-13.1 C
United States of America
Sunday, January 19, 2025

3D cryo-printed hierarchical porous scaffolds present immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic methods for vascularized bone regeneration primarily based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling | Journal of Nanobiotechnology


  • Johnson ZM, Yuan Y, Li X, Jashashvili T, Jamieson M, Urata M, Chen Y, Chai Y. Mesenchymal stem cells and three-dimensional-osteoconductive Scaffold regenerate calvarial bone in essential measurement defects in Swine. Stem Cells Translational Med. 2021;10:1170–83.

    Article 
    CAS 

    Google Scholar
     

  • Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and bone graft substitutes: medical proof and indications for Use within the setting of Orthopaedic Trauma surgical procedure. J Orthop Trauma. 2019;33:203–13.

    Article 
    PubMed 

    Google Scholar
     

  • Regenerative Approaches for the Remedy of Massive Bone Defects. Tissue Eng Half B: Critiques. 2021;27:539–47.

    Article 

    Google Scholar
     

  • Mohammadi H, Sepantafar M, Muhamad N, Bakar Sulong A. How does Scaffold Porosity Conduct Bone tissue regeneration? Adv Eng Mater. 2021;23:2100463.

    Article 
    CAS 

    Google Scholar
     

  • Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, Marei HE. Advances in osteobiologic supplies for bone substitutes. J Tissue Eng Regen Med. 2018;12:1448–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu A, Zhang C, Xu W, Zhang Y, Tian S, Liu B, Zhang J, He A, Su B, Lu X. Additive manufacturing of multi-morphology graded titanium scaffolds for bone implant functions. J Mater Sci Technol. 2023;139:47–58.

    Article 

    Google Scholar
     

  • Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An outline of translational analysis in bone graft biomaterials. J Biomater Sci Polym Ed. 2023;34:497–540.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D bioprinted scaffolds for bone tissue Engineering: State-Of-The-art and Rising applied sciences. Entrance Bioeng Biotechnol. 2022;10:824156.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu P, Bao T, Solar L, Wang Z, Solar J, Peng W, Gan D, Yin G, Liu P, Zhang W-B, Shen J. In situ mineralized PLGA/zwitterionic hydrogel composite scaffold allows high-efficiency rhBMP-2 launch for critical-sized bone therapeutic. Biomaterials Sci. 2022;10:781–93.

    Article 
    CAS 

    Google Scholar
     

  • Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Present advances in analysis and medical functions of PLGA-based nanotechnology. Skilled Rev Mol Diagn. 2009;9:325–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Software of PLGA as a biodegradable and biocompatible polymer for pulmonary supply of medication. AAPS PharmSciTech. 2023;24:39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia H, Dong L, Hao M, Wei Y, Duan J, Chen X, Yu L, Li H, Sang Y, Liu H. Osteogenic property regulation of stem cells by a hydroxyapatite 3D-Hybrid Scaffold with Cancellous Bone construction. Entrance Chem. 2021;9:798299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Y, Qin L, Gong Y, Chen R, Yang Y, Yang W, Cai Ok. Experimental and theoretical investigations of the influences of one-dimensional hydroxyapatite nanostructures on cytocompatibility. J Biomedical Mater Res Half A. 2021;109:804–13.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Zhou H, Zhu G, Shao C, Pan H, Xu X, Tang R. Excessive environment friendly multifunctional Ag3PO4 loaded hydroxyapatite nanowires for water remedy. J Hazard Mater. 2015;299:379–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Y-Q, Zhu Y-J, Yu H-P, Lu B-Q. Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. J Colloid Interface Sci. 2018;530:9–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar T-W, Yu W-L, Zhu Y-J, Chen F, Zhang Y-G, Jiang Y-Y, He Y-H. Porous nanocomposite comprising Ultralong Hydroxyapatite nanowires adorned with Zinc-Containing Nanoparticles and Chitosan: synthesis and software in bone defect restore. Chem – Eur J. 2018;24:8809–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of Vascularized Tender tissues. Adv Mater. 2020;32:2003915.

    Article 
    CAS 

    Google Scholar
     

  • Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW. 3D bioprinting of collagen to rebuild elements of the human coronary heart. Science. 2019;365:482–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Wu Q, Zhang Y, Dai Ok, Wei Y. 3D-bioprinted gradient-structured scaffold generates anisotropic cartilage with vascularization by pore-size-dependent activation of HIF1α/FAK signaling axis. Nanomed Nanotechnol Biol Med. 2021;37:102426.

    Article 
    CAS 

    Google Scholar
     

  • Chae S, Cho D-W. Biomaterial-based 3D bioprinting technique for orthopedic tissue engineering. Acta Biomater. 2023;156:4–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camarero-Espinosa S, Moroni L. Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nat Commun. 2021;12:1031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J, Zhang S. Delivering proangiogenic components from 3D-Printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater. 2020;9:2000727.

    Article 
    CAS 

    Google Scholar
     

  • Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds utilizing a low temperature 3D printing course of for bone tissue regeneration. Mater Sci Engineering: C. 2018;84:140–7.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Ullah I, Yu Ok, Zhang W, Zhou J, Solar T, Shi L, Yao S, Chen Ok, Zhang X, Guo X. Bioactive Sr2+/Fe3 + co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication. 2021;13:035007.

    Article 
    CAS 

    Google Scholar
     

  • Claes L, Recknagel S, Ignatius A. Fracture therapeutic beneath wholesome and inflammatory situations. Nat Rev Rheumatol. 2012;8:133–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, et al. Macrophages in bone fracture therapeutic: their important function in endochondral ossification. Bone. 2018;106:78–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prather AA, Rabinovitz M, Pollock BG, Lotrich FE. Cytokine-induced melancholy throughout IFN-α remedy: the function of IL-6 and sleep high quality. Mind Behav Immun. 2009;23:1109–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, Liu L, Qiu X, Huang J, Zhou H, et al. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res. 2016;61:317–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng S, Zhou C, Yang H, Li J, Feng Z, Liao L, Li Y. Melatonin accelerates osteoporotic bone defect restore by selling osteogenesis–angiogenesis coupling. Entrance Endocrinol. 2022;13:826660.

    Article 

    Google Scholar
     

  • Zhang J, Jia G, Xue P, Li Z. Melatonin restores osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells and alleviates bone loss by way of the HGF/PTEN/Wnt/β-catenin axis. Therapeutic Adv Persistent Illness. 2021;12:2040622321995685.

    Article 
    CAS 

    Google Scholar
     

  • Gu C, Zhou Q, Hu X, Ge X, Hou M, Wang W, Liu H, Shi Q, Xu Y, Zhu X, et al. Melatonin rescues the mitochondrial perform of bone marrow-derived mesenchymal stem cells and improves the restore of osteoporotic bone defect in ovariectomized rats. J Pineal Res. 2024;76:e12924.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molska A, Nyman AKG, Sofias AM, Kristiansen KA, Hak S, Widerøe M. In vitro and in vivo analysis of natural solvent-free injectable melatonin nanoformulations. Eur J Pharm Biopharm. 2020;152:248–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babu RJ, Dayal P, Singh M. Impact of cyclodextrins on the Complexation and nasal permeation of Melatonin. Drug Supply. 2008;15:381–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nižić L, Potaś J, Winnicka Ok, Szekalska M, Erak I, Gretić M, Jug M, Hafner A. Improvement, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. Eur J Pharm Sci. 2020;141:105115.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Zhao X, Wang L, Liu Y, Wu W, Zhong C, Zhang Q, Yang J. Preparation, characterization and in vitro analysis of melatonin-loaded porous starch for enhanced bioavailability. Carbohydr Polym. 2018;202:125–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for focused drug supply. Theranostics. 2021;11:3183–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic area: launch of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19:209.

    Article 
    CAS 

    Google Scholar
     

  • Tao S-C, Huang J-Y, Gao Y, Li Z-X, Wei Z-Y, Dawes H, Guo S-C. Small extracellular vesicles together with sleep-related circRNA3503: a focused therapeutic agent with injectable thermosensitive hydrogel to stop osteoarthritis. Bioactive Mater. 2021;6:4455–69.

    Article 
    CAS 

    Google Scholar
     

  • Curley N, Levy D, Do MA, Brown A, Stickney Z, Marriott G, Lu B. Sequential deletion of CD63 identifies topologically distinct scaffolds for floor engineering of exosomes in dwelling human cells. Nanoscale. 2020;12:12014–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol. 2016;28:57–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svensson S, Palmer M, Svensson J, Johansson A, Engqvist H, Omar O, Thomsen P. Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation. J Mater Science: Mater Med. 2022;33:11.

    CAS 

    Google Scholar
     

  • Huang G-J, Yu H-P, Wang X-L, Ning B-B, Gao J, Shi Y-Q, Zhu Y-J, Duan J-L. Extremely porous and elastic aerogel primarily based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. J Mater Chem B. 2021;9:1277–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Wang H, Luan S, Zhou G. Low-temperature printed hierarchically Porous Induced-Biomineralization Polyaryletherketone Scaffold for bone tissue Engineering. Adv Healthc Mater. 2022;11:e2200977.

    Article 
    PubMed 

    Google Scholar
     

  • Tian G, Pan R, Zhang B, Qu M, Lian B, Jiang H, Gao Z, Wu J. Liver-targeted mixture remedy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Entrance Pharmacol. 2019;10:4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar X, Wei J, Lyu J, Bian T, Liu Z, Huang J, Pi F, Li C, Zhong Z. Bone-targeting drug supply system of biomineral-binding liposomes loaded with icariin enhances the remedy for osteoporosis. J Nanobiotechnol. 2019;17:10.

    Article 

    Google Scholar
     

  • Visan KS, Lobb RJ, Ham S, Lima LG, Palma C, Edna CPZ, Wu L-Y, Gowda H, Datta KK, Hartel G, et al. Comparative evaluation of tangential circulate filtration and ultracentrifugation, each mixed with subsequent measurement exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles. 2022;11:12266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X-J, Shen Y-S, He M-C, Yang F, Yang P, Pang F-X, He W, Cao Y-M, Wei Q-S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2019;112:108746.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Yang Y, Ju J, Zhang G, Zhang P, Ji P, Jin Q, Cao G, Zuo R, Wang H, et al. Mir-100-5p promotes epidermal stem cell proliferation by way of Concentrating on MTMR3 to activate PIP3/AKT and ERK Signaling pathways. Stem Cells Int. 2022;2022:1474273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denker SP, Barber DL. Cell migration requires each ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol. 2002;159:1087–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation results of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol. 2019;234:1008–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies MJ. Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic technique in inflammatory ailments. Pharmacol Ther. 2021;218:107685.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Chen T, Deng Z, Gao W, Liang T, Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, et al. Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis improvement by way of modulating circ_0003865 that sponges miR-3653-3p. Stem Cell Res Ther. 2021;12:150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knani L, Bartolini D, Kechiche S, Tortoioli C, Murdolo G, Moretti M, Messaoudi I, Reiter RJ, Galli F. Melatonin prevents cadmium-induced bone injury: first proof on an improved osteogenic/adipogenic differentiation stability of mesenchymal stem cells as underlying mechanism. J Pineal Res. 2019;67:e12597.

    Article 
    PubMed 

    Google Scholar
     

  • Yun SP, Han Y-S, Lee JH, Kim SM, Lee SH. Melatonin rescues mesenchymal stem cells from Senescence Induced by the Uremic Toxin -Cresol through inhibiting mTOR-Dependent autophagy. Biomolecules Ther. 2018;26:389–98.

    Article 
    CAS 

    Google Scholar
     

  • Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Practical relationship between Osteogenesis and Angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21:3242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng J, Wang X, Zhang W, Solar L, Han X, Tong X, Yu L, Ding J, Yu L, Liu Y. Versatile hypoxic extracellular vesicles Laden in an Injectable and Bioactive Hydrogel for Accelerated Bone Regeneration. Adv Funct Mater. 2023;33:2211664.

    Article 
    CAS 

    Google Scholar
     

  • Hsu M-N, Huang Ok-L, Yu F-J, Lai P-L, Truong AV, Lin M-W, Nguyen NTK, Shen C-C, Hwang S-M, Chang Y-H, Hu Y-C. Coactivation of endogenous Wnt10b and Foxc2 by CRISPR activation enhances BMSC Osteogenesis and promotes calvarial bone regeneration. Mol Ther. 2020;28:441–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Wei S-m, Yan Ok-x, Gu Y-x, Lai H-c. Qiao S-c: bovine-derived xenografts immobilized with cryopreserved stem cells from human adipose and Dental Pulp tissues promote bone regeneration: a Radiographic and histological research. Entrance Bioeng Biotechnol. 2021;9:646690.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Critiques Illness Primers. 2021;7:57.

    Article 
    PubMed 

    Google Scholar
     

  • Anada T, Pan C-C, Stahl AM, Mori S, Fukuda J, Suzuki O, Yang Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to advertise Osteogenesis and Angiogenesis. Int J Mol Sci. 2019;20:1096.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing F, Xiang Z, Rommens PM, Ritz U. 3D bioprinting for Vascularized tissue-Engineered Bone Fabrication. Supplies. 2020;13:2278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh AC, Zhang Y, Poli L, Hammer N, Roch A, Crimp M, Chatzistavrou X. 3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication. Mater Sci Engineering: C. 2021;118:111516.

    Article 
    CAS 

    Google Scholar
     

  • Thadavirul N, Pavasant P, Supaphol P. Improvement of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and Polymer leaching strategies for bone tissue engineering. J Biomedical Mater Res Half A. 2014;102:3379–92.

    Article 

    Google Scholar
     

  • Liu X-Y, Chen C, Xu H-H, Zhang Y-s, Zhong L, Hu N, Jia X-L, Wang Y-W, Zhong Ok-H, Liu C, et al. Built-in printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal twine harm. Regenerative Biomaterials. 2021;8:rbab047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mou P, Peng H, Zhou L, Li L, Li H, Huang Q. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Int J Nanomed. 2019;14:3331–43.

    Article 
    CAS 

    Google Scholar
     

  • Bisht B, Hope A, Mukherjee A, Paul MK. Advances within the fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng. 2021;49:1128–50.

    Article 
    PubMed 

    Google Scholar
     

  • Yang N, Liu Y. The function of the Immune Microenvironment in Bone Regeneration. Int J Med Sci. 2021;18:3697–707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in progress issue supply for bone tissue Engineering. Int J Mol Sci. 2021;22:903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lanni C. Molecular rules of circadian rhythm and implications for physiology and ailments. Sign Transduct Goal Remedy. 2022;7:41.

    Article 
    CAS 

    Google Scholar
     

  • Schilperoort M, Bravenboer N, Lim J, Mletzko Ok, Busse B, van Ruijven L, Kroon J, Rensen PCN, Kooijman S, Winter EM. Circadian disruption by shifting the light-dark cycle negatively impacts bone well being in mice. FASEB J. 2020;34:1052–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LLabre JE, Trujillo R, Sroga GE, Figueiro MG, Vashishth D. Circadian rhythm disruption with high-fat weight loss program impairs glycemic management and bone high quality. FASEB J. 2021;35:e21786.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu S, Tang Q, Chen G, Lu X, Yin Y, Xie M, Lengthy Y, Zheng W, Guo F, Shao L, et al. Circadian rhythm modulates endochondral bone formation through MTR1/AMPKβ1/BMAL1 signaling axis. Cell Loss of life Differ. 2022;29:874–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Liang J-W, Liao S, Zhao Z-D, Wang Y-X, Mao X-F, Hao S-W, Wang Y-F, Zhu H, Guo B. Melatonin attenuates radiation-induced cortical bone-derived stem cells harm and enhances bone restore in postradiation femoral defect mannequin. Army Med Res. 2021;8:61.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z-J, Ran Y-Y, Qie S-Y, Gong W-J, Gao F-H, Ding Z-T, Xi J-N. Melatonin protects in opposition to ischemic stroke by modulating microglia/macrophage polarization towards anti-inflammatory phenotype by way of STAT3 pathway. CNS Neurosci Ther. 2019;25:1353–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang C-C, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, Gajendrareddy P, Ravindran S. Functionally engineered extracellular vesicles enhance bone regeneration. Acta Biomater. 2020;109:182–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang M, Huang C-C, Gajendrareddy P, Lu Y, Shirazi S, Ravindran S, Cooper LF. Extracellular vesicles from TNFα preconditioned MSCs: results on Immunomodulation and Bone Regeneration. Entrance Immunol. 2022;13:878194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y. Exosomes derived from mir-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52:e12669.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang G, Li S, Yu Ok, He B, Hong J, Xu T, Meng J, Ye C, Chen Y, Shi Z, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration by way of M2 macrophage polarization in a rabbit mannequin. Acta Biomater. 2021;128:150–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao C, Qiu P, Li M, Liang Ok, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial type periosteal-bone advanced promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic occasions. Mater At the moment Bio. 2021;12:100142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, et al. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone restore. Acta Biomater. 2022;142:85–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hardeland R. Ageing, melatonin, and the Professional- and anti inflammatory networks. Int J Mol Sci. 2019;20:1223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci. 2014;71:4131–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moisley KM, El-Jawhari JJ, Owston H, Tronci G, Russell SJ, Jones EA, Giannoudis PV. Optimising proliferation and migration of mesenchymal stem cells utilizing platelet merchandise: a rational strategy to bone regeneration. J Orthop Res. 2019;37:1329–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You W, Fan L, Duan D, Tian L, Dang X, Wang C, Wang Ok. Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem. 2014;386:125–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation in direction of the osteoblastic and adipogenic destiny. Cell Prolif. 2019;52:e12688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Huo M, Wang Y, Xiao L, Wu J, Ma Y, Zhang D, Lang X, Wang X. A tailor-made bioactive 3D porous poly(lactic-acid)-exosome scaffold with osteo-immunomodulatory and osteogenic differentiation properties. J Biol Eng. 2022;16:22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su N, Hao Y, Wang F, Hou W, Chen H, Luo Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses towards tissue restore. Sci Adv. 2021;7:eabf7207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, Li L, Xu S, Xia Y. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels speed up bone restore by enhancing angiogenesis. ACS Appl Mater Interfaces. 2021;13:18472–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Zhu H, Cheng L, Zhao Y, Chen X, Li J, Xv X, Xiao Z, Li W, Pan J, et al. TCP/PLGA composite scaffold loaded rapamycin in situ enhances lumbar fusion by regulating osteoblast and osteoclast exercise. J Tissue Eng Regen Med. 2021;15:475–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Z-L, Zhao Y, Miao F, Wu M, Xia H-F, Chen Z-Ok, Liu H-M, Zhao Y-F, Chen G. In situ membrane Biotinylation allows the direct labeling and correct kinetic evaluation of small extracellular vesicles in circulation. Anal Chem. 2021;93:10862–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles