4.4 C
United States of America
Saturday, November 23, 2024

Engineering modular and tunable single-molecule sensors by decoupling sensing from sign output


  • Abdelfattah, A. S. et al. Vivid and photostable chemigenetic indicators for prolonged in vivo voltage imaging. Science 365, 699–704 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y.-N., Cartwright, H. N. & Ho, C.-H. In vivo visualization of nitrate dynamics utilizing a genetically encoded fluorescent biosensor. Sci. Adv. 8, eabq4915 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cambronne, X. A. et al. Biosensor reveals a number of sources for mitochondrial NAD. Science 352, 1474–1477 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, L. et al. Probing coenzyme A homeostasis with semisynthetic biosensors. Nat. Chem. Biol. 19, 346–355 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Strategies 16, 763–770 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ino, D., Tanaka, Y., Hibino, H. & Nishiyama, M. A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics within the mind. Nat. Strategies 19, 1286–1294 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brun, M. A., Tan, Okay.-T., Nakata, E., Hinner, M. J. & Johnsson, Okay. Semisynthetic fluorescent sensor proteins primarily based on self-labeling protein tags. J. Am. Chem. Soc. 131, 5873–5884 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griss, R. et al. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 10, 598–603 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, L., Prifti, E. & Johnsson, Okay. A basic technique for the semisynthesis of ratiometric fluorescent sensor proteins with elevated dynamic vary. J. Am. Chem. Soc. 138, 5258–5261 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Q. et al. Semisynthetic sensor proteins allow metabolic assays on the level of care. Science 361, 1122–1126 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vecchia, M. D. et al. Spectrally tunable Forster resonance vitality transfer-based biosensors utilizing natural dye grafting. ACS Sens. 7, 2920–2927 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hellweg, L. et al. A basic methodology for the event of multicolor biosensors with massive dynamic ranges. Nat. Chem. Biol. 19, 1147–1157 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beltrán, J. et al. Fast biosensor growth utilizing plant hormone receptors as reprogrammable scaffolds. Nat. Biotechnol. 40, 1855–1861 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasgow, A. A. et al. Computational design of a modular protein sense-response system. Science 366, 1024–1028 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quijano-Rubio, A. et al. De novo design of modular and tunable protein biosensors. Nature 591, 482–487 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, J. et al. A basic technique to assemble small molecule biosensors in eukaryotes. eLife 4, e10606 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, C. L. & Fields, S. A yeast sensor of ligand binding. Nat. Biotechnol. 19, 1042–1046 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricci, F., Vallée-Bélisle, A., Simon, A. J., Porchetta, A. & Plaxco, Okay. W. Utilizing nature’s “methods” to rationally tune the binding properties of biomolecular receptors. Acc. Chem. Res. 49, 1884–1892 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, B. et al. Synthetic allosteric management of maltose binding protein. Phys. Rev. Lett. 94, 038103 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Vallée-Bélisle, A., Ricci, F. & Plaxco, Okay. W. Engineering biosensors with prolonged, narrowed, or arbitrarily edited dynamic vary. J. Am. Chem. Soc. 134, 2876–2879 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porchetta, A., Vallee-Belisle, A., Plaxco, Okay. W. & Ricci, F. Utilizing distal-site mutations and allosteric inhibition to tune, prolong, and slim the helpful dynamic vary of aptamer-based sensors. J. Am. Chem. Soc. 134, 20601–20604 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hariri, A. A. et al. Modular aptamer switches for the continual optical detection of small-molecule analytes in complicated media. Adv. Mater. 36, e2304410 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chamorro-Garcia, A. et al. The sequestration mechanism as a generalizable method to enhance the sensitivity of biosensors and bioassays. Chem. Sci. 13, 12219–12228 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dueber, J. E., Mirsky, E. A. & Lim, W. A. Engineering artificial signaling proteins with ultrasensitive enter/output management. Nat. Biotechnol. 25, 660–662 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, A. J., Vallee-Belisle, A., Ricci, F. & Plaxco, Okay. W. Intrinsic dysfunction as a generalizable technique for the rational design of extremely responsive, allosterically cooperative receptors. Proc. Natl Acad. Sci. USA 111, 15048–15053 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega, G. et al. Rational design to regulate the trade-off between receptor affinity and cooperativity. Proc. Natl Acad. Sci. USA 117, 19136–19140 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega, G., Chamorro-Garcia, A., Ricci, F. & Plaxco, Okay. W. On the rational design of cooperative receptors. Annu. Rev. Biophys. 52, 319–337 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, A. J., Vallée-Bélisle, A., Ricci, F., Watkins, H. M. & Plaxco, Okay. W. Utilizing the population-shift mechanism to rationally introduce “Hill-type” cooperativity right into a usually non-cooperative receptor. Angew. Chem. Int. Ed. 53, 9471–9475 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Marras, A. E., Zhou, L., Su, H. J. & Castro, C. E. Programmable movement of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marras, A. E. et al. Cation-activated avidity for fast reconfiguration of DNA nanodevices. ACS Nano 12, 9484–9494 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Z. & Arya, G. Free vitality panorama of salt-actuated reconfigurable DNA nanodevices. Nucleic Acids Res. 48, 548–560 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Funke, J. J. & Dietz, H. Inserting molecules with Bohr radius decision utilizing DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Funke, J. J. et al. Uncovering the forces between nucleosomes utilizing DNA origami. Sci. Adv. 2, e1600974 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sulc, P. et al. Sequence-dependent thermodynamics of a coarse-grained DNA mannequin. J. Chem. Phys. 137, 135101 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Smock, R. G. & Gierasch, L. M. Sending alerts dynamically. Science 324, 198–203 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darcy, M. et al. Excessive-force software by a nanoscale DNA power spectrometer. ACS Nano 16, 5682–5695 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zadeh, J. N. et al. NUPACK: evaluation and design of nucleic acid techniques. J. Comput. Chem. 32, 170–173 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, M. et al. Single antibody detection in a DNA origami nanoantenna. iScience 24, 103072 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, X., Sen, A., Vicens, M. & Tan, W. Artificial DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 4, 829–834 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, R. Y., Plaxco, Okay. W. & Heeger, A. J. Aptamer-based electrochemical detection of picomolar platelet-derived progress issue immediately in blood serum. Anal. Chem. 79, 229–233 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrae, J., Gallini, R. & Betsholtz, C. Position of platelet-derived progress components in physiology and drugs. Genes Dev. 22, 1276–1312 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leitzel, Okay. et al. Elevated plasma platelet-derived progress issue B-chain ranges in most cancers sufferers. Most cancers Res. 51, 4149–4154 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, C. et al. Noncanonical crRNAs derived from host transcripts allow multiplexable RNA detection by Cas9. Science 372, 941–948 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selnihhin, D., Sparvath, S. M., Preus, S., Birkedal, V. & Andersen, E. S. Multifluorophore DNA origami beacon as a biosensing platform. ACS Nano 12, 5699–5708 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochmann, S. E. et al. DNA origami voltage sensors for transmembrane potentials with single-molecule sensitivity. Nano Lett. 21, 8634–8641 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Büber, E. et al. DNA origami curvature sensors for nanoparticle and vesicle measurement dedication with single-molecule FRET readout. ACS Nano 17, 3088–3097 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Domljanovic, I. et al. DNA origami e book biosensor for multiplex detection of cancer-associated nucleic acids. Nanoscale 14, 15432–15441 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loretan, M. et al. Direct single-molecule detection and super-resolution imaging with a low-cost moveable smartphone-based microscope. Preprint at bioRxiv https://doi.org/10.1101/2024.05.08.593103 (2024).

  • Praetorius, F. et al. Biotechnological mass manufacturing of DNA origami. Nature 552, 84–87 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gopinath, A. et al. Absolute and arbitrary orientation of single-molecule shapes. Science 371, eabd6179 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, P., Ijas, H., Shen, B., Corrigan, D. Okay. & Linko, V. Probing the conformational states of a pH-sensitive DNA origami zipper through label-free electrochemical strategies. Langmuir 37, 7801–7809 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran, A. R. Nuclease resistance of DNA nanostructures. Nat. Rev. Chem. 5, 225–239 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheckenbach, M., Schubert, T., Forthmann, C., Glembockyte, V. & Tinnefeld, P. Self-regeneration and self-healing in DNA origami nanostructures. Angew. Chem. Int. Ed. 60, 4931–4938 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wassermann, L. M., Scheckenbach, M., Baptist, A. V., Glembockyte, V. & Heuer-Jungemann, A. Full site-specific addressability in DNA origami-templated silica nanostructures. Adv. Mater. 35, e2212024 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Douglas, S. M. et al. Fast prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trofymchuk, Okay. et al. Addressable nanoantennas with cleared hotspots for single-molecule detection on a conveyable smartphone microscope. Nat. Commun. 12, 950 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouldridge, T. E., Louis, A. A. & Doye, J. P. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA mannequin. J. Chem. Phys. 134, 085101 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Snodin, B. E. et al. Introducing improved structural properties and salt dependence right into a coarse-grained mannequin of DNA. J. Chem. Phys. 142, 234901 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rovigatti, L., Sulc, P., Reguly, I. Z. & Romano, F. A comparability between parallelization approaches in molecular dynamics simulations on GPUs. J. Comput. Chem. 36, 1–8 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suma, A. et al. TacoxDNA: A user-friendly internet server for simulations of complicated DNA constructions, from single strands to origami. J. Comput. Chem. 40, 2586–2595 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poppleton, E. et al. Design, optimization and evaluation of enormous DNA and RNA nanostructures by means of interactive visualization, modifying and molecular simulation. Nucleic Acids Res. 48, e72 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poppleton, E., Romero, R., Mallya, A., Rovigatti, L. & Sulc, P. OxDNA.org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures. Nucleic Acids Res. 49, W491–W498 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schroder, T. et al. Shrinking gate fluorescence correlation spectroscopy yields equilibrium constants and separates photophysics from structural dynamics. Proc. Natl Acad. Sci. USA 120, e2211896120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrimpf, W., Barth, A., Hendrix, J. & Lamb, D. C. PAM: a framework for built-in evaluation of imaging, single-molecule, and ensemble fluorescence knowledge. Biophys. J. 114, 1518–1528 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabenhorst, L. et al. Supply knowledge—engineering modular and tunable single molecule sensors by decoupling sensing from sign output. Zenodo https://doi.org/10.5281/zenodo.12168537 (2024).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles