6.8 C
United States of America
Sunday, November 24, 2024

NIR-II scattering gold superclusters for intravascular optical coherence tomography molecular imaging


  • Feng, Z. et al. Perfecting and increasing the near-infrared imaging window. Gentle Sci. Appl. 10, 1–18 (2021).

    Article 

    Google Scholar
     

  • Cao, J. et al. Current progress in NIR-II distinction agent for organic imaging. Entrance. Bioeng. Biotechnol. 7, 1–21 (2020).

    Article 

    Google Scholar
     

  • Zhang, N. N. et al. Current advances in near-infrared II imaging know-how for organic detection. J. Nanobiotechnol. 19, 1–14 (2021).


    Google Scholar
     

  • Xu, H. et al. NIR-II-absorbing diimmonium polymer agent achieves wonderful photothermal remedy with induction of tumor immunogenic cell dying. J. Nanobiotechnol. 21, 132 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Q., Ma, H., Liang, Y. & Dai, H. Rational design of excessive brightness NIR-II natural dyes with S-D-A-D-S construction. Acc. Mater. Res. 2, 170–183 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. NIR-II useful supplies for photoacoustic theranostics. Bioconjug. Chem. 33, 67–86 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, Y., Yu, B., Wang, S., Cong, H. & Shen, Y. NIR-II bioimaging of small natural molecule. Biomaterials 271, 120717 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, X. et al. Results of nanoparticle sizes, shapes, and permittivity on plasmonic imaging. Choose. Specific 30, 6051–6060 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang, Y. et al. Dimension and form impact of gold nanoparticles in “far-field” floor plasmon resonance. Half. Half. Syst. Charact. 36, 1800077 (2019).

    Article 

    Google Scholar
     

  • González, A. L., Noguez, C., Beránek, J. & Barnard, A. S. Dimension, form, stability, and shade of plasmonic silver nanoparticles. J. Phys. Chem. C 118, 9128–9136 (2014).

    Article 

    Google Scholar
     

  • Megaly, M. et al. Radial versus femoral entry in power complete occlusion percutaneous coronary intervention: a scientific evaluate and meta-analysis. Circ. Cardiovasc. Interv. 12, 007778 (2019).

    Article 

    Google Scholar
     

  • Bezerra, H. G., Costa, M. A., Guagliumi, G., Rollins, A. M. & Simon, D. I. Intracoronary optical coherence tomography: a complete evaluate: medical and analysis functions. JACC Cardiovasc. Interv. 2, 1035–1046 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roleder, T. et al. The fundamentals of intravascular optical coherence tomography. Postepy Kardiol. Interwencyjnej 11, 74 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gounis, M. J. et al. Intravascular optical coherence tomography for neurointerventional surgical procedure. Stroke 50, 218–223 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Swanson, E. A. & Fujimoto, J. G. The ecosystem that powered the interpretation of OCT from basic analysis to medical and industrial affect [Invited]. Biomed. Choose. Specific 8, 1638 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCabe, J. M. & Croce, Okay. J. Optical coherence tomography. Circulation 126, 2140–2143 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Yonetsu, T. et al. Plaque morphologies and the medical prognosis of acute coronary syndrome attributable to lesions with intact fibrous cap recognized by optical coherence tomography. Int. J. Cardiol. 203, 766–774 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Toutouzas, Okay., Karanasos, A. & Tousoulis, D. Optical coherence tomography for the detection of the susceptible plaque. Eur. Cardiol. Rev. 11, 90 (2016).

    Article 

    Google Scholar
     

  • Wang, A., Qi, W., Gao, T. & Tang, X. Molecular distinction optical coherence tomography and its functions in drugs. Int. J. Mol. Sci. 23, 3038 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ameh, T. et al. Silver and copper nanoparticles induce oxidative stress in micro organism and mammalian cells. Nanomaterials 12, 2402 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal, I., Raj, S., Roy, P. & Poddar, R. Silver nanoparticles (AgNPs) as a distinction agent for imaging of animal tissue utilizing swept-source optical coherence tomography (SSOCT). Laser Phys. 28, 015601 (2018).

    Article 

    Google Scholar
     

  • Marin, R. et al. Plasmonic copper sulfide nanoparticles allow darkish distinction in optical coherence tomography. Adv. Healthc. Mater. 9, 1901627 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cabuzu, D., Cirja, A., Puiu, R. & Grumezescu, A. Biomedical functions of gold nanoparticles. Curr. High. Med. Chem. 15, 1605–1613 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Si, P. et al. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 3, 2679–2698 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, P. et al. Gold nanoprisms as optical coherence tomography distinction brokers within the second near-infrared window for enhanced angiography in dwell animals. ACS Nano 12, 11986–11994 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, V. P. et al. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization. ACS Appl. Mater. Interfaces 13, 40214–40228 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. A comparability between sphere and rod nanoparticles relating to their in vivo organic habits and pharmacokinetics. Sci. Rep. 7, 4131 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Gold nanoshells: distinction brokers for cell imaging by cardiovascular optical coherence tomography. Nano Res. 11, 676–685 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Optical nanoparticles for cardiovascular imaging. Adv. Choose. Mater. 6, 1800626 (2018).

    Article 

    Google Scholar
     

  • Muñoz-Ortiz, T. et al. Molecular imaging of infarcted coronary heart by biofunctionalized gold nanoshells. Adv. Healthc. Mater. 10, 2002186 (2021).

    Article 

    Google Scholar
     

  • Hu, J. et al. Dynamic single gold nanoparticle visualization by medical intracoronary optical coherence tomography. J. Biophoton. 10, 674–682 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, N. et al. Direct chemical synthesis of plasmonic black colloidal gold superparticles with broadband absorption properties. Nano Lett. 18, 5927–5932 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. H. et al. Extremely excretable gold supraclusters for translatable in vivo Raman imaging of tumors. ACS Nano 17, 2554–2567 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulumian, M., Andraos, C., Afantitis, A., Puzyn, T. & Coville, N. J. Significance of floor topography in each organic exercise and catalysis of nanomaterials: can catalysis by design information secure by design? Int. J. Mol. Sci. 22, 8347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witika, B. A. et al. Biocompatibility of biomaterials for nanoencapsulation: present approaches. Nanomaterials 10, 1649 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ethylene glycol monostearate | C20H40O3 | CID 24762 – PubChem. Accessed 22 July 2023; https://pubchem.ncbi.nlm.nih.gov/compound/Ethylene-glycol-monostearate#part=Interactions

  • Rahmani, M. et al. Past the hybridization results in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. Small 10, 576–583 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordlander, P., Oubre, C., Prodan, E., Li, Okay. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. A. & Hyperlink, S. Chemical interface damping of floor plasmon resonances. Acc. Chem. Res. 54, 1950–1960 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polavarapu, L., Venkatram, N., Ji, W. & Xu, Q. H. Optical-limiting properties of oleylamine-capped gold nanoparticles for each femtosecond and nanosecond laser pulses. ACS Appl. Mater. Interfaces 1, 2298–2303 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aumann, S., Donner, S., Fischer, J. & Müller, F. in Excessive Decision Imaging in Microscopy and Ophthalmology (ed. Bille, J.) 59–85 (Springer, 2019); https://doi.org/10.1007/978-3-030-16638-0_3

  • Huang, X. & El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in most cancers prognosis and photothermal remedy. J. Adv. Res. 1, 13–28 (2010).

    Article 

    Google Scholar
     

  • Burger, P. C. Platelet P-selectin facilitates atherosclerotic lesion improvement. Blood 101, 2661–2666 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorenzon, P. et al. Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 operate as signaling receptors. J. Cell Biol. 142, 1381–1391 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harari, O. A. et al. Endothelial cell E- and P-selectin up-regulation in murine contact sensitivity is extended by distinct mechanisms occurring in sequence. J. Immunol. 163, 6860–6866 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, Okay. L. Construction and performance of P-selectin glycoprotein ligand-1. Leuk. Lymphoma 29, 1–15 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beauharnois, M. E. et al. Affinity and kinetics of sialyl Lewis-X and Core-2 based mostly oligosaccharides binding to L- and P-selectin. Biochemistry 44, 9507–9519 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zandberg, W. F., Kumarasamy, J., Pinto, B. M. & Vocadlo, D. J. Metabolic inhibition of sialyl-Lewis X biosynthesis by 5-thiofucose remodels the cell floor and impairs selectin-mediated cell adhesion. J. Biol. Chem. 287, 40021 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beste, M. T. & Hammer, D. A. Selectin catch-slip kinetics encode shear threshold adhesive habits of rolling leukocytes. Proc. Natl Acad. Sci. USA 105, 20716–20721 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pudelko, M., Bull, J. & Kunz, H. Chemical and chemoenzymatic synthesis of glycopeptide selectin ligands containing sialyl Lewis X constructions. ChemBioChem 11, 904–930 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revelle, B. M., Scott, D., Kogan, T. P., Zheng, J. & Beck, P. J. Construction-function evaluation of P-selectin-sialyl LewisX binding interactions. Mutagenic alteration of ligand binding specificity. J. Biol. Chem. 271, 4289–4297 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galustian, C. et al. Synergistic interactions of the 2 courses of ligand, sialyl-Lewisa/x fuco-oligosaccharides and quick sulpho-motifs, with the P- and L-selectins: implications for therapeutic inhibitor designs. Immunology 105, 350 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodgers, S. D., Camphausen, R. T. & Hammer, D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys. J. 79, 694 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutledge, N. S. & Muller, W. A. Understanding molecules that mediate leukocyte extravasation. Curr. Pathobiol. Rep. 8, 25–35 (2020).

    Article 

    Google Scholar
     

  • Manning, D. D., Hu, X., Beck, P. & Kiessling, L. L. Synthesis of sulfated neoglycopolymers: selective P-selectin inhibitors. J. Am. Chem. Soc. 119, 3161–3162 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Dernedde, J. et al. Dendritic polyglycerol sulfates as multivalent inhibitors of irritation. Proc. Natl Acad. Sci. USA 107, 19679–19684 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, A. E. et al. Discovery of a potent nanoparticle P‐selectin antagonist with anti‐inflammatory results in allergic airway illness. FASEB J. 17, 2296–2298 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehanna, E. A., Attizzani, G. F., Kyono, H., Hake, M. & Bezerra, H. G. Evaluation of coronary stent by optical coherence tomography, methodology and definitions. Int. J. Cardiovasc. Imaging 27, 259 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancuso, J. J. et al. Intravascular optical coherence tomography mild scattering artifacts: merry-go-rounding, blooming, and ghost struts. J. Biomed. Choose. 19, 126017 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, L., Pan, J., Setiadi, H., Patel, Okay. D. & McEver, R. P. Interleukin 4 or oncostatin M induces a chronic improve in P-selectin mRNA and protein in human endothelial cells. J. Exp. Med. 184, 81–92 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misugi, E., Tojo, S. J., Yasuda, T., Kurata, Y. & Morooka, S. Elevated plasma P-selectin induced by intravenous administration of endotoxin in rats. Biochem. Biophys. Res. Commun. 246, 414–417 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, H. et al. The severity of LPS induced inflammatory damage is negatively related to the useful liver mass after LPS injection in rat mannequin. J. Inflamm. 15, 21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • De Jong, W. H. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lesina, A. C., Berini, P., Vaccari, A. & Ramunno, L. On the convergence and accuracy of the FDTD methodology for nanoplasmonics. Choose. Specific 23, 10481–10497 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vial, A., Laroche, T., Dridi, M. & Le Cunff, L. A brand new mannequin of dispersion for metals resulting in a extra correct modeling of plasmonic constructions utilizing the FDTD methodology. Appl. Phys. A 103, 849–853 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles