Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport throughout the gastrointestinal limitations: the contribution to oral bioavailability through blood circulation and lymphatic pathway. Adv Drug Deliv Rev. 2023;203:115130.
Miller MK, Chapa-Villarreal FA, Oldenkamp HF, Elder MG, Venkataraman AK, Peppas NA. Stimuli-responsive self-assembled polymer nanoparticles for the oral supply of antibodies. J Management Launch. 2023;361:246–59.
Xu M, Qi Y, Liu G, Tune Y, Jiang X, Du B. Measurement-dependent in vivo transport of nanoparticles: implications for supply, concentrating on, and Clearance. ACS Nano. 2023;17(21):20825–49.
Zhuo Y, Luo Z, Zhu Z, Wang J, Li X, Zhang Z, Guo C, Wang B, Nie D, Gan Y, Hu G, Yu M. Direct cytosolic supply of siRNA through cell membrane fusion utilizing cholesterol-enriched exosomes. Nat Nanotechnol 2024. https://doi.org/10.1038/s41565-024-01785-0
Hunt NJ, Lockwood GP, Heffernan SJ, Daymond J, Ngu M, Narayanan RK, Westwood LJ, Mohanty B, Esser L, Williams CC, Kuncic Z, McCourt PAG, Le Couteur DG, Cogger VC. Oral nanotherapeutic formulation of insulin with decreased episodes of hypoglycaemia. Nat Nanotechnol. 2024;19(4):534–44.
Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug supply: challenges and alternatives of present platforms. Drug Deliv. 2017;24(1):569–81.
Date AA, Hanes J, Ensign LM. Nanoparticles for oral supply: design, analysis and state-of-the-art. J Management Launch. 2016;240:504–26.
Pelaseyed T, Hansson GC. Membrane mucins of the gut at a look. J Cell Sci. 2020;133(5):jcs240929.
Benoit DSW, Sims KR Jr, Fraser D. Nanoparticles for oral biofilm therapies. ACS Nano. 2019;13(5):4869–75.
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug supply (Nano)platforms for oral and Dental Purposes: tissue regeneration, an infection management, and Most cancers Administration. Adv Sci (Weinh). 2021;8(8):2004014.
Wang T, Luo Y. Organic destiny of ingested lipid-based nanoparticles: present understanding and future instructions. Nanoscale. 2019;11(23):11048–63.
He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Analysis Progress on the mechanism of nanoparticles crossing the intestinal epithelial cell membrane. Pharmaceutics. 2023;15(7):1816.
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak hyperlink. Adv Drug Deliv Rev. 2022;188:114403.
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for concentrating on the small gut. AAPS PharmSciTech. 2020;22(1):3.
Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Exact subcellular organelle concentrating on for enhancing endogenous-stimuli-mediated Tumor Remedy. Adv Mater. 2021;33(51):e2101572.
Li Q, Xia D, Tao J, Shen A, He Y, Gan Y, et al. Self-assembled core-shell-type lipid-polymer hybrid nanoparticles: intracellular trafficking and relevance for oral absorption. J Pharm Sci. 2017;106(10):3120–30.
Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran Ok, Nibert ML, Kirchhausen T. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell. 2004;118(5):591–605.
Wang Z, Tiruppathi C, Cho J, Minshall RD, Malik AB. Supply of nanoparticle: complexed medication throughout the vascular endothelial barrier through caveolae. IUBMB Life. 2011;63(8):659–67.
Rennick JJ, Johnston APR, Parton RG. Key ideas and strategies for learning the endocytosis of organic and nanoparticle therapeutics. Nat Nanotechnol. 2021;16(3):266–76.
Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis utilizing nanoparticles. Mol Features Med. 2022;83:100993.
Donahue ND, Acar H, Wilhelm S. Ideas of nanoparticle mobile uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Floor design of nanocarriers: key to extra environment friendly oral drug supply programs. Adv Colloid Interface Sci. 2023;313:102848.
Ejazi SA, Louisthelmy R, Maisel Ok. Mechanisms of Nanoparticle Transport throughout intestinal tissue: an oral supply perspective. ACS Nano. 2023;17(14):13044–61.
Li Y, Zhang M, Zhang Y, Niu X, Liu Z, Yue T, Zhang W. A computational examine of the affect of nanoparticle form on clathrin-mediated endocytosis. J Mater Chem B. 2023;11(27):6319–34.
Gurnani P, Sanchez-Cano C, Xandri-Monje H, Zhang J, Ellacott SH, Mansfield EDH, Hartlieb M, Dallmann R, Perrier S. Probing the Impact of Rigidity on the Mobile Uptake of Core-Shell nanoparticles: Stiffness results are dimension dependent. Small. 2022;18(38):e2203070.
Guo S, Liang Y, Liu L, Yin M, Wang A, Solar Ok, Li Y, Shi Y. Analysis on the destiny of polymeric nanoparticles within the technique of the intestinal absorption primarily based on mannequin nanoparticles with varied traits: dimension, floor cost and pro-hydrophobics. J Nanobiotechnol. 2021;19(1):32.
Popov LD. Deciphering the connection between caveolae-mediated intracellular transport and signalling occasions. Cell Sign. 2022;97:110399.
El-Sayed A, Harashima H. Endocytosis of gene supply vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118–30.
Wang Y, Ke J, Guo X, Gou Ok, Sang Z, Wang Y, Bian Y, Li S, Li H. Chiral mesoporous silica nano-screws as an environment friendly biomimetic oral drug supply platform via a number of topological mechanisms. Acta Pharm Sin B. 2022;12(3):1432–46.
Dou T, Wang J, Han C, Shao X, Zhang J, Lu W. Mobile uptake and transport traits of chitosan modified nanoparticles in Caco-2 cell monolayers. Int J Biol Macromol. 2019;138:791–9.
Miao YB, Chen KH, Chen CT, Mi FL, Lin YJ, Chang Y, Chiang CS, Wang JT, Lin KJ, Sung HW. A noninvasive gut-to-brain oral drug supply system for treating mind tumors. Adv Mater. 2021;33(34):e2100701.
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide nanoparticles for environment friendly Mobile internalization and endosomal escape. Nanomaterials (Basel). 2020;10(9):1816.
Deng F, Zhang H, Wang X, Zhang Y, Hu H, Tune S, Dai W, He B, Zheng Y, Wang X, Zhang Q. Transmembrane pathways and mechanisms of rod-like Paclitaxel nanocrystals via MDCK polarized monolayer. ACS Appl Mater Interfaces. 2017;9(7):5803–16.
Zou Y, Gao W, Jin H, Mao C, Zhang Y, Wang X, Mei D, Zhao L. Mobile Uptake and Transport mechanism of 6-Mercaptopurine nanomedicines for enhanced oral bioavailability. Int J Nanomed. 2023;18:79–94.
Mellman I, Nelson WJ. Coordinated protein sorting, concentrating on and distribution in polarized cells. Nat Rev Mol Cell Bio. 2008;9(11):833–45.
Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. Nanoscale Adv. 2020;3(1):10–23.
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Superior Methods for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Supply. Res (Wash D C). 2023;6:0148.
Li X, Jafari SM, Zhou F, Hong H, Jia X, Mei X, Hou G, Yuan Y, Liu B, Chen S, Gong Y, Yan H, Chang R, Zhang J, Ren F, Li Y. The intracellular destiny and transport mechanism of form, dimension and rigidity diverse nanocarriers for understanding their oral supply effectivity. Biomaterials. 2023;294:121995.
Zhang R, Deng H, Lin Y, Wang X, He B, Dai W, Zhang H, Zheng Y, Zhang Q, Wang X. A typical technique to enhance transmembrane transport in polarized epithelial cells primarily based on sorting indicators: guiding nanocarriers to TGN fairly than to the basolateral plasma membrane instantly. J Management Launch. 2021;339:430–44.
Joris F, De Backer L, Van de Vyver T, Bastiancich C, De Smedt SC, Raemdonck Ok. Repurposing cationic amphiphilic medication as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells. J Management Launch. 2018;269:266–76.
Xu Y, Zheng Y, Wu L, Zhu X, Zhang Z, Huang Y. Novel stable lipid nanoparticle with endosomal escape operate for oral supply of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.
Malik S, Saltzman WM, Bahal R. Extracellular vesicles mediated exocytosis of antisense peptide nucleic acids. Mol Ther Nucleic Acids. 2021;25:302–15.
Sipos A, Kim KJ, Chow RH, Flodby P, Borok Z, Crandall ED. Alveolar epithelial cell processing of nanoparticles prompts autophagy and lysosomal exocytosis. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L286–300.
Yang D, Feng Y, Yuan Y, Zhang L, Zhou Y, Midgley AC, Wang Y, Liu N, Li G, Yao X, Liu D. Protein coronas derived from mucus act as each Spear and Protect to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes. ACS Nano. 2024;18(10):7455–72.
Chen LQ, Liu CD, Xiang YC, Lyu JY, Zhou Z, Gong T, Gao HL, Li L, Huang Y. Exocytosis blockade of endoplasmic reticulum-targeted nanoparticle enhances immunotherapy. Nano At present. 2022;42:101356.
Xing L, Zheng Y, Yu Y, Wu R, Liu X, Zhou R, Huang Y. Complying with the physiological features of Golgi equipment for secretory exocytosis facilitated oral absorption of protein medication. J Mater Chem B. 2021;9(6):1707–18.
He B, Lin P, Jia Z, Du W, Qu W, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013;34(25):6082–98.
Yin Y, Yang J, Pan Y, Guo Z, Gao Y, Huang L, Zhou D, Ge Y, Guo F, Zhu W, Tune Y, Li Y. Chylomicrons-simulating sustained drug launch in Mesenteric Lymphatics for the therapy of Crohn’s-Like Colitis. J Crohns Colitis. 2021;15(4):631–46.
Yoshida T, Kojima H, Sako Ok, Kondo H. Drug supply to the intestinal lymph by oral formulations. Pharm Dev Technol. 2022;27(2):175–89.
Deng F, Kim KS, Moon J, Bae YH. Bile acid conjugation on stable nanoparticles enhances ASBT-Mediated endocytosis and chylomicron pathway however weakens the transcytosis by Inducing Transport Movement in a Mobile damaging suggestions Loop. Adv Sci (Weinh). 2022;9(21):e2201414.
Yang D, Liu D, Qin M, Chen B, Tune S, Dai W, Zhang H, Wang X, Wang Y, He B, Tang X, Zhang Q. Intestinal mucin induces extra endocytosis however much less transcytosis of nanoparticles throughout enterocytes by triggering Nanoclustering and strengthening the Retrograde Pathway. ACS Appl Mater Interfaces. 2018;10(14):11443–56.
Wu L, Bai Y, Liu M, Li L, Shan W, Zhang Z, Huang Y. Transport mechanisms of Butyrate Modified nanoparticles: perception into Straightforward Entry, laborious transcytosis of energetic concentrating on system in oral administration. Mol Pharm. 2018;15(9):4273–83.
Asad S, Jacobsen A-C, Teleki A. Inorganic nanoparticles for oral drug supply: alternatives, limitations, and future views. Curr Opin Chem Eng. 2022;38:100869.
García-Díaz M, Birch D, Wan F, Nielsen HM. The position of mucus as an invisible cloak to transepithelial drug supply by nanoparticles. Adv Drug Deliv Rev. 2018;124:107–24.
McCright J, Sinha A, Maisel Ok. Producing an in vitro intestine mannequin with physiologically related Biophysical mucus Properties. Cell Mol Bioeng. 2022;15(5):479–91.
Araújo F, Martins C, Azevedo C, Sarmento B. Chemical modification of drug molecules as technique to cut back interactions with mucus. Adv Drug Deliv Rev. 2018;124:98–106.
Xie Y, Jin Z, Ma D, Yin TH, Zhao Ok. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral supply of drug. Bioeng Transl Med. 2023;8(3):e10510.
Guaresti O, Maiz–Fernández S, Palomares T, Alonso–Varona A, Eceiza A, Pérez–Álvarez L, Gabilondo N. Twin charged folate labelled Chitosan nanogels with enhanced mucoadhesion capability for focused drug supply. Eur Polym J. 2020;134:109847.
Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral supply of insulin. Mol Pharm. 2020;17(1):239–50.
Cui Z, Cui S, Qin L, An Y, Zhang X, Guan J, Wong TW, Mao S. Comparability of virus-capsid mimicking biologic-shell primarily based versus polymeric-shell nanoparticles for enhanced oral insulin supply. Asian J Pharm Sci. 2023;18(5):100848.
Le Z, He Z, Liu H, Liu L, Liu Z, Chen Y. Antioxidant enzymes sequestered inside lipid-polymer hybrid nanoparticles for the native therapy of inflammatory bowel illness. ACS Appl Mater Interfaces. 2021;13(47):55966–77.
Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang JH, Wang S. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral supply of protein medication by overcoming a number of gastrointestinal limitations. J Colloid Interface Sci. 2021;582(Pt A):364–75.
Efiana NA, Phan TNQ, Wicaksono AJ, Bernkop-Schnürch A. Mucus permeating self-emulsifying drug supply programs (SEDDS): in regards to the influence of mucolytic enzymes. Colloids Surf B Biointerfaces. 2018;161:228–35.
Razzaq S, Rauf A, Raza A, Akhtar S, Tabish TA, Sandhu MA, Zaman M, Ibrahim IM, Shahnaz G, Rahdar A, Díez-Pascual AM. A multifunctional polymeric micelle for focused supply of Paclitaxel by the inhibition of the P-Glycoprotein transporters. Nanomaterials (Basel). 2021;11(11):2858.
Shen Y, Qiu L. Efficient oral supply of gp100 plasmid vaccine towards metastatic melanoma via multi-faceted blending-by-blending nanogels. Nanomedicine. 2019;22:102114.
Pereira de Sousa I, Cattoz B, Wilcox MD, Griffiths PC, Dalgliesh R, Rogers S, Bernkop-Schnürch A. Nanoparticles adorned with proteolytic enzymes, a promising technique to beat the mucus barrier. Eur J Pharm Biopharm. 2015;97(Pt A):257–64.
Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery programs for transbuccal drug supply. Nanomed (Lond). 2023;18(21):1495–514.
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for focused supply and remedy in Digestive System. ACS Nano. 2023;17(1):27–50.
Subramanian DA, Langer R, Traverso G. Mucus interplay to enhance gastrointestinal retention and pharmacokinetics of orally administered nano-drug supply programs. J Nanobiotechnol. 2022;20(1):362.
Amin MK, Boateng JS. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Floor modification with Sodium Alginate and Polyethylene Glycol for potential oral mucosa vaccine supply. Mar Medicine. 2022;20(3):156.
Cao P, Wang J, Solar B, Rewatkar P, Popat A, Fu C, Peng H, Xu ZP, Li L. Enhanced mucosal transport of polysaccharide-calcium phosphate nanocomposites for oral vaccination. ACS Appl Bio Mater. 2021;4(11):7865–78.
Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-powered nanobots for overcoming the mucus barrier. ACS Nano. 2024;18:16701–14.
Tian Z, Mai Y, Meng T, Ma S, Gou G, Yang J. Nanocrystals for enhancing oral bioavailability of medication: intestinal transport mechanisms and influencing components. AAPS PharmSciTech. 2021;22(5):179.
Yu SH, Tang DW, Hsieh HY, Wu WS, Lin BX, Chuang EY, Sung HW, Mi FL. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide throughout Caco-2 cell monolayers. Acta Biomater. 2013;9(7):7449–59.
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How nanoparticles open the Paracellular Route of Organic limitations: mechanisms, purposes, and prospects. ACS Nano. 2022;16(10):15627–52.
Sabu C, Raghav D, Jijith US, Mufeedha P, Naseef PP, Rathinasamy Ok, Pramod Ok. Bioinspired oral insulin supply system utilizing yeast microcapsules. Mater Sci Eng C Mater Biol Appl. 2019;103:109753.
Surwase SS, Shahriar SMS, An JM, Ha J, Mirzaaghasi A, Bagheri B, Park JH, Lee YK, Kim YC. Engineered nanoparticles inside a microparticle oral system for enhanced mucosal and systemic immunity. ACS Appl Mater Interfaces. 2022;14(9):11124–43.
Tune JG, Lee SH, Han HK. Improvement of an M cell focused nanocomposite system for efficient oral protein supply: preparation, in vitro and in vivo characterization. J Nanobiotechnol. 2021;19(1):15.
He Y, Huang Y, Xu H, Yang X, Liu N, Xu Y, Ma R, Zhai J, Ma Y, Guan S. Aptamer-modified M cell concentrating on liposomes for oral supply of macromolecules. Colloids Surf B Biointerfaces. 2023;222:113109.
Liu RG, Fei SY, Zhang XM, Zheng H, Tan MQ. Layer-by-layer oral-deliverable nanoparticles focused microfold cells to advertise lutein absorption in assuaging dry eye illness. Chem Eng J. 2024;479:147590.
Ma Y, He H, Xia F, Li Y, Lu Y, Chen D, Qi J, Lu Y, Zhang W, Wu W. In vivo destiny of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine. 2017;13(8):2643–54.
Kanaya T, Williams IR, Ohno H. Intestinal M cells: tireless samplers of enteric microbiota. Site visitors. 2020;21(1):34–44.
Kim KS, Na Ok, Bae YH. Nanoparticle oral absorption and its medical translational potential. J Management Launch. 2023;360:149–62.
Durán-Lobato M, Niu Z, Alonso MJ. Oral supply of Biologics for Precision Medication. Adv Mater. 2020;32(13):e1901935.
Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2(11):1004–9.
Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93.
Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.
Lengthy P, Zhang Q, Xue M, Cao G, Li C, Chen W, et al. Tomato lectin-modified nanoemulsion-encapsulated MAGE1-HSP70/SEA complicated protein vaccine: concentrating on intestinal M cells following peroral administration. Biomed Pharmacother. 2019;115:108886.
France MM, Turner JR. The mucosal barrier at a look. J Cell Sci. 2017;130(2):307–14.
Ma L, Ma Y, Gao Q, Liu S, Zhu Z, Shi X, Dai F, Reis RL, Kundu SC, Cai Ok, Xiao B. Mulberry Leaf lipid nanoparticles: a naturally focused CRISPR/Cas9 oral supply platform for alleviation of Colon ailments. Small. 2024;20(25):e2307247.
Schoultz I, Keita ÅV. Mobile and molecular therapeutic targets in inflammatory bowel disease-focusing on intestinal barrier operate. Cells. 2019;8(2):193.
Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating Redox Stability, Immune responses, and the intestine Microbiome. Adv Mater. 2023;35(3):e2207890.
Zhang Y, Wu Y, Yan Y, Ma Y, Tu L, Shao J, Tang X, Chen L, Liang G, Yin L. Twin-targeted nanoparticle-in-Microparticle System for Ulcerative Colitis Remedy. Adv Healthc Mater. 2023;12(31):e2301518.
Zu M, Ma Y, Zhang J, Solar J, Shahbazi MA, Pan G, Reis RL, Kundu SC, Liu J, Xiao B. An oral nanomedicine elicits in situ Vaccination Impact towards Colorectal Most cancers. ACS Nano. 2024;18(4):3651–68.
Huang Y, Huang X, Wang Z, He F, Huang Z, Chen C, Tang B, Qin M, Wu Y, Lengthy C, Tang W, Mo X, Liu J. Evaluation of variations in intestinal flora related to totally different BMI standing in colorectal most cancers sufferers. J Transl Med. 2024;22(1):142.
Fu YJ, Zhao X, Wang LY, Li Ok, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A gasoline remedy technique for intestinal Flora Regulation and Colitis Therapy by Nanogel-based multistage NO supply microcapsules. Adv Mater. 2024;36(19):e2309972.
Lee SY, Jhun J, Woo JS, Lee KH, Hwang SH, Moon J, Park G, Choi SS, Kim SJ, Jung YJ, Tune KY, Cho ML. Intestine microbiome-derived butyrate inhibits the immunosuppressive components PD-L1 and IL-10 in tumor-associated macrophages in gastric most cancers. Intestine Microbes. 2024;16(1):2300846.
Yong SB, Park OH, Cho SC. Microbiome-derived lipid nanoparticles for Improved Immunogenicity of mRNA vaccines. ACS Mater Lett. 2024;6(4):1557–63.
Huang Y, Xu J, Solar G, Cheng X, An Y, Yao X, et al. Enteric-coated cerium dioxide nanoparticles for efficient inflammatory bowel illness therapy by regulating the redox steadiness and intestine microbiome. Biomaterials. 2024;314:122822.
Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I. Multilayer engineered nanoliposomes as a novel device for oral supply of lipopeptide-based vaccines towards group a Streptococcus. Nanomed (Lond). 2016;11(10):1223–36.
Li M, Kaminskas LM, Marasini N. Current advances in nano/microparticle-based oral vaccines. J Pharm Investig. 2021;51(4):425–38.
Ren Q, Ma J, Li X, Meng Q, Wu S, Xie Y, Qi Y, Liu S, Chen R. Intestinal toxicity of metallic nanoparticles: silver nanoparticles dysfunction the intestinal Immune Microenvironment. ACS Appl Mater Interfaces. 2023;15(23):27774–88.
Mao X, Nguyen TH, Lin M, Mustapha A. Engineered nanoparticles as potential meals contaminants and their toxicity to Caco-2 cells. J Meals Sci. 2016;81(8):T2107–13.
Pogribna M, Phrase B, Lyn-Prepare dinner B, Hammons G. Impact of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell traces. Nanotoxicology. 2022;16(4):409–24.
Li J, Mao H, Kawazoe N, Chen G. Perception into the interactions between nanoparticles and cells. Biomater Sci-uk. 2017;5(2):173–89.
Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P, Migheli R, Dalpiaz A, Ferraro L, Rassu G, Gavini E, Giunchedi P. Strong lipid nanoparticles as Formulative Technique to extend oral permeation of a molecule energetic in Multidrug-Resistant Tuberculosis Administration. Pharmaceutics. 2020;12(12):1132.
Guo Z, Cao X, DeLoid GM, Sampathkumar Ok, Ng KW, Lavatory SCJ, Demokritou P. Physicochemical and morphological transformations of Chitosan nanoparticles throughout the gastrointestinal Tract and Mobile Toxicity in an in vitro mannequin of the small intestinal epithelium. J Agric Meals Chem. 2020;68(1):358–68.
Tian Y, Hu Q, Solar Z, Yu Y, Li X, Tian T, et al. Colon concentrating on pH-responsive coacervate microdroplets for therapy of ulcerative colitis. Small. 2024;20(33):2311890.
Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, et al. Mulberry biomass-derived nanomedicines mitigate colitis via improved infected mucosa accumulation and intestinal microenvironment modulation. Analysis. 2023;6:188.
Xu Y, Carradori D, Alhouayek M, Muccioli GG, Cani PD, Préat V, Beloqui A. Measurement impact on lipid nanocapsule-mediated GLP-1 secretion from Enteroendocrine L cells. Mol Pharm. 2018;15(1):108–15.
Ma Y, Gou S, Zhu Z, Solar J, Shahbazi MA, Si T, Xu C, Ru J, Shi X, Reis RL, Kundu SC, Ke B, Nie G, Xiao B. Transient delicate photothermia improves therapeutic efficiency of oral nanomedicines with enhanced Accumulation within the Colitis Mucosa. Adv Mater. 2024;36(14):e2309516.
Wei X, Yu S, Zhang T, Liu L, Wang X, Wang X, Chan YS, Wang Y, Meng S, Chen YG. MicroRNA-200 loaded lipid nanoparticles promote intestinal epithelium regeneration in Canonical MicroRNA-Poor mice. ACS Nano. 2023;17(22):22901–15.
Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel illness remedy. Sci Adv. 2022;8(37):eabp9882.
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic pure lipid nanoparticles for oral therapy of colorectal most cancers via potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials. 2024;307:122530.
Li Y, Zhang M, Niu X, Yue T. Selective membrane wrapping on in a different way sized nanoparticles regulated by clathrin meeting: a computational mannequin. Colloids Surf B Biointerfaces. 2022;214:112467.
Wei Y, Chen H, Li YX, He Ok, Yang Ok, Pang HB. Synergistic entry of particular person nanoparticles into mammalian cells pushed by Free Power decline and controlled by their sizes. ACS Nano. 2022;16(4):5885–97.
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory ailments: prevention and therapy. Sign Transduct Goal Ther. 2024;9(1):34.
Zaiter T, Cornu R, Millot N, Herbst M, Pellequer Y, Moarbess G, Martin H, Diab-Assaf M, Béduneau A. Measurement impact and mucus position on the intestinal toxicity of the E551 meals additive and engineered silica nanoparticles. Nanotoxicology. 2022;16(2):165–82.
Liang Y, Ding R, Wang H, Liu L, He J, Tao Y, Zhao Z, Zhang J, Wang A, Solar Ok, Li Y, Shi Y. Orally administered clever self-ablating nanoparticles: a brand new strategy to enhance drug mobile uptake and intestinal absorption. Drug Deliv. 2022;29(1):305–15.
Wu M, Guo H, Liu L, Liu Y, Xie L. Measurement-dependent mobile uptake and localization profiles of silver nanoparticles. Int J Nanomed. 2019;14:4247–59.
Billah MM, Deng H, Dutta P, Liu J. Results of receptor properties on particle internalization via receptor-mediated endocytosis. Delicate Matter. 2023;19(31):5907–15.
Shen Z, Ye H, Yi X, Li Y. Membrane wrapping effectivity of Elastic nanoparticles throughout endocytosis: dimension and form matter. ACS Nano. 2019;13(1):215–28.
Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 2005;102(27):9469–74.
Ding HM, Ma YQ. Theoretical and computational investigations of nanoparticle-biomembrane interactions in mobile supply. Small. 2015;11(9–10):1055–71.
Albanese A, Tang PS, Chan WC. The impact of nanoparticle dimension, form, and floor chemistry on organic programs. Annu Rev Biomed Eng. 2012;14:1–16.
Ogawa T, Okumura R, Nagano Ok, Minemura T, Izumi M, Motooka D, Nakamura S, Iida T, Maeda Y, Kumanogoh A, Tsutsumi Y, Takeda Ok. Oral consumption of silica nanoparticles exacerbates intestinal irritation. Biochem Biophys Res Commun. 2021;534:540–6.
Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The affect of Nanoparticle properties on oral bioavailability of medication. Int J Nanomed. 2020;15:6295–310.
Gardey E, Cseresnyes Z, Sobotta FH, Eberhardt J, Haziri D, Grunert PC, Kuchenbrod MT, Gruschwitz FV, Hoeppener S, Schumann M, Gaßler N, Figge MT, Stallmach A, Brendel JC. Selective Uptake Into Infected Human Intestinal Tissue and Immune Cell Concentrating on by Wormlike Polymer Micelles. Small. 2024;20(21):e2306482.
Yang T, Wang A, Nie D, Fan W, Jiang X, Yu M, Guo S, Zhu C, Wei G, Gan Y. Ligand-switchable nanoparticles resembling viral floor for sequential drug supply and improved oral insulin remedy. Nat Commun. 2022;13(1):6649.
Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Built-in System towards Radiation-Induced Damage. ACS Nano. 2023;17(11):10560–76.
Zhong D, Zhang D, Chen W, He J, Ren C, Zhang X, Kong N, Tao W, Zhou M. Orally deliverable technique primarily based on microalgal biomass for intestinal illness therapy. Sci Adv. 2021;7(48):eabi9265.
Iriarte-Mesa C, Jobst M, Bergen J, Kiss E, Ryoo R, Kim JC, Crudo F, Marko D, Kleitz F, Del Favero G. Morphology-Dependent Interplay of silica nanoparticles with intestinal cells: connecting form to barrier operate. Nano Lett. 2023;23(16):7758–66.
Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, Li D, Yu Z, Ren F, Shi X, Li Y. Enhanced transport of form and rigidity-tuned α-Lactalbumin nanotubes throughout intestinal mucus and Mobile limitations. Nano Lett. 2020;20(2):1352–61.
Zhou W, Li B, Min R, Zhang Z, Huang G, Chen Y, Shen B, Zheng Q, Yue P. Mucus-penetrating dendritic mesoporous silica nanoparticle loading drug nanocrystal clusters to reinforce permeation and intestinal absorption. Biomater Sci. 2023;11(3):1013–30.
Christfort JF, Guillot AJ, Melero A, Thamdrup LHE, Garrigues TM, Boisen A, Zór Ok, Nielsen LH. Cubic microcontainers enhance in situ colonic mucoadhesion and absorption of Amoxicillin in rats. Pharmaceutics. 2020;12(4):355.
Sang Z, Xu L, Ding R, Wang M, Yang X, Li X, Zhou B, Gou Ok, Han Y, Liu T, Chen X, Cheng Y, Yang H, Li H. Nanoparticles exhibiting virus-mimic floor topology for enhanced oral supply. Nat Commun. 2023;14(1):7694.
Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Function of nanoparticle dimension, form and floor chemistry in oral drug supply. J Management Launch. 2016;238:176–85.
Li D, Zhuang J, He H, Jiang S, Banerjee A, Lu Y, Wu W, Mitragotri S, Gan L, Qi J. Affect of particle geometry on gastrointestinal transit and absorption following oral administration. ACS Appl Mater Interfaces. 2017;9(49):42492–502.
Yang L, Guo J, Wang L, Tang S, Wang AF, Zheng S, Guo Z, Zan X. Transformation of the form and shrinking the dimensions of acid-resistant metal-organic frameworks (MOFs) to be used because the car of oral proteins. Biomater Sci. 2023;11(10):3726–36.
Cao Y, Janjua TI, Qu Z, Draphoen B, Bai Y, Linden M, Moniruzzaman M, Hasnain SZ, Kumeria T, Popat A. Virus-like silica nanoparticles improve macromolecule permeation in vivo. Biomater Sci. 2023;11(13):4508–21.
Liu N, Becton M, Zhang L, Wang X. Mechanism of coupling nanoparticle stiffness with form for endocytosis: from Rodlike Penetration to Wormlike Wriggling. J Phys Chem B. 2020;124(49):11145–56.
Zhang Y, Tekobo S, Tu Y, Zhou Q, Jin X, Dergunov SA, Pinkhassik E, Yan B. Permission to enter cell by form: nanodisk vs nanosphere. ACS Appl Mater Interfaces. 2012;4(8):4099–105.
García-Rodríguez A, Vila L, Cortés C, Hernández A, Marcos R. Results of in a different way formed TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro mannequin (Caco-2/HT29) of the intestinal barrier. Half Fibre Toxicol. 2018;15(1):33.
Zhang C, Zhang H, Millán Cotto HA, Boyer TL, Warren MR, Wang CM, Luchan J, Dhal PK, Service RL, Bajpayee AG. Milk exosomes anchored with hydrophilic and zwitterionic motifs improve mucus permeability for purposes in oral gene supply. Biomater Sci. 2024;12(3):634–49.
Li Y, Chen X, Gu N. Computational investigation of interplay between nanoparticles and membranes: hydrophobic/hydrophilic impact. J Phys Chem B. 2008;112(51):16647–53.
Sanjula B, Shah FM, Javed A, Alka A. Impact of poloxamer 188 on lymphatic uptake of carvedilol-loaded stable lipid nanoparticles for bioavailability enhancement. J Drug Goal. 2009;17(3):249–56.
Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O’Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein medication. Adv Drug Deliv Rev. 2016;106(Pt B):367–80.
Wang T, Shen L, Zhang Y, Li H, Wang Y, Quan D. Oil-soluble reversed lipid nanoparticles for oral insulin supply. J Nanobiotechnol. 2020;18(1):98.
Li J, Qiang H, Yang W, Xu Y, Feng T, Cai H, Wang S, Liu Z, Zhang Z, Zhang J. Oral insulin supply by epithelium microenvironment-adaptive nanoparticles. J Management Launch. 2022;341:31–43.
Attar ES, Jayakumar S, Devarajan PV. Oral In-Situ nanoplatform with Balanced Hydrophobic-Hydrophilic Property for Transport throughout Gastrointestinal Mucosa. AAPS PharmSciTech. 2024;25(5):113.
Xu J, Wen L, Zhang F, Lin W, Zhang L. Self-assembly of cyclic grafted copolymers with inflexible rings and their potential as drug nanocarriers. J Colloid Interface Sci. 2021;597:114–25.
Zheng Y, Xing L, Chen L, Zhou R, Wu J, Zhu X, Li L, Xiang Y, Wu R, Zhang L, Huang Y. Tailor-made elasticity mixed with biomimetic floor promotes nanoparticle transcytosis to beat mucosal epithelial barrier. Biomaterials. 2020;262:120323.
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as customized medicines. Adv Drug Deliv Rev. 2019;148:252–89.
Efiana NA, Fürst A, Saleh A, Shahzadi I, Bernkop-Schnürch A. Phosphate adorned lipid-based nanocarriers offering a chronic mucosal residence time. Int J Pharm. 2022;625:122096.
Martínez-López AL, González-Navarro CJ, Aranaz P, Vizmanos JL, Irache JM. In vivo testing of mucus-permeating nanoparticles for oral insulin supply utilizing Caenorhabditis elegans as a mannequin below hyperglycemic situations. Acta Pharm Sin B. 2021;11(4):989–1002.
Du XJ, Wang JL, Iqbal S, Li HJ, Cao ZT, Wang YC, Du JZ, Wang J. The impact of floor cost on oral absorption of polymeric nanoparticles. Biomater Sci. 2018;6(3):642–50.
Ren T, Wang Q, Xu Y, Cong L, Gou J, Tao X, Zhang Y, He H, Yin T, Zhang H, Zhang Y, Tang X. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium limitations utilizing floor polyethylene oxide (PEO) adorned positively charged polymer-lipid hybrid nanoparticles. J Management Launch. 2018;269:423–38.
Wei Ok, Gong F, Wu J, Tang W, Liao F, Han Z, Pei Z, Lei H, Wang L, Shao M, Liu Z, Cheng L. Orally administered Silicon Hydrogen Nanomaterials as Goal Remedy to deal with Intestinal ailments. ACS Nano. 2023;17(21):21539–52.
Li Y, Ji W, Peng H, Zhao R, Zhang T, Lu Z, Yang J, Liu R, Zhang X. Cost-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for environment friendly oral insulin supply. Theranostics. 2021;11(9):4452–66.
Knoll P, Hörmann N, Nguyen Le NM, Wibel R, Gust R, Bernkop-Schnürch A. Cost changing nanostructured lipid carriers containing a cell-penetrating peptide for enhanced mobile uptake. J Colloid Interface Sci. 2022;628(Pt A):463–75.
Akbari A, Lavasanifar A, Wu J. Interplay of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomater. 2017;64:249–58.
Tan X, Yin N, Liu Z, Solar R, Gou J, Yin T, Zhang Y, He H, Tang X. Hydrophilic and Electroneutral nanoparticles to beat mucus trapping and improve oral supply of insulin. Mol Pharm. 2020;17(9):3177–91.
Xu S, Yang Q, Wang R, Tian C, Ji Y, Tan H, Zhao P, Kaplan DL, Wang F, Xia Q. Genetically engineered pH-responsive silk sericin nanospheres with environment friendly therapeutic impact on ulcerative colitis. Acta Biomater. 2022;144:81–95.
Tada-Oikawa S, Eguchi M, Yasuda M, Izuoka Ok, Ikegami A, Vranic S, Boland S, Tran L, Ichihara G, Ichihara S. Functionalized surface-charged SiO2 nanoparticles induce pro-inflammatory responses, however should not Deadly to Caco-2 cells. Chem Res Toxicol. 2020;33(5):1226–36.
Wu J, Yi S, Cao Y, Zu M, Li B, Yang W, Shahbazi MA, Wan Y, Reis RL, Kundu SC, Shi X, Xiao B. Twin-driven nanomotors allow tumor penetration and hypoxia alleviation for calcium overload-photo-immunotherapy towards colorectal most cancers. Biomaterials. 2023;302:122332.
Wade J, Salerno F, Kilbride RC, Kim DK, Schmidt JA, Smith JA, LeBlanc LM, Wolpert EH, Adeleke AA, Johnson ER, Nelson J, Mori T, Jelfs KE, Heutz S, Fuchter MJ. Controlling anisotropic properties by manipulating the orientation of chiral small molecules. Nat Chem. 2022;14(12):1383–89.
Jiang H, Liu R, Wang L, Wang X, Zhang M, Lin S, Cao Z, Wu F, Liu Y, Liu J. Chiral-selective Antigen-Presentation by Supramolecular Chiral Polymer Micelles. Adv Mater. 2023;35(5):e2208157.
Chen X, Cheng Y, Pan Q, Wu L, Hao X, Bao Z, Li X, Yang M, Luo Q, Li H. Chiral Nanosilica Drug Supply programs Stereoselectively interacted with the intestinal mucosa to enhance the oral adsorption of insoluble medication. ACS Nano. 2023;17(4):3705–22.
Wang Y, Zhao L, Dai Y, Xu M, Zhou R, Zhou B, Gou Ok, Zeng R, Xu L, Li H. Enantioselective oral absorption of Molecular Chiral Mesoporous silica nanoparticles. Adv Mater. 2023;35(49):e2307900.
Xin W, Wang L, Lin J, Wang Y, Pan Q, Han Y, Bao Z, Zong S, Cheng Y, Chen X, Zhao L, Li H. Mesoporous silica nanoparticles with chiral sample topological construction operate as antiskid tires on the intestinal mucosa to facilitate oral medication supply. Asian J Pharm Sci. 2023;18(2):100795.