Feng, Z. et al. Perfecting and increasing the near-infrared imaging window. Gentle Sci. Appl. 10, 1–18 (2021).
Cao, J. et al. Current progress in NIR-II distinction agent for organic imaging. Entrance. Bioeng. Biotechnol. 7, 1–21 (2020).
Zhang, N. N. et al. Current advances in near-infrared II imaging know-how for organic detection. J. Nanobiotechnol. 19, 1–14 (2021).
Xu, H. et al. NIR-II-absorbing diimmonium polymer agent achieves wonderful photothermal remedy with induction of tumor immunogenic cell dying. J. Nanobiotechnol. 21, 132 (2023).
Yang, Q., Ma, H., Liang, Y. & Dai, H. Rational design of excessive brightness NIR-II natural dyes with S-D-A-D-S construction. Acc. Mater. Res. 2, 170–183 (2021).
Li, Z. et al. NIR-II useful supplies for photoacoustic theranostics. Bioconjug. Chem. 33, 67–86 (2022).
Su, Y., Yu, B., Wang, S., Cong, H. & Shen, Y. NIR-II bioimaging of small natural molecule. Biomaterials 271, 120717 (2021).
Solar, X. et al. Results of nanoparticle sizes, shapes, and permittivity on plasmonic imaging. Choose. Specific 30, 6051–6060 (2022).
Zhuang, Y. et al. Dimension and form impact of gold nanoparticles in “far-field” floor plasmon resonance. Half. Half. Syst. Charact. 36, 1800077 (2019).
González, A. L., Noguez, C., Beránek, J. & Barnard, A. S. Dimension, form, stability, and shade of plasmonic silver nanoparticles. J. Phys. Chem. C 118, 9128–9136 (2014).
Megaly, M. et al. Radial versus femoral entry in power complete occlusion percutaneous coronary intervention: a scientific evaluate and meta-analysis. Circ. Cardiovasc. Interv. 12, 007778 (2019).
Bezerra, H. G., Costa, M. A., Guagliumi, G., Rollins, A. M. & Simon, D. I. Intracoronary optical coherence tomography: a complete evaluate: medical and analysis functions. JACC Cardiovasc. Interv. 2, 1035–1046 (2009).
Roleder, T. et al. The fundamentals of intravascular optical coherence tomography. Postepy Kardiol. Interwencyjnej 11, 74 (2015).
Gounis, M. J. et al. Intravascular optical coherence tomography for neurointerventional surgical procedure. Stroke 50, 218–223 (2019).
Swanson, E. A. & Fujimoto, J. G. The ecosystem that powered the interpretation of OCT from basic analysis to medical and industrial affect [Invited]. Biomed. Choose. Specific 8, 1638 (2017).
McCabe, J. M. & Croce, Okay. J. Optical coherence tomography. Circulation 126, 2140–2143 (2012).
Yonetsu, T. et al. Plaque morphologies and the medical prognosis of acute coronary syndrome attributable to lesions with intact fibrous cap recognized by optical coherence tomography. Int. J. Cardiol. 203, 766–774 (2016).
Toutouzas, Okay., Karanasos, A. & Tousoulis, D. Optical coherence tomography for the detection of the susceptible plaque. Eur. Cardiol. Rev. 11, 90 (2016).
Wang, A., Qi, W., Gao, T. & Tang, X. Molecular distinction optical coherence tomography and its functions in drugs. Int. J. Mol. Sci. 23, 3038 (2022).
Ameh, T. et al. Silver and copper nanoparticles induce oxidative stress in micro organism and mammalian cells. Nanomaterials 12, 2402 (2022).
Mondal, I., Raj, S., Roy, P. & Poddar, R. Silver nanoparticles (AgNPs) as a distinction agent for imaging of animal tissue utilizing swept-source optical coherence tomography (SSOCT). Laser Phys. 28, 015601 (2018).
Marin, R. et al. Plasmonic copper sulfide nanoparticles allow darkish distinction in optical coherence tomography. Adv. Healthc. Mater. 9, 1901627 (2020).
Cabuzu, D., Cirja, A., Puiu, R. & Grumezescu, A. Biomedical functions of gold nanoparticles. Curr. High. Med. Chem. 15, 1605–1613 (2015).
Si, P. et al. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 3, 2679–2698 (2021).
Si, P. et al. Gold nanoprisms as optical coherence tomography distinction brokers within the second near-infrared window for enhanced angiography in dwell animals. ACS Nano 12, 11986–11994 (2018).
Nguyen, V. P. et al. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization. ACS Appl. Mater. Interfaces 13, 40214–40228 (2021).
Zhao, Y. et al. A comparability between sphere and rod nanoparticles relating to their in vivo organic habits and pharmacokinetics. Sci. Rep. 7, 4131 (2017).
Hu, J. et al. Gold nanoshells: distinction brokers for cell imaging by cardiovascular optical coherence tomography. Nano Res. 11, 676–685 (2018).
Hu, J. et al. Optical nanoparticles for cardiovascular imaging. Adv. Choose. Mater. 6, 1800626 (2018).
Muñoz-Ortiz, T. et al. Molecular imaging of infarcted coronary heart by biofunctionalized gold nanoshells. Adv. Healthc. Mater. 10, 2002186 (2021).
Hu, J. et al. Dynamic single gold nanoparticle visualization by medical intracoronary optical coherence tomography. J. Biophoton. 10, 674–682 (2017).
Kwon, N. et al. Direct chemical synthesis of plasmonic black colloidal gold superparticles with broadband absorption properties. Nano Lett. 18, 5927–5932 (2018).
Yu, J. H. et al. Extremely excretable gold supraclusters for translatable in vivo Raman imaging of tumors. ACS Nano 17, 2554–2567 (2023).
Gulumian, M., Andraos, C., Afantitis, A., Puzyn, T. & Coville, N. J. Significance of floor topography in each organic exercise and catalysis of nanomaterials: can catalysis by design information secure by design? Int. J. Mol. Sci. 22, 8347 (2021).
Witika, B. A. et al. Biocompatibility of biomaterials for nanoencapsulation: present approaches. Nanomaterials 10, 1649 (2020).
Ethylene glycol monostearate | C20H40O3 | CID 24762 – PubChem. Accessed 22 July 2023; https://pubchem.ncbi.nlm.nih.gov/compound/Ethylene-glycol-monostearate#part=Interactions
Rahmani, M. et al. Past the hybridization results in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. Small 10, 576–583 (2014).
Nordlander, P., Oubre, C., Prodan, E., Li, Okay. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).
Lee, S. A. & Hyperlink, S. Chemical interface damping of floor plasmon resonances. Acc. Chem. Res. 54, 1950–1960 (2021).
Polavarapu, L., Venkatram, N., Ji, W. & Xu, Q. H. Optical-limiting properties of oleylamine-capped gold nanoparticles for each femtosecond and nanosecond laser pulses. ACS Appl. Mater. Interfaces 1, 2298–2303 (2009).
Aumann, S., Donner, S., Fischer, J. & Müller, F. in Excessive Decision Imaging in Microscopy and Ophthalmology (ed. Bille, J.) 59–85 (Springer, 2019); https://doi.org/10.1007/978-3-030-16638-0_3
Huang, X. & El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in most cancers prognosis and photothermal remedy. J. Adv. Res. 1, 13–28 (2010).
Burger, P. C. Platelet P-selectin facilitates atherosclerotic lesion improvement. Blood 101, 2661–2666 (2003).
Lorenzon, P. et al. Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 operate as signaling receptors. J. Cell Biol. 142, 1381–1391 (1998).
Harari, O. A. et al. Endothelial cell E- and P-selectin up-regulation in murine contact sensitivity is extended by distinct mechanisms occurring in sequence. J. Immunol. 163, 6860–6866 (1999).
Moore, Okay. L. Construction and performance of P-selectin glycoprotein ligand-1. Leuk. Lymphoma 29, 1–15 (1998).
Beauharnois, M. E. et al. Affinity and kinetics of sialyl Lewis-X and Core-2 based mostly oligosaccharides binding to L- and P-selectin. Biochemistry 44, 9507–9519 (2005).
Zandberg, W. F., Kumarasamy, J., Pinto, B. M. & Vocadlo, D. J. Metabolic inhibition of sialyl-Lewis X biosynthesis by 5-thiofucose remodels the cell floor and impairs selectin-mediated cell adhesion. J. Biol. Chem. 287, 40021 (2012).
Beste, M. T. & Hammer, D. A. Selectin catch-slip kinetics encode shear threshold adhesive habits of rolling leukocytes. Proc. Natl Acad. Sci. USA 105, 20716–20721 (2008).
Pudelko, M., Bull, J. & Kunz, H. Chemical and chemoenzymatic synthesis of glycopeptide selectin ligands containing sialyl Lewis X constructions. ChemBioChem 11, 904–930 (2010).
Revelle, B. M., Scott, D., Kogan, T. P., Zheng, J. & Beck, P. J. Construction-function evaluation of P-selectin-sialyl LewisX binding interactions. Mutagenic alteration of ligand binding specificity. J. Biol. Chem. 271, 4289–4297 (1996).
Galustian, C. et al. Synergistic interactions of the 2 courses of ligand, sialyl-Lewisa/x fuco-oligosaccharides and quick sulpho-motifs, with the P- and L-selectins: implications for therapeutic inhibitor designs. Immunology 105, 350 (2002).
Rodgers, S. D., Camphausen, R. T. & Hammer, D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys. J. 79, 694 (2000).
Rutledge, N. S. & Muller, W. A. Understanding molecules that mediate leukocyte extravasation. Curr. Pathobiol. Rep. 8, 25–35 (2020).
Manning, D. D., Hu, X., Beck, P. & Kiessling, L. L. Synthesis of sulfated neoglycopolymers: selective P-selectin inhibitors. J. Am. Chem. Soc. 119, 3161–3162 (1997).
Dernedde, J. et al. Dendritic polyglycerol sulfates as multivalent inhibitors of irritation. Proc. Natl Acad. Sci. USA 107, 19679–19684 (2010).
John, A. E. et al. Discovery of a potent nanoparticle P‐selectin antagonist with anti‐inflammatory results in allergic airway illness. FASEB J. 17, 2296–2298 (2003).
Mehanna, E. A., Attizzani, G. F., Kyono, H., Hake, M. & Bezerra, H. G. Evaluation of coronary stent by optical coherence tomography, methodology and definitions. Int. J. Cardiovasc. Imaging 27, 259 (2011).
Mancuso, J. J. et al. Intravascular optical coherence tomography mild scattering artifacts: merry-go-rounding, blooming, and ghost struts. J. Biomed. Choose. 19, 126017 (2014).
Yao, L., Pan, J., Setiadi, H., Patel, Okay. D. & McEver, R. P. Interleukin 4 or oncostatin M induces a chronic improve in P-selectin mRNA and protein in human endothelial cells. J. Exp. Med. 184, 81–92 (1996).
Misugi, E., Tojo, S. J., Yasuda, T., Kurata, Y. & Morooka, S. Elevated plasma P-selectin induced by intravenous administration of endotoxin in rats. Biochem. Biophys. Res. Commun. 246, 414–417 (1998).
Fang, H. et al. The severity of LPS induced inflammatory damage is negatively related to the useful liver mass after LPS injection in rat mannequin. J. Inflamm. 15, 21 (2018).
De Jong, W. H. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008).
Lesina, A. C., Berini, P., Vaccari, A. & Ramunno, L. On the convergence and accuracy of the FDTD methodology for nanoplasmonics. Choose. Specific 23, 10481–10497 (2015).
Vial, A., Laroche, T., Dridi, M. & Le Cunff, L. A brand new mannequin of dispersion for metals resulting in a extra correct modeling of plasmonic constructions utilizing the FDTD methodology. Appl. Phys. A 103, 849–853 (2011).