3.8 C
United States of America
Saturday, November 23, 2024

Mesoporous structured MoS2 as an electron transport layer for environment friendly and secure perovskite photo voltaic cells


  • Yang, M. et al. Perovskite ink with extensive processing window for scalable high-efficiency photo voltaic cells. Nat. Vitality 2, 17038 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, D. et al. Environment friendly two-terminal all-perovskite tandem photo voltaic cells enabled by high-quality low-bandgap absorber layers. Nat. Vitality 3, 1093–1100 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wehrenfennig, C., Eperon, G. E., Jonston, M. B., Snaith, H. J. & Herz, L. M. Excessive cost provider mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, D. et al. Low trap-state density and lengthy provider diffusion in organolead trihalide perovskite single crystals. Science 347, 6221 (2015).

    Article 

    Google Scholar
     

  • Kim, G. et al. Impression of pressure leisure on efficiency of α-formamidinium lead iodide perovskite photo voltaic cells. Science 370, 108–112 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greatest Analysis-Cell Efficiencies (Nationwide Renewable Vitality Laboratory, 2024); https://www.nrel.gov/pv/cell-efficiency.html

  • Ma, C. et al. Unveiling facet-dependent degradation and aspect engineering for secure perovskite photo voltaic cells. Science 379, 173–178 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. Managed development of perovskite layers with unstable alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, M., Yamaguchi, Ok., Kimoto, Y., Kato, T. & Sugimoto, H. Cd-free Cu(In,Ga)(Se,S)2 thin-film photo voltaic cell with report effectivity of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019).

    Article 

    Google Scholar
     

  • Chirila, A. et al. Potassium-induced floor modification of Cu(In,Ga)Se2 skinny movies for high-efficiency photo voltaic cells. Nat. Mater. 12, 1107–1111 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qarony, W. et al. Environment friendly amorphous silicon photo voltaic cells: characterization, optimization, and optical loss evaluation. Outcomes Phys. 7, 4287–4293 (2017).

    Article 

    Google Scholar
     

  • Matsui, T. et al. Excessive-efficiency thin-film silicon photo voltaic cells realized by integrating secure a-Si:H absorbers into improved system design. Jpn. J. Appl. Phys. 54, 08KB10 (2015).

    Article 

    Google Scholar
     

  • Wang, J. et al. Binary natural photo voltaic cells with 19.2% effectivity enabled by strong additive. Adv. Mater. 35, 2301583 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fu, J. et al. 19.31% binary natural photo voltaic cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sha, W. E. I., Ren, X., Chen, L. & Choy, W. C. H. The effectivity restrict of CH3NH3PbI3 perovskite photo voltaic cells. Appl. Phys. Lett. 106, 221104 (2015).

    Article 

    Google Scholar
     

  • Najafi, L. et al. MoS2 quantum dot/graphene hybrids for superior interface engineering of a CH3NH3PbI3 perovskite photo voltaic cell with an effectivity of over 20. ACS Nano 12, 10736–10754 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakavelakis, G. et al. Extending the continual working lifetime of perovskite photo voltaic cells with a molybdenum disulfide gap extraction interlayer. Adv. Vitality Mater. 8, 1702287 (2018).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. A bilayer conducting polymer construction for planar perovskite photo voltaic cells with over 1,400 hours operational stability at elevated temperatures. Nat. Vitality 7, 144–152 (2021).

    Article 

    Google Scholar
     

  • Tang, G. et al. Answer-phase epitaxial development of perovskite movies on 2D materials flakes for high-performance photo voltaic cells. Adv. Mater. 31, 1807689 (2019).

    Article 

    Google Scholar
     

  • Sadegh, F. et al. Extremely environment friendly, secure and hysteresis‒much less planar perovskite photo voltaic cell based mostly on chemical tub handled Zn2SnO4 electron transport layer. Nano Vitality 75, 105038 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sadhu, A. et al. Twin function of Cu-chalcogenide as hole-transporting layer and interface passivator for p–i–n structure perovskite photo voltaic cell. Adv. Funct. Mater. 31, 2103807 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Modulation of perovskite crystallization processes in direction of extremely environment friendly and secure perovskite photo voltaic cells with MXene quantum dot-modified SnO2. Vitality Environ. Sci. 14, 3446–3454 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, C. et al. Environment friendly planar perovskite photo voltaic cells with lowered hysteresis and enhanced open circuit voltage through the use of PW12–TiO2 as electron transport layer. ACS Appl. Mater. Interfaces 8, 8520–8526 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. TiO2 nanotube arrays based mostly versatile perovskite photo voltaic cells with clear carbon nanotube electrode. Nano Vitality 11, 728–235 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Shao, J. et al. Pore dimension dependent hysteresis elimination in perovskite photo voltaic cells based mostly on extremely porous TiO2 movies with extensively tunable pores of 15–34 nm. Chem. Mater. 28, 7134–7144 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Fransishyn, Ok. M. & Kelly, T. L. Evaluating the impact of mesoporous and planar metallic oxides on the steadiness of methylammonium lead iodide skinny movies. Chem. Mater. 28, 7344–7352 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, B. et al. Hydrophobic polycarbonate monolith with mesoporous nest-like construction: an efficient oil sorbent. Mater. Lett. 188, 201–204 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain development for environment friendly hybrid perovskite photo voltaic cells. Nat. Commun. 6, 7747 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Faulty TiO2 with excessive photoconductive acquire for environment friendly and secure planar heterojunction perovskite photo voltaic cells. Nat. Commun. 7, 12446 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Dopamine-crosslinked TiO2/perovskite layer for environment friendly and photostable perovskite photo voltaic cells below full spectral steady illumination. Nano Vitality 56, 733–740 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Excessive-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nat. Commun. 13, 2806 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Q. et al. Enhanced electron extraction utilizing SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite photo voltaic cells. Nat. Vitality 2, 16177 (2016).

    Article 

    Google Scholar
     

  • Anaraki, E. H. et al. Extremely environment friendly and secure planar perovskite photo voltaic cells by solution-processed tin oxide. Vitality Environ. Sci. 9, 3128 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, M. et al. Massive-area perovskite photo voltaic cells using spiro-Naph gap transport materials. Nat. Photon. 16, 119–125 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. et al. Part engineering of transition metallic dichalcogenides with unprecedentedly excessive section purity, stability, and scalability through molten-metal-assisted intercalation. Adv. Mater. 32, 200189 (2020).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Multifunctional crosslinking-enabled strain-regulating crystallization for secure, environment friendly α-FAPbI3-based perovskite photo voltaic cells. Adv. Mater. 33, 200847 (2021).


    Google Scholar
     

  • Zhu, C. et al. Pressure engineering in perovskite photo voltaic cells and its impacts on provider dynamics. Nat. Commun. 10, 815 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Elimination of interfacial lattice mismatch and detrimental response by self-assembled layer dual-passivation for environment friendly and secure inverted perovskite photo voltaic cells. Adv. Vitality Mater. 12, 2103674 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Steele, J. A. et al. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072–8083 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Electron injection and defect passivation for high-efficiency mesoporous perovskite photo voltaic cells. Science 383, 1198–1204 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, Z. et al. Excessive-quality van der Waals epitaxial CsPbBr3 movie grown on monolayer graphene lined TiO2 for high-performance photo voltaic cells. Vitality Environ. Mater. 7, 12680 (2024).

    Article 

    Google Scholar
     

  • Moghadamzadeh, S. et al. Spontaneous enhancement of the secure energy conversion effectivity in perovskite photo voltaic cells. J. Mater. Chem. A 8, 670 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Valadi, Ok. et al. Metallic oxide electron transport supplies for perovskite photo voltaic cells: a evaluation. Environ. Chem. Lett. 19, 2185–2207 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shin, S. S., Lee, S. J. & Seok, S. I. Metallic oxide cost transport layers for environment friendly and secure perovskite photo voltaic cells. Adv. Funct. Mater. 29, 1900455 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T., Xie, J. & Gao, P. Ultraviolet photocatalytic degradation of perovskite photo voltaic cells: progress, challenges, and techniques. Adv. Vitality Sustainability Res. 3, 2100218 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Leijtens, T. et al. Overcoming ultraviolet mild instability of sensitized TiO2 with meso-super structured organometal tri-halide perovskite photo voltaic cells. Nat. Commun. 4, 2885 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wojciechowski, Ok., Saliba, M., Leijtens, T., Abate, A. & Snaith, H. J. Sub-150 °C processed meso-super structured perovskite photo voltaic cells with enhanced effectivity. Vitality Environ. Sci. 7, 1142 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for sturdy and environment friendly photo voltaic cells. Science 377, 1425–1430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Y. et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science 385, 161–167 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Liquid medium annealing for fabricating sturdy perovskite photo voltaic cells with improved reproducibility. Science 373, 561–567 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite photo voltaic cell reliability. Science 372, 618–622 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z. et al. Anion–π interactions suppress section impurities in FAPbI3 photo voltaic cells. Nature 623, 531–537 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, C. et al. Engineering the buried interface in perovskite photo voltaic cells through lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Meng, Y. et al. Pre-buried ETL with bottom-up technique towards versatile perovskite photo voltaic cells with effectivity over 23%. Adv. Funct. Mater. 33, 2214788 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34, 2106110 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Answer-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles