubMed 

    Google Scholar
     

  • Solar L, Ji Y, Chi B, Xiao T, Li C, Yan X, Xiong X, Mao L, Cai D, Zou A, et al. A 3D tradition system improves the yield of MSCs-derived extracellular vesicles and enhances their therapeutic efficacy for coronary heart restore. Biomed Pharmacother. 2023;161:114557.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Zhai Y, Hao Y, Zhu Z, Cheng G. The Regulatory performance of Exosomes derived from hUMSCs in 3D tradition for Alzheimer’s Illness Remedy. Small. 2020;16:e1906273.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A, Xiong Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured beneath 2D and 3D circumstances improves purposeful restoration in rats after traumatic mind damage. Neurochem Int. 2017;111:69–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinger A, Cvetkovic C, Sushnitha M, Naoi T, Baudo G, Anderson M, Shetty A, Basu N, Covello J, Tasciotti E, et al. Humanized biomimetic nanovesicles for Neuron Focusing on. Adv Sci (Weinh). 2021;8:e2101437.

    Article 
    PubMed 

    Google Scholar
     

  • Su Y, Solar X, Liu X, Qu Q, Yang L, Chen Q, Liu F, Li Y, Wang Q, Huang B, et al. hUC-EVs-ATO cut back the severity of acute GVHD by resetting inflammatory macrophages towards the M2 phenotype. J Hematol Oncol. 2022;15:99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upadhya R, Shetty AK. Extracellular vesicles for the prognosis and therapy of Parkinson’s Illness. Getting old Dis. 2021;12:1438–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang T, Dong Y, Wan J, Liu X, Liu Y, Huang J, Zhou J, Xiao H, Tang L, Wang Y et al. Sustained launch of BMSC-EVs from 3D Printing Gel/HA/nHAP scaffolds for selling bone regeneration in Diabetic rats. Adv Healthc Mater. 2023;12:2203131.

  • Valadi H, Ekström Okay, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated switch of mRNAs and microRNAs is a novel mechanism of genetic trade between cells. Nat Cell Biol. 2007;9:654–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S. Oblique activation of naïve CD4 + T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3:1156–62.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Track CH, Feng BS, Li TL, Li P, Zheng PY, Chen XM, Xing Z, Yang PC. Intestinal epithelial cell-derived integrin αβ6 performs an necessary function within the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol. 2011;90:751–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinto DO, Al Sharif S, Mensah G, Cowen M, Khatkar P, Erickson J, Branscome H, Lattanze T, DeMarino C, Alem F, et al. Extracellular vesicles from HTLV-1 contaminated cells modulate goal cells and viral unfold. Retrovirology. 2021;18:6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roush S, Slack FJ. The let-7 household of microRNAs. Tendencies Cell Biol. 2008;18:505–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their purposeful implications. Protein Cell. 2016;7:100–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Yan Y, Meng J, Girotra M, Ramakrishnan S, Roy S. Immune modulation mediated by extracellular vesicles of intestinal organoids is disrupted by opioids. Mucosal Immunol. 2021;14:887–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA. Characterization of the signaling interactions that promote the survival and development of growing retinal ganglion cells in tradition. Neuron. 1995;15:805–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eastlake Okay, Lamb WDB, Luis J, Khaw PT, Jayaram H, Limb GA. Prospects for the appliance of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res. 2021;85:100970.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT. In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Make investments Ophthalmol Vis Sci. 2002;43:864–9.

    PubMed 

    Google Scholar
     

  • Bonilla-Pons S, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D’Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, et al. Müller glia fused with grownup stem cells endure neural differentiation in human retinal fashions. EBioMedicine. 2022;77:103914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eastlake Okay, Wang W, Jayaram H, Murray-Dunning C, Carr AJF, Ramsden CM, Vugler A, Gore Okay, Clemo N, Stewart M, et al. Phenotypic and purposeful characterization of Müller Glia remoted from Induced Pluripotent Stem Cell-Derived Retinal organoids: enchancment of retinal ganglion cell operate upon transplantation. Stem Cells Transl Med. 2019;8:775–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou T, Gao L, Zeng Y, Li Q, Li Y, Chen S, Hu X, Chen X, Fu C, Xu H, Yin ZQ. Organoid-derived C-Equipment(+)/SSEA4(-) human retinal progenitor cells promote a protecting retinal microenvironment throughout transplantation in rodents. Nat Commun. 2019;10:1205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti Okay. Retinal stem cell transplantation: balancing security and potential. Prog Retin Eye Res. 2020;75:100779.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian B, Zhao C, He X, Gong Y, Ren C, Ge L, Zeng Y, Li Q, Chen M, Weng C, et al. Exosomes derived from neural progenitor cells protect photoreceptors throughout retinal degeneration by inactivating microglia. J Extracell Vesicles. 2020;9:1748931.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthur P, Kandoi S, Solar L, Kalvala A, Kutlehria S, Bhattacharya S, Kulkarni T, Nimma R, Li Y, Lamba DA, Singh M. Biophysical, Molecular and Proteomic Profiling of Human Retinal Organoid-Derived exosomes. Pharm Res 2022;40:801-16.

  • Zhou J, Flores-Bellver M, Pan J, Benito-Martin A, Shi C, Onwumere O, Mighty J, Qian J, Zhong X, Hogue T, et al. Human retinal organoids launch extracellular vesicles that regulate gene expression in goal human retinal progenitor cells. Sci Rep. 2021;11:21128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Poli S, Liang X, Peng GH. Longitudinal single-cell RNA-seq of hESCs-derived retinal organoids. Sci China Life Sci. 2021;64:1661–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He C, Zheng S, Luo Y, Wang B. Exosome Theranostics: Biology and Translational Medication. Theranostics. 2018;8:237–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthur P, Muok L, Nathani A, Zeng EZ, Solar L, Li Y, Singh M. Bioengineering Human pluripotent stem cell-derived retinal organoids and Optic Vesicle-containing mind Organoids for Ocular ailments. Cells 2022;11:11213429.

  • Kwak S, Track CL, Lee J, Kim S, Nam S, Park YJ, Lee J. Growth of pluripotent stem cell-derived epidermal organoids that generate efficient extracellular vesicles in pores and skin regeneration. Biomaterials. 2024;307:122522.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y, Li J, Xue X, Yin Z, Xu Okay, Su J. Engineered extracellular vesicles for bone remedy. Nano Immediately. 2022;44:101487.

  • Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage focused hydrogel: methods and functions. Bioact Mater. 2023;23:156–69.

    PubMed 

    Google Scholar
     

  • Liu H, Track P, Zhang H, Zhou F, Ji N, Wang M, Zhou G, Han R, Liu X, Weng W, et al. Artificial biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate osteoporosis. J Extracell Vesicles. 2024;13:e12429.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J. Exosome-liposome hybrid nanoparticles ship CRISPR/Cas9 system in MSCs. Adv Sci (Weinh). 2018;5:1700611.

    Article 
    PubMed 

    Google Scholar
     

  • Hao Z, Ren L, Zhang Z, Yang Z, Wu S, Liu G, Cheng B, Wu J, Xia J. A multifunctional neuromodulation platform using Schwann cell-derived exosomes orchestrates bone microenvironment through immunomodulation, angiogenesis and osteogenesis. Bioact Mater. 2023;23:206–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Smyth T, Petrova Okay, Payton NM, Persaud I, Redzic JS, Graner MW, Smith-Jones P, Anchordoquy TJ. Floor functionalization of exosomes utilizing click on chemistry. Bioconjug Chem. 2014;25:1777–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Wu T, Zhang Okay, Meng X, Dai W, Wang D, Dong H, Zhang X. Engineered exosome-mediated Close to-Infrared-II area V(2)C Quantum dot supply for Nucleus-Goal Low-Temperature Photothermal Remedy. ACS Nano. 2019;13:1499–510.

    CAS 
    PubMed 

    Google Scholar
     

  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular vesicles by Fusion with liposomes for the design of Personalised Biogenic Drug Supply methods. ACS Nano. 2018;12:6830–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi B, Chen L, Xiong Y, Yang Y, Panayi AC, Xue H, Hu Y, Yan C, Hu L, Xie X, et al. Osteoblast/Osteoclast and Immune Cocktail Remedy of an Exosome/Drug supply multifunctional hydrogel accelerates fracture restore. ACS Nano. 2022;16:771–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJ. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29:341–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids improve osteogenic induction and vascular reworking in giant segmental bone defects. Theranostics. 2021;11:397–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Z, Xiong Y, Meng W, Hu Y, Chen L, Chen L, Xue H, Panayi AC, Zhou W, Solar Y, et al. Exosomal PD-L1 induces osteogenic differentiation and promotes fracture therapeutic by appearing as an immunosuppressant. Bioact Mater. 2022;13:300–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Manhas J, Edelstein HI, Leonard JN, Morsut L. The evolution of artificial receptor methods. Nat Chem Biol. 2022;18:244–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang ZJ, Yu ZY, Cai YM, Du RR, Cai L. Engineering of an enhanced artificial notch receptor by decreasing ligand-independent activation. Commun Biol. 2020;3:116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trentesaux C, Yamada T, Klein OD, Lim WA. Harnessing artificial biology to engineer organoids and tissues. Cell Stem Cell. 2023;30:10–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi Okay, Rong Y, Huang L, Tang X, Zhang Q, Wang W, Wu J, Wang F. Aptamer-Exosomes for Tumor Theranostics. ACS Sens. 2021;6:1418–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar S, Liu H, Hu Y, Wang Y, Zhao M, Yuan Y, Han Y, Jing Y, Cui J, Ren X, et al. Choice and identification of a novel ssDNA aptamer concentrating on human skeletal muscle. Bioact Mater. 2023;20:166–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, Geng Y, Gao W, Zhang Z, Fu D. A bone-targeted engineered exosome platform delivering siRNA to deal with osteoporosis. Bioact Mater. 2022;10:207–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Li M, Zhang T, Liu X, Zhang H, Geng Z, Su J. Engineered bacterial extracellular vesicles for osteoporosis remedy. Chem Eng J. 2022;450:138309.

  • Yang Y, Hong Y, Nam GH, Chung JH, Koh E, Kim IS. Virus-mimetic fusogenic exosomes for direct supply of Integral Membrane Proteins to focus on cell membranes. Adv Mater. 2017;29:1605604.

  • Chatterjee M, Özdemir S, Kunadt M, Koel-Simmelink M, Boiten W, Piepkorn L, Pham TV, Chiasserini D, Piersma SR, Knol JC et al. C1q is elevated in cerebrospinal fluid-derived extracellular vesicles in Alzheimer’s illness: A multi-cohort proteomics and immuno-assay validation examine. Alzheimers Dement. 2023;19:4828–40.

  • Lee J, Lee H, Goh U, Kim J, Jeong M, Lee J, Park JH. Mobile Engineering with membrane Fusogenic liposomes to provide Functionalized Extracellular vesicles. ACS Appl Mater Interfaces. 2016;8:6790–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, et al. The function of the immune microenvironment in bone, cartilage, and tender tissue regeneration: from mechanism to therapeutic alternative. Mil Med Res. 2022;9:65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong Y, Chen L, Liu P, Yu T, Lin C, Yan C, Hu Y, Zhou W, Solar Y, Panayi AC, et al. All-in-One: multifunctional hydrogel accelerates oxidative Diabetic Wound Therapeutic by timed-release of exosome and fibroblast development issue. Small. 2022;18:e2104229.

    Article 
    PubMed 

    Google Scholar
     

  • Liu H, Zhang H, Wang S, Cui J, Weng W, Liu X, Tang H, Hu Y, Li X, Zhang Okay et al. Bone-targeted bioengineered bacterial extracellular vesicles delivering siRNA to ameliorate osteoporosis. Compos B Eng. 2023;255:110610.

  • Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid analysis. Nat Rev Genet. 2018;19:671–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fortunato D, Giannoukakos S, Giménez-Capitán A, Hackenberg M, Molina-Vila MA, Zarovni N. Selective isolation of extracellular vesicles from minimally processed human plasma as a translational technique for liquid biopsies. Biomark Res. 2022;10:57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Yu Y. Affected person-derived organoids in translational oncology and drug screening. Most cancers Lett. 2023;562:216180.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Jeon H. 3D cell cultures towards quantitative high-throughput drug screening. Tendencies Pharmacol Sci. 2022;43:569–81.

    Article 
    PubMed 

    Google Scholar
     

  • Ramezankhani R, Solhi R, Chai YC, Vosough M, Verfaillie C. Organoid and microfluidics-based platforms for drug screening in COVID-19. Drug Discov Immediately. 2022;27:1062–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geyer M, Queiroz Okay. Microfluidic platforms for high-throughput pancreatic ductal adenocarcinoma Organoid Tradition and Drug Screening. Entrance Cell Dev Biol. 2021;9:761807.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng Z, Sang S, Wang S, Meng F, Li Z, Zhu S, Cui Z, Jing Y, Wang C, Su J. Optimizing the strontium content material to realize a great osseointegration by balancing apatite-forming capacity and osteogenic exercise. Biomater Adv. 2022;133:112647.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Wu X, Wang X, Su J. Hydrogels for bone organoid development: from a materiobiological perspective. J Mater Sci Technol. 2023;136:21–31.

    Article 
    CAS 

    Google Scholar
     

  • Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering approaches for the Superior Organoid Analysis. Adv Mater. 2021;33:e2007949.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M, Brown NE, Staab JF, Latanich R, Zachos NC et al. In vivo improvement of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol. 2023;41:824–31.

  • Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, Chang CF, Schiesser J, Aubert P, Stanley EG, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a purposeful enteric nervous system. Nat Med. 2017;23:49–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Su J. Organoid and organoid extracellular vesicles for osteoporotic fractures remedy: present standing and future views. IMed. 2023;1:e20230011.

  • Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug supply: advances and views. Bioact Mater. 2022;14:169–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Geng Z, Su J. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for focused remedy. EVCNA. 2022;3:63–86.

    Article 
    CAS 

    Google Scholar
     

  • Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system ailments. J Management Launch. 2023;364:46–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rutter BD, Innes RW. Extracellular vesicles remoted from the Leaf Apoplast carry stress-response proteins. Plant Physiol. 2017;173:728–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M, Rasmi Y, Golezani AG, Rezaie J. Plant-derived extracellular vesicles: a novel nanomedicine strategy with benefits and challenges. Cell Commun Sign. 2022;20:69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han R, Wu Y, Han Y, Liu X, Liu H, Su J. Engineered plant extracellular vesicles for autoimmune ailments remedy. Nano Res. 2023;17:2857–73.

  • Liu H, Solar J, Wang M, Wang S, Su J, Xu C. Intestinal organoids and organoids extracellular vesicles for inflammatory bowel illness therapy. Chem Eng J. 2023;465:142842.

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles