7.7 C
United States of America
Sunday, November 24, 2024

Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic purposes


  • Yáñez-Mó, M. et al. Organic properties of extracellular vesicles and their physiological capabilities. J. Extracell. Vesicles 4, 27066 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Midekessa, G. et al. Zeta potential of extracellular vesicles: towards understanding the attributes that decide colloidal stability. ACS Omega 5, 16701–16710 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, X. et al. Complete toxicity and immunogenicity research reveal minimal results in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6, 1324730 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsharkasy, O. M. et al. Extracellular vesicles as drug supply methods: why and the way? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parada, N., Romero-Trujillo, A., Georges, N. & Alcayaga-Miranda, F. Camouflage methods for therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 31, 61–74 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoshino, A. et al. Tumour exosome integrins decide organotropic metastasis. Nature 527, 329–335 (2015). This research supplies direct proof that EVs from tumour cells exhibit particular tropism in the direction of goal organs, which is among the most promising options of EVs in contrast with artificial nanocarriers meant for medical purposes.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, H. et al. Biodistribution of exosomes and engineering methods for focused supply of therapeutic exosomes. Tissue Eng. Regener. Med. https://doi.org/10.1007/s13770-021-00361-0 (2021).

  • Wiklander, O. P. B. et al. Extracellular vesicle in vivo biodistribution is decided by cell supply, route of administration and concentrating on. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.26316 (2015).

  • Sung, B. H. & Weaver, A. M. Exosome secretion promotes chemotaxis of most cancers cells. Cell Adhes. Migr. 11, 187–195 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kriebel, P. W. et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic indicators. J. Cell Biol. 217, 2891–2910 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseini, R. et al. The roles of tumor-derived exosomes in altered differentiation, maturation and performance of dendritic cells. Mol. Most cancers 20, 83 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, P. et al. Neural stem cell-derived exosomes regulate neural stem cell differentiation by means of miR-9-Hes1 axis. Entrance. Cell Dev. Biol. https://doi.org/10.3389/fcell.2021.601600 (2021).

  • Huang, J., Ding, Z., Luo, Q. & Xu, W. Most cancers cell-derived exosomes promote cell proliferation and inhibit cell apoptosis of each regular lung fibroblasts and non-small cell lung most cancers cell by means of delivering alpha-smooth muscle actin. Am. J. Transl. Res. 11, 1711–1723 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto, Y. et al. Tumor‐derived exosomes affect the cell cycle and cell migration of human esophageal most cancers cell traces. Most cancers Sci. 111, 4348–4358 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harmati, M. et al. Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci. Rep. 9, 15329 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonsergent, E. et al. Quantitative characterization of extracellular vesicle uptake and content material supply inside mammalian cells. Nat. Commun. 12, 1864 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, S. et al. Extracellular vesicle-based drug supply methods for most cancers therapy. Theranostics 9, 8001–8017 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y., van der Meel, R., Chen, X. & Lammers, T. The EPR impact and past: methods to enhance tumor concentrating on and most cancers nanomedicine therapy efficacy. Theranostics 10, 7921–7924 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakubec, M. et al. Plasma-derived exosome-like vesicles are enriched in lyso-phospholipids and move the blood–mind barrier. PLoS ONE 15, e0232442 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morad, G. et al. Tumor-derived extracellular vesicles breach the intact blood–mind barrier by way of transcytosis. ACS Nano 13, 13853–13865 (2019). This analysis supplies a exact description of how tumour-derived EVs handle to breach the formidable BBB, revealing the function of transcytosis and the endothelial recycling endocytic pathway through the course of.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saint-Pol, J., Gosselet, F., Duban-Deweer, S., Pottiez, G. & Karamanos, Y. Focusing on and brossing the blood–mind barrier with extracellular vesicles. Cells 9, 851 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiteside, T. L. Exosomes carrying immunoinhibitory proteins and their function in most cancers. Clin. Exp. Immunol. 189, 259–267 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, E. et al. Exosome-mediated metabolic reprogramming: the rising function in tumor microenvironment reworking and its affect on most cancers development. Sign Transduction Focused Ther. 5, 242 (2020).

    Article 

    Google Scholar
     

  • Kuriyama, N., Yoshioka, Y., Kikuchi, S., Azuma, N. & Ochiya, T. Extracellular vesicles are key regulators of tumor neovasculature. Entrance. Cell Dev. Biol. https://doi.org/10.3389/fcell.2020.611039 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, M., Vader, P. & Fuhrmann, G. Approaches to floor engineering of extracellular vesicles. Adv. Drug Deliv. Rev. 173, 416–426 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Engineered extracellular vesicles and their mimetics for medical translation. Strategies 177, 80–94 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lener, T. et al. Making use of extracellular vesicles primarily based therapeutics in medical trials – an ISEV place paper. J. Extracell. Vesicles 4, 30087 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, V. V. T., Witwer, Ok. W., Verhaar, M. C., Strunk, D. & Balkom, B. W. M. Useful assays to evaluate the therapeutic potential of extracellular vesicles. J. Extracell. Vesicles 10, e12033 (2020). This research addresses the pressing want for standardized and predictive assays to gauge the therapeutic potential of EVs, guaranteeing constant therapeutic efficacy and batch-to-batch reproducibility.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, X. et al. Extracellular vesicles engineered to bind albumin display prolonged circulation time and lymph node accumulation in mouse fashions. J. Extracell. Vesicles 11, e12248 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, M. et al. Measurement-dependent in vivo transport of nanoparticles: implications for supply, concentrating on, and clearance. ACS Nano 17, 20825–20849 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, S., LeClaire, M., Wohlschlegel, J. & Gimzewski, J. Influence of isolation strategies on the biophysical heterogeneity of single extracellular vesicles. Sci. Rep. 10, 13327 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caponnetto, F. et al. Measurement-dependent mobile uptake of exosomes. Nanomedicine 13, 1011–1020 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobrie, A., Colombo, M., Krumeich, S., Raposo, G. & Théry, C. Various subpopulations of vesicles secreted by totally different intracellular mechanisms are current in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1, 18397 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mazouzi, Y. et al. Biosensing extracellular vesicle subpopulations in neurodegenerative illness situations. ACS Sens. 7, 1657–1665 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. I. et al. Extracellular Vesicle Seize by AnTibody of CHoice and Enzymatic Launch (EV‐CATCHER): a customizable purification assay designed for small‐RNA biomarker identification and analysis of circulating small‐EVs. J. Extracell. Vesicles 10, e12110 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Y. et al. Isolation and profiling of circulating tumor‐related exosomes utilizing extracellular vesicular lipid–protein binding affinity primarily based microfluidic system. Small 15, 1903600 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by uneven stream field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018). This research underscores the heterogeneity of EV populations, introduces the inventive use of AF4, two distinct EV sizes and the beforehand unreported ‘exomeres’.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowal, J. et al. Proteomic comparability defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lázaro-Ibáñez, E. et al. DNA evaluation of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles primarily based on their DNA cargo and topology. J. Extracell. Vesicles 8, 1656993 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S.-S. et al. A novel inhabitants of extracellular vesicles smaller than exosomes promotes cell proliferation. Cell Commun. Sign. 17, 95 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emelyanov, A. et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS ONE 15, e0227949 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arraud, N. et al. Extracellular vesicles from blood plasma: willpower of their morphology, dimension, phenotype and focus. J. Thromb. Haemost. 12, 614–627 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Pol, E., Welsh, J. A. & Nieuwland, R. Minimal data to report a few stream cytometry experiment on extracellular vesicles: communication from the ISTH SSC subcommittee on vascular biology. J. Thromb. Haemost. 20, 245–251 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jeppesen, D. Ok. et al. Reassessment of exosome composition. Cell https://doi.org/10.1016/j.cell.2019.02.029 (2019).

  • Pfrieger, F. W. & Vitale, N. Ldl cholesterol and the journey of extracellular vesicles. J. Lipid Res. 59, 2255–2261 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by dwell intracellular monitoring of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zendrini, A. et al. On the surface-to-bulk partition of proteins in extracellular vesicles. Colloids Surf. B Biointerfaces 218, 112728 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Supermeres are practical extracellular nanoparticles replete with illness biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand, S., Samuel, M. & Mathivanan, S. in New Frontiers: Extracellular Vesicles Vol. 97 (eds Mathivanan, S. et al.) 89–97 (Springer, 2021).

  • Wang, G. et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 618, 374–382 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahnke, Ok. & Staufer, O. Membranes on the transfer: the practical function of the extracellular vesicle membrane for contact‐dependent mobile signalling. J. Extracell. Vesicles 13, e12436 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizenko, R. R. et al. Tetraspanins are inconsistently distributed throughout single extracellular vesicles and bias sensitivity to multiplexed most cancers biomarkers. J. Nanobiotechnol. 19, 250 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ferguson, S., Yang, Ok. S. & Weissleder, R. Single extracellular vesicle evaluation for early most cancers detection. Tendencies Mol. Med. 28, 681–692 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mol, E. A., Goumans, M.-J., Doevendans, P. A., Sluijter, J. P. G. & Vader, P. Increased performance of extracellular vesicles remoted utilizing size-exclusion chromatography in comparison with ultracentrifugation. Nanomedicine 13, 2061–2065 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martel, R., Shen, M. L., DeCorwin-Martin, P., De Araujo, L. O. F. & Juncker, D. Extracellular vesicle antibody microarray for multiplexed interior and outer protein evaluation. ACS Sens. 7, 3817–3828 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko, J., Wang, Y., Sheng, Ok., Weitz, D. A. & Weissleder, R. Sequencing-based protein evaluation of single extracellular vesicles. ACS Nano 15, 5631–5638 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sariano, P. A. et al. Convection and extracellular matrix binding management interstitial transport of extracellular vesicles. J. Extracell. Vesicles 12, e12323 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welsh, J. A. et al. A compendium of single extracellular vesicle stream cytometry. J. Extracell. Vesicles 12, e12299 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, F. et al. Single-particle interferometric reflectance imaging characterization of particular person extracellular vesicles and inhabitants dynamics. J. Vis. Exp. https://doi.org/10.3791/62988 (2022).

  • Cimorelli, M., Nieuwland, R., Varga, Z. & Van Der Pol, E. Standardized process to measure the scale distribution of extracellular vesicles along with different particles in biofluids with microfluidic resistive pulse sensing. PLoS ONE 16, e0249603 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNamara, R. P. et al. Imaging of floor microdomains on particular person extracellular vesicles in 3-D. J. Extracell. Vesicles 11, e12191 (2022). Utilizing superior direct stochastic optical reconstruction microscopy, this work experiences the imaging of spatial microdomains on single EVs, uncovering a beforehand unappreciated stage of structural intricacy and heterogeneity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saftics, A. et al. Single Extracellular VEsicle Nanoscopy. J. Extracell. Vesicles 12, 12346 (2023). Utilizing SRM, this research introduces an progressive assay that gives in-depth insights into the bodily, chemical and morphological traits of particular person EVs within the context of discerning disease-associated and organ-associated EV subtypes.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höög, J. L. & Lötvall, J. Variety of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles 4, 28680 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Musante, L. et al. Rigorous characterization of urinary extracellular vesicles (uEVs) within the low centrifugation pellet – a uncared for supply for uEVs. Sci. Rep. 10, 3701 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paolini, L. et al. Fourier-transform infrared (FT-IR) spectroscopy fingerprints subpopulations of extracellular vesicles of various sizes and mobile origin. J. Extracell. Vesicles 9, 1741174 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, Y. & Park, J. Strategies to research extracellular vesicles at single particle stage. Micro Nano Syst. Lett. 10, 14 (2022).

    Article 

    Google Scholar
     

  • Bachurski, D. et al. Extracellular vesicle measurements with nanoparticle monitoring evaluation – an accuracy and repeatability comparability between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 8, 1596016 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enciso-Martinez, A. et al. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine 24, 102109 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M. Ok. & Mun, J. Y. Pattern preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. https://doi.org/10.3791/56482 (2018).

  • Andronico, L. A. et al. Sizing extracellular vesicles utilizing membrane dyes and a single molecule-sensitive stream analyzer. Anal. Chem. 93, 5897–5905 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales, R.-T. T. & Ko, J. Way forward for digital assays to resolve medical heterogeneity of single extracellular vesicles. ACS Nano 16, 11619–11645 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welsh, J. A., Jones, J. C. & Tang, V. A. Fluorescence and light-weight scatter calibration permit comparisons of small particle information in normal items throughout totally different stream cytometry platforms and detector settings. Cytometry A 97, 592–601 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieuwland, R., Siljander, P. R.-M., Falcón-Pérez, J. M. & Witwer, Ok. W. Reproducibility of extracellular vesicle analysis. Eur. J. Cell Biol. 101, 151226 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kashkanova, A. D., Blessing, M., Gemeinhardt, A., Soulat, D. & Sandoghdar, V. Precision dimension and refractive index evaluation of weakly scattering nanoparticles in polydispersions. Nat. Strategies 19, 586–593 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanwar, S. S., Dunlay, C. J., Simeone, D. M. & Nagrath, S. Microfluidic system (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14, 1891–1900 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamerkar, S. et al. Exosomes facilitate therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers. Nature 546, 498–503 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roerig, J. et al. A concentrate on vital points of uptake and transport of milk-derived extracellular vesicles throughout the Caco-2 intestinal barrier mannequin. Eur. J. Pharm. Biopharm. 166, 61–74 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, M. et al. A practical corona round extracellular vesicles enhances angiogenesis, pores and skin regeneration and immunomodulation. J. Extracell. Vesicles 11, e12207 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banks, W. A. et al. Transport of extracellular vesicles throughout the blood–mind barrier: mind pharmacokinetics and results of irritation. Int. J. Mol. Sci. 21, 4407 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, P. et al. Neuroprotective impact of placenta-derived mesenchymal stromal cells: function of exosomes. FASEB J. 33, 5836–5849 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadid, M. et al. Endothelial extracellular vesicles comprise protecting proteins and rescue ischemia–reperfusion damage in a human heart-on-chip. Sci. Transl. Med. 12, eaax8005 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, B. et al. Extracellular vesicles wealthy in HAX1 promote angiogenesis by modulating ITGB6 translation. J. Extracell. Vesicles 11, e12221 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, J., Xu, G., Chang, Z., Zhu, L. & Yao, J. miR-210 transferred by lung most cancers cell-derived exosomes might act as proangiogenic consider cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin. Sci. 134, 807–825 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, J. S. et al. Exosomes from differentiating human skeletal muscle cells set off myogenesis of stem cells and supply biochemical cues for skeletal muscle regeneration. J. Management. Launch 222, 107–115 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J., Zhang, X., Chen, X., Wang, L. & Yang, G. Exosome mediated supply of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 7, 278–287 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, T. L., Russell, A. J. & Riley, P. Experimental limitations of extracellular vesicle-based therapies for the therapy of myocardial infarction. Tendencies Cardiovasc. Med. 31, 405–415 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiner, A. T. et al. Concise Overview: Creating best-practice fashions for the therapeutic use of extracellular vesicles. Stem Cells Transl. Med. 6, 1730–1739 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paolini, L. et al. Massive-scale manufacturing of extracellular vesicles: report on the “massivEVs” ISEV workshop. J. Extracell. Biol. 1, e63 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witwer, Ok. W. et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic purposes. J. Extracell. Vesicles 8, 1609206 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimona, M. et al. Vital concerns for the event of efficiency assessments for therapeutic purposes of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 23, 373–380 (2021). This road-map article on mesenchymal stromal/stem cells (MSCs) presents an evaluation throughout the context of therapeutic medication, emphasizing the potential of small EVs over conventional mobile MSC merchandise, with a concentrate on the intricacies and challenges in high quality management and constant efficiency.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poupardin, R., Wolf, M. & Strunk, D. Adherence to minimal experimental necessities for outlining extracellular vesicles and their capabilities. Adv. Drug Deliv. Rev. 176, 113872 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lötvall, J. et al. Minimal experimental necessities for definition of extracellular vesicles and their capabilities: a place assertion from the Worldwide Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Théry, C. et al. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J. Extracell. Vesicles 7, 1535750 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • EV-TRACK Consortium et al. EV-TRACK: clear reporting and centralizing data in extracellular vesicle analysis. Nat. Strategies 14, 228–232 (2017).

    Article 

    Google Scholar
     

  • Otero-Ortega, L. et al. Low dose of extracellular vesicles recognized that promote restoration after ischemic stroke. Stem Cell Res. Ther. 11, 70 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjöqvist, S. et al. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound therapeutic. J. Extracell. Vesicles 8, 1565264 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karttunen, J. et al. Impact of cell tradition media on extracellular vesicle secretion from mesenchymal stromal cells and neurons. Eur. J. Cell Biol. 101, 151270 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salmond, N., Khanna, Ok., Owen, G. R. & Williams, Ok. C. Nanoscale stream cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma. Nanoscale 13, 2012–2025 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, J. & Ludlow, J. W. Cell-based therapeutic merchandise: efficiency assay improvement and software. Regen. Med. 9, 497–512 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steering for Trade: Efficiency Exams for Mobile and Gene Remedy Merchandise (Meals and Drug Administration, 2011).

  • Ko, S. Y. et al. The glycoprotein CD147 defines miRNA‐enriched extracellular vesicles that derive from most cancers cells. J. Extracell. Vesicles 12, 12318 (2023). This research reveals a elementary discovery: the glycoproteins CD147 and CD98 uniquely characterize particular EV subpopulations, basically totally different from the standard tetraspanin-positive EVs, offering an enhanced specificity in distinguishing cancerous origins.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, B. H. et al. A dwell cell reporter of exosome secretion and uptake reveals pathfinding habits of migrating cells. Nat. Commun. 11, 2092 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. J., Choi, Y., Lee, H. J., Hwang, D. W. & Lee, D. S. Human neural stem cell-derived extracellular vesicles defend towards Parkinson’s illness pathologies. J. Nanobiotechnol. 20, 198 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Q. et al. Mesenchymal stem cell-derived extracellular cesicles lower lung damage in mice. J. Immunol. 203, 1961–1972 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulaj, Ok. et al. Adipocyte-derived extracellular vesicles improve insulin secretion by means of transport of insulinotropic protein cargo. Nat. Commun. 14, 709 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, F. et al. Breast most cancers cell-derived extracellular vesicles promote CD8+ T cell exhaustion by way of TGF-β sort II receptor signaling. Nat. Commun. 13, 4461 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta Biomembr. 1768, 2182–2194 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tertel, T. et al. Imaging stream cytometry challenges the usefulness of classically used extracellular vesicle labeling dyes and qualifies the novel dye Exoria for the labeling of mesenchymal stromal cell–extracellular vesicle preparations. Cytotherapy 24, 619–628 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welsh, J. A. et al. Minimal data for research of extracellular vesicles (MISEV2023): from fundamental to superior approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Proteomic evaluation of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a by way of activating platelet capabilities. J. Extracell. Vesicles 11, e12240 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campos-Mora, M. et al. Neuropilin-1 is current on Foxp3+ T regulatory cell-derived small extracellular vesicles and mediates immunity towards pores and skin transplantation. J. Extracell. Vesicles 11, e12237 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collino, F. et al. AKI restoration induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J. Am. Soc. Nephrol. 26, 2349–2360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scalise, M., Pochini, L., Giangregorio, N., Tonazzi, A. & Indiveri, C. Proteoliposomes as software for sssaying membrane transporter capabilities and interactions with xenobiotics. Pharmaceutics 5, 472–497 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sejwal, Ok. et al. Proteoliposomes – a system to review membrane proteins underneath buffer gradients by cryo-EM. Nanotechnol. Rev. 6, 57–74 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shapira, S. et al. A novel platform for attenuating immune hyperactivity utilizing EXO-CD24 in COVID-19 and past. EMBO Mol. Med. 14, e15997 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gwak, H., Park, S., Yu, H., Hyun, Ok.-A. & Jung, H.-I. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles. Analyst 147, 1117–1127 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordanaba-Florit, G., Royo, F., Kruglik, S. G. & Falcón-Pérez, J. M. Utilizing single-vesicle applied sciences to unravel the heterogeneity of extracellular vesicles. Nat. Protoc. https://doi.org/10.1038/s41596-021-00551-z (2021).

  • Hromada, C., Mühleder, S., Grillari, J., Redl, H. & Holnthoner, W. Endothelial extracellular vesicles—guarantees and challenges. Entrance. Physiol. 8, 275 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. et al. Useful exosome-mimic for supply of siRNA to most cancers: in vitro and in vivo analysis. J. Management. Launch 243, 160–171 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramasubramanian, L., Kumar, P. & Wang, A. Engineering extracellular vesicles as nanotherapeutics for regenerative medication. Biomolecules 10, 48 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for focused supply of chemotherapeutics to malignant tumors. ACS Nano 7, 7698–7710 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, W. et al. Massive-scale era of cell-derived nanovesicles. Nanoscale 6, 12056–12064 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozzuto, G. & Molinari, A. Liposomes as nanomedical units. Int. J. Nanomed. 10, 975–999 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Akbarzadeh, A. et al. Liposome: classification, preparation, and purposes. Nanoscale Res. Lett. 8, 102 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, Y. P. & Jadhav, S. Novel strategies for liposome preparation. Chem. Phys. Lipids 177, 8–18 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lapinski, M. M., Castro-Forero, A., Greiner, A. J., Ofoli, R. Y. & Blanchard, G. J. Comparability of liposomes fashioned by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 23, 11677–11683 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massive, D. E., Abdelmessih, R. G., Fink, E. A. & Auguste, D. T. Liposome composition in drug supply design, synthesis, characterization, and medical software. Adv. Drug Deliv. Rev. 176, 113851 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jahn, A., Vreeland, W. N., DeVoe, D. L., Locascio, L. E. & Gaitan, M. Microfluidic directed formation of liposomes of managed dimension. Langmuir 23, 6289–6293 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carugo, D., Bottaro, E., Owen, J., Stride, E. & Nastruzzi, C. Liposome manufacturing by microfluidics: potential and limiting elements. Sci. Rep. 6, 25876 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genç, R., Ortiz, M. & O′Sullivan, C. Ok. Curvature-tuned preparation of nanoliposomes. Langmuir 25, 12604–12613 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Piffoux, M., Silva, A. Ok. A., Wilhelm, C., Gazeau, F. & Tareste, D. Modification of extracellular vesicles by fusion with liposomes for the design of personalised biogenic drug supply methods. ACS Nano 12, 6830–6842 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuntsche, J., Decker, C. & Fahr, A. Evaluation of liposomes utilizing asymmetrical stream field-flow fractionation: separation situations and drug/lipid restoration. J. Sep. Sci. 35, 1993–2001 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, J., Hatzakis, N. S. & Stamou, D. Remark of inhomogeneity within the lipid composition of particular person nanoscale liposomes. J. Am. Chem. Soc. 133, 10685–10687 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moulahoum, H., Ghorbanizamani, F., Zihnioglu, F. & Timur, S. Floor biomodification of liposomes and polymersomes for environment friendly focused drug supply. Bioconjug. Chem. 32, 1491–1502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staufer, O. et al. Backside-up meeting of biomedical related absolutely artificial extracellular vesicles. Sci. Adv. 7, eabg6666 (2021). This analysis introduces an thrilling artificial strategy primarily based on mimetic EVs with outlined compositions, a promising avenue for medical purposes and a platform for dissecting the intricacies of EV signalling mechanisms.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Ok. et al. Bioengineered bacteria-derived outer membrane vesicles as a flexible antigen show platform for tumor vaccination by way of Plug-and-Show know-how. Nat. Commun. 12, 2041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez, D. A. & Vader, P. Extracellular vesicle-based hybrid methods for superior drug supply. Pharmaceutics 14, 267 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Kastresana, A. et al. Labeling extracellular vesicles for nanoscale stream cytometry. Sci. Rep. 7, 1878 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melling, G. E. et al. Confocal microscopy evaluation reveals that solely a small proportion of extracellular vesicles are efficiently labelled with generally utilised staining strategies. Sci. Rep. 12, 262 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles